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Abstract: Researchers are interested in measuring mental stress because it is linked to a variety
of diseases. Real-time stress monitoring via wearable sensor systems can aid in the prevention of
stress-related diseases by allowing stressors to be controlled immediately. Physical tests, such as
heart rate or skin conductance, have recently been used to assess stress; however, these methods are
easily influenced by daily life activities. As a result, for more accurate stress monitoring, validations
requiring two or more stress-related biomarkers are demanded. In this review, the combinations of
various types of sensors (hereafter referred to as multiplexed sensor systems) that can be applied
to monitor stress are discussed, referring to physical and chemical biomarkers. Multiplexed sensor
systems are classified as multiplexed physical sensors, multiplexed physical–chemical sensors, and
multiplexed chemical sensors, with the effect of measuring multiple biomarkers and the ability to
measure stress being the most important. The working principles of multiplexed sensor systems
are subdivided, with advantages in measuring multiple biomarkers. Furthermore, stress-related
chemical biomarkers are still limited to cortisol; however, we believe that by developing multiplexed
sensor systems, it will be possible to explore new stress-related chemical biomarkers by confirming
their correlations to cortisol. As a result, the potential for further development of multiplexed
sensor systems, such as the development of wearable electronics for mental health management, is
highlighted in this review.

Keywords: mental stress; multiplexed sensor; wearable sensor; physical biomarker; chemical biomarker

1. Introduction

With the advancement of biomedical technology, there has been a surge in research
interest in measuring mental stress. Walter Cannon and Hans Selye [1–3] were the first
to define stress, which has been linked to a variety of chronic and psychiatric diseases.
Stress is an uncontrollable and unpredictable event that is triggered by external factors
(environmental, physiological, and social) [4]. Moreover, internal factors such as disruptions
to cognitive and immune systems, due to the frequent occurrence and severity of stress,
can lead to illness [5–8]. As each individual is likely to encounter to a situation that causes
stress, it is important to identify the stressor—the thing that causes stress—in order to
manage stress in daily life.

The conventional methods for measuring stress are to assess the stress level using
a questionnaire or to measure physiological signals quantitatively using physical tests.
Measuring stress via a questionnaire has been widely used as a self-evaluation method
for relatively long periods in various methods, such as the stress response inventory, the
Beck anxiety inventory, and the perceived stress scale [9–11]. However, continuous stress
monitoring is challenging because of the poor reliability in repetitive analysis, and it
is significantly affected by individual conditions [12,13]. Additionally, stress cannot be
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measured in certain situations, such as during sleep. Conversely, measuring the short-
term stress reactions via electrical signaling of physiological signals such as heart rate
(HR) or body temperature is possible [14–18]. This method could efficiently measure
the acute stress response that changes rapidly within a short time; however, long-term
quantification with the measurement of the stress level is challenging, owing to factors such
as the bulkiness of the system. Because of the low reliability and the technical limitations
of these aforementioned conventional methods, the stress measurement results are cross-
validated by measuring the concentration of chemical biomarkers, such as cortisol, in the
body fluid for greater accuracy [19]. The change in the concentration of cortisol in the
body fluid from baseline, which is different for each individual, can be used to secure
higher reliability when tracking the intensity and frequency of stress [20]. Therefore, the
use of body-fluid-based measurements of cortisol for stress monitoring has been studied
extensively [21,22]. Moreover, chemical biomarkers are known to be more relevant for
diagnosing health conditions than physical biomarkers, because they can directly reflect
symptoms that manifest in our body [23]. However, as cortisol release occurs in a diurnal
cycle, different concentrations are measured at different times; consequently, accurate stress
measurement is demanding [24,25]. Additionally, only a significantly small number of
stress-related chemical biomarkers with low concentrations can be observed without using
invasive measurement techniques in body fluids. In the case of cortisol, the concentration
ranges in sweat and blood are 8–140 ng/mL and 20–230 ng/mL, respectively [26,27].
In addition to cortisol, sweat contains neuropeptide Y, which is involved in biological
processes related to stress, and has a concentration range of 50–200 pg/mL [28]. Due to
the low concentration of these chemical indicators that makes it difficult to detect stress
in sweat, it is challenging to develop a detection method with greater robustness [29].
This suggests that exploring new stress-related and sweat-based chemical biomarkers by
identifying their correlations with representative stress-related biomarkers is demanding.
Hence, wearable multiplexed sensors that can detect multiple biomarkers, such as different
combinations of physical and chemical biomarkers, for more accurate and quantitative
measurements of stress monitoring, are emerging [30].

This review focuses on recent wearable sensor studies that detect combinations of
physical and chemical biomarkers for the development of mental stress-monitoring systems.
The most recent research on multiplexed sensors is discussed based on wearable sensor
research. Furthermore, the discovery of new stress-related chemical biomarkers through
correlations with representative biomarkers is discussed. Multiplexed sensor systems for
stress monitoring can lead to accurate stress diagnosis through validation or calibration,
allowing for stressor identification and management. Figure 1 depicts examples of stress-
related physical and chemical biomarkers, as well as the impact of measuring multiple
biomarkers, i.e., physical and chemical biomarkers in combinations.
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Figure 1. Mental stress triggered in response to the stressor and an illustration of the stress-related 
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sponse of the ANS, also known as “fight or flight,” is caused by the sympathetic nervous 
system (SNS) [33,34]. The stress response of the SNS is predominantly represented by an 
immediate response in the peripheral organs (i.e., HR, body temperature, etc.); conse-
quently, acute stress can be measured more easily with this response than with the re-
sponse from the NES. In terms of the NES, the hypothalamic–pituitary–adrenal (HPA) 
axis is the center of the stress response system, and numerous neurotransmitters and hor-
mones are released or controlled [35–37]. The stress response of NES is considerably 
slower and more sluggish than that of the ANS; therefore, it is beneficial for measuring 
chronic stress [31,38,39]. 
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and its generated pathways. These biomarkers are utilized and developed to monitor 
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Figure 1. Mental stress triggered in response to the stressor and an illustration of the stress-related
signals. Red box indicates the advantages of measuring multiple stress-related biomarkers.

2. Physiological Effects of Stress
2.1. Physiological Response Path Caused by Stress

The central nervous system acts as a mediator of the stress response system, which
could be categorized into the responses of the autonomic nervous system (ANS) and
neuroendocrine system (NES), based on the response pathways involved [31,32]. The
response of the ANS, also known as “fight or flight,” is caused by the sympathetic nervous
system (SNS) [33,34]. The stress response of the SNS is predominantly represented by an
immediate response in the peripheral organs (i.e., HR, body temperature, etc.); consequently,
acute stress can be measured more easily with this response than with the response from
the NES. In terms of the NES, the hypothalamic–pituitary–adrenal (HPA) axis is the center
of the stress response system, and numerous neurotransmitters and hormones are released
or controlled [35–37]. The stress response of NES is considerably slower and more sluggish
than that of the ANS; therefore, it is beneficial for measuring chronic stress [31,38,39].

2.2. Physiological Biomarkers Related to Stress

The physical biomarkers and chemical biomarkers are examples of biomarkers, which
are indicators that provide information about an individual’s health [26]. According to
the aforementioned pathways of physiological response to stress, physical biomarkers
are generated by the ANS, and chemical biomarkers are released through the NES or
HPA axis. Thus, representative stress-related biomarkers, which are arranged based on
the origin of their signals, in Table 1 are classified based on the type of biomarker and
its generated pathways. These biomarkers are utilized and developed to monitor stress
through measuring a single biomarker quantitatively.
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Table 1. Representative biomarkers utilized to measure stress levels.

Variety of Signals (Abbr.) Pathways
(Signal Type)

Measured
Locations Analytical Methods References

Electroencephalogram (EEG)

ANS
(Physical)

Brain Not standardized [40–44]
Electrocardiogram (ECG),

Respiration rate (RR) Heart Changes in R–R intervals in the QRS
complex [45–47]

Electromyogram (EMG) Muscle Not standardized [48,49]
Electrodermal activity (EDA) Skin Changes in Amplitude and phase [50–52]

Skin temperature (ST) Skin Changes in temperature [53–55]

Cortisol HPA axis
(Chemical) Body Fluid Changes in cortisol concentration [56–59]

Respiration, pulse rate, HR variation (HRV), photoplethysmograms, electrodermal
activity (EDA), skin temperature (ST), and sweating rate are known as the physical biomark-
ers that humans perceive as a response to stress. In addition, the representative evaluation
methods for measuring electrical signals generated by the body are electroencephalography
(EEG), electrocardiography (ECG), or electromyography (EMG) [60].

An EEG measures brain activities generated through signals closely related to men-
tal and physical stresses. EEG signals are sorted by frequency bands, consisting of the
delta, theta, alpha, beta, and gamma waveforms, representing the different states of emo-
tions [40,41]. When analyzing stress using an EEG signal, ‘feature extraction’ for the raw
signal and ‘classification’ based on it are performed. Support vector machines (SVM), logis-
tic regression (LR), naïve bayes (NB), and K-nearest neighbors (KNN) are common classifier
algorithms for stress monitoring, and efforts to improve stress monitoring accuracy are
ongoing [43,44]. The ECG records and extracts the electrical signal related to HRV and
HR as a waveform, by measuring the time difference between the R peaks, which is the
electrical signal that passes the ventricular walls and is observed in the signal derived
from QRS complexes [61,62]. Since the waveforms seen in an ECG, including P-, Q-, R-,
S-, and T-waves, represent different states of the heart, the R–R interval-based analysis
is a traditional analysis, and recent attempts to investigate the use of other QRS complex
parameters, such as the P–R interval and S–T interval, have been made [47]. The HRV,
which represents the response to physiological and environmental stimuli through changes
in the heartbeat, was primarily obtained from ECG; however, it is now detectable using
wearable devices, enabling noninvasive detection and monitoring [45,46]. EMG evaluates
the electrical activity of skeletal muscles, and can also be used as a stress marker. As it
is known that facial and trapezius muscle tones are increased by mental stress, EMG has
been used in polysomnography studies to analyze the stress level during sleep [48,49].
An EDA, also called galvanic skin response (GSR), is a measure of the changes in skin
conductivity according to sweat secretion. An EDA is widely used to detect physiological
stress levels [50,51]. In stressful situations, the conductivity of the skin increases, and this
change can be used to monitor stress levels [63,64]. Tonic responses (skin conductivity level,
SCL) and rapid changes comprise the EDA signal (skin conductivity reaction, SCR). SCL is
the sympathetic system’s underlying activity and reflects long-term stress, whereas SCR
reflects individual stimuli, such as momentary stress, and changes in events, such as cogni-
tive and emotional responses, which cause activation of brain regions. As a result, stress
is analyzed by extracting tonic and phasic responses from raw EDA data, and analyzing
their phase and amplitude [52]. Stress causes changes in ST [53–55], and it is well-known
that the amount of change varies, depending on the area or the object measured. When
stress levels are measured using a physical biomarker, efforts are being made to improve
accuracy through efficient data processing and algorithm-based analysis [43].

Nevertheless, the detection of stress through physical methods is a challenging task,
owing to various limitations. For example, signal detection methods such as EEG, ECG, or
EMG can generate systematic noise [42,65]. Dehydration of electrodes also increases the
noise in high-impedance sites, thereby reducing the adherence of the electrode to a sub-
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ject [66]. Due to the vulnerability to motion artifacts, position or movement (sitting, stand-
ing, or walking) can affect signal detection, disrupting mental stress measurements [51].
Moreover, similar to negative emotions, positive emotions also exhibit changes in the
EMG [67]. Stress examination performed in controlled laboratory settings, where noise oc-
currence is suppressed, becomes inefficient when the detection is conducted in naturalistic
settings, owing to hidden contexts in environmental conditions [68]. In addition to issues
related to the accuracy, data based on comprehensive psychological signals, which were
measured via ECG, EMG, EEG, and GSR measurements, showed continuous fluctuations
at the minute scale from stress induction to recovery [69], indicating that the diagnosis of
mental stress through physical methods can lower accuracy and reliability.

In the case of chemical biomarkers, cortisol, neuropeptide Y, and several cytokines (in-
terleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-22, tumor necrosis factor-α, and transforming growth
factor-β) [70,71], which are secreted from eccrine glands, are the sweat analytes that can
be detected as stress-related biomarkers [71–73]. These biomarkers enable a point-of-care
platform, avoiding the mental stress that occurs during the sampling processes of invasive
methods [74,75], and can be integrated with a wearable sensor system to analyze the stress
response [59]. Among the various chemical analytes, cortisol is considered an attractive
sweat biomarker, with its secretion depending on a diurnal circadian rhythm [24,25]. How-
ever, sweat detection remains challenging owing to several environmental impacts, such
as variation in sweat volume, pH, temperature, humidity, and easy contamination by
skin residue, which are responsible for differences in the sweat condition of an individual.
These elements can degrade the performance of sweat cortisol detection [76–78]. Moreover,
owing to the different cortisol concentrations at peak values, which vary based on human
bodies [79], and cortisol’s blood-to-sweat lag [80], temporary detection and monitoring of a
single analyte is considered insufficient for determining mental stress.

As a result, monitoring stress in real-time can be achieved by detecting numerous
biomarkers, in addition to a single stress indicator. Multiple stress-related biomarkers can
be used to study mental stress in order to take advantage of the complementary relationship
between them and to reduce experimental error. There have been attempts to measure
different biomarkers to address these issues, but the majority of them have been studied
using many existing sensors or in arbitrarily demanding environments, rendering them
inappropriate for monitoring life’s cumulative stress [81,82]. Therefore, monitoring stress
response requires the deployment of patch- or wearable-type multiplexed sensors that may
measure stress in a variety of people, more accurately and consistently, and it is anticipated
that these will be a useful tool for correlation analysis, in order to find novel chemical
biomarkers in addition to cortisol.

3. Multiplexed Sensor Systems for Stress Monitoring

In this section, the multiplexed sensors that detect the combinations of various physical
biomarkers and chemical biomarkers are discussed. Table 2 is classified in the order of
multiplexed physical sensors, physical–chemical sensors, and chemical sensors. Each
multiplexed sensor is arranged terms of combinations applicable to monitor stress (referred
to as applicability), and compared with the characteristics. The characteristics section
explains how each multiplexed sensor works to improve performances by measuring
multiple biomarkers. We selected the most representative multiplexed sensor systems based
on the working principles—calibration, validation, and correlation—and we introduce
them in Sections 3.1–3.3. Calibration is a working principle that can help prevent the
impact on the measurement of each biomarker. Validation, also known as cross-validation,
involves testing multiple biomarkers to achieve a specific result. This method is particularly
useful when a single biomarker cannot provide the desired signal, as it could be helpful to
identify new biomarkers while improving accuracy and performance. Correlation can also
be utilized in terms of the limited number of multiplexed chemical sensors available, to
discover new biomarkers apart from cortisol. Therefore, we introduce a multiplexed sensor
system based on these three working principles in the following characteristics section.
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Table 2. Multiplexed sensor systems and their characteristics.

Combinations
of Multiplexed
Sensor Systems

Combinations of
Biomarkers

Characteristics

Ref.Location Working
Principles

Real-Time
Monitoring *

Stress
Monitoring * Performance

Physical sensors

GSR–ST Wrist,
shoulder Calibration O O GSR; SNR of 8.45 while walking

ST; N/A [83]

ECG–GSR–ST Chest Validation O O Overall, accuracy around 89% of
human condition analysis [84]

ECG–RR–GSR Chest, palm Validation O O Overall, accuracy up to 89% of stress
level detection [85]

HRV–GSR–ST Wrist Validation O 4 ST; sensitivity of 0.31 Ω/◦C
GSR; sensitivity of 0.28 µV/0.02 µS [86]

HR–RR Chest Validation O 4
HR; accuracy of 97.6%

(compared to single sensor)
RR; accuracy of 93.8%

(compared to single sensor)

[87]

ECG–HR–ST Chest Validation O 4
ECG; SNR of >20 dB
HR; accuracy of 89%

(compared to single sensor)
ST; N/A

[88]

Physical-
chemical
sensors

ST–Glucose–Lactate Forehead,
wrist Calibration

4
(Stabilized

within 1 min)
4

ST; sensitivity of 0.18 %/◦C
Glucose; sensitivity of 2.35 nA/µM
Lactate; sensitivity of 220 nA/mM

[89]

ST–pH Neck Calibration O 4 pH; sensitivity of 51.2 mV/pH
ST; sensitivity of 0.85%/◦C [90]

ECG–Lactate Chest Correlation O 4 Lactate; sensitivity of 96 nA/mM
ECG; N/A [91]

ECG–Lactate–pH Ear Correlation O 4
pH; sensitivity of 50 mV/pH

Lactate; sensitivity of 0.8 µA/mM
ECG; SNR of 18 dB

[92]

ST–PPG–Glucose Forehead Calibration
Correlation O 4 N/A [23]

BP–HR–Glucose–
Lactate Neck Correlation O 4

BP, HR; N/A
Glucose; >100 mg/dL

Lactate; N/A
[30]

ST–Humidity–Glucose–
pH Wrist Calibration O 4 N/A [93]

ST–pH–Ammonium–
Glucose–Lactate–Uric

acid

N/A
(only

conducting
animal-level

studies)

Calibration
Correlation O 4

ST; sensitivity of 0.21%/◦C
pH; sensitivity of 59.7 mV/pH

Ammonium; sensitivity of
59.7 mV/decade

Glucose; sensitivity of 16.34 nA/mM
Lactate; sensitivity of 41.44 nA/mM

Uric acid; sensitivity of
189.60 nA/mM

[94]

Chemical
sensors

Cortisol–Glucose Arm Correlation O 4
Cortisol; sensitive in the range of

1–11 ng/mL
Glucose; sensitive in the range of

1–10 mg/dl

[95]

Glucose–Lactate Arm and
Lower back Correlation

4
(reservoir was
filled within
8 min from

starting
exercise)

4 Glucose; LOD of 50 µM
Lactate; N/A [96]

pH–Lactate-Glucose–
Creatinine

Lower back
and volar
forearm

Correlation O
(<1 min) 4 Glucose; LOD of 200 µM [97]

Cortisol–pH Brow Correlation O
(<1 min) 4 pH; LOD of 2

Cortisol; LOD of 1.4 ± 0.3 ng/mL [98]

Glucose–pH Arm Correlation
4

(sufficient
sweat after

20 min)
4

Glucose; sensitivity of
10.89 µA/mM·cm2

pH; sensitivity of 71.44 mV/pH
[99]

Cortisol–pH Arm Calibration

4
(reservoir was
filled within
20 min from

starting
exercise)

4
pH; sensitivity of 69 mV/pH

Cortisol; sensitive in the range of
1 pM to 1 uM, LOD of 0.2 pM

[100]

* Maturity and applicability of technology: O, Matured;4, Promising. Notes: GSR, galvanic skin response; ST,
skin temperature; ECG, electrocardiogram; RR, respiration rate; HR, heart rate; HRV, heart rate variation; PPG,
photoplethysmogram; BP, blood pressure.
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3.1. Multiplexed Physical Sensor Systems

Stress detection using physical biomarkers, such as ECG, EMG, GSR, or respiration rate
(RR), is currently being used in various ways [51,101–103]. However, using an individual
biomarker to detect stress does not present an accurate value, because a single data type is
likely to be affected by factors other than simple stress [51]. For example, the respiration-
based method is not applicable in the case of a subject who performs voluntary breathing;
in such cases, other parameters should be measured [104]. Therefore, detecting multiple
biomarkers in a multiplexed sensor for stress monitoring is currently in the spotlight. A
multiplexed physical sensor can achieve high accuracy through the validation of multiple
data from each parameter, in addition to the real-time and long-term monitoring of stress.

Kim et al. developed a fully integrated, stretchable, wireless skin-conformal bioelec-
tronic (referred to as “SKINTRONICS”) that integrates soft, multilayered, nanomembrane
sensors and electronics for continuous and portable stress monitoring, by monitoring both
GSR and ST simultaneously in daily life (Figure 2A) [83]. A low-modulus elastomer that
naturally adheres to the skin coats the device layer and serves as structural support. Exper-
imentally, under mentally relaxed and stressed states, SKINTRONICS exhibits a greater
ratio of identified stress peaks than conventional devices and a high signal-to-noise ratio
(SNR) when standing or walking. Consequently, the device could detect stress accurately
by measuring the number of GSR peaks per minute, which are calibrated based on tempera-
ture, because of the undesirable fluctuations in GSR caused by the changes in ST (Figure 2B).
The device could detect GSR and ST for long-term stress monitoring in daily life and allows
measurements for up to 7 h. Rosa et al. invented a flexible and multiplexed sensor system
with textile electrodes that can be worn as a chest patch for monitoring mental health
during extended periods [84]. The device consisted of a flexible printed circuit board layer
with a conductive textile attached to the ECG and GSR channels, and was coated with
polydimethylsiloxane (Figure 2C). The device can acquire three physiological signals: ECG,
GSR, and body temperature. Stress validation performance was tested by comparing the
response of the three different signals in different situations. Each signal has a different de-
gree of reaction depending on the conditions of rest, exercise, and mental work (Figure 2D).
As the existing method of using only one signal does not correctly distinguish between each
condition, a multiplexed sensor system can more accurately analyze the degree of change
in the value of each parameter, depending on the conditions the user is experiencing and,
consequently, distinguish mental stress from other conditions. Yoon et al. demonstrated
a human stress-monitoring patch with a small skin contact area and high flexibility to
enhance comfort when wearing the patch [85]. This patch can measure three different
physical biomarkers derived by ANS: ST, GSR, and arterial pulse wave, to detect stress.
The performance of each sensor demonstrated a sensitivity of 0.31 Ω/◦C, 0.28 µV, and a
response time of 70 msec in the ST, skin conductance, and pulse wave sensors, respectively.
The integrated multiplexed sensor system measures the psychological stress in the human
physiological range by quantitatively and continuously analyzing stress.
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Figure 2. Multiplexed physical sensor systems. Stress monitoring through the acquisition and
analysis of physiological signal data through the multiplexed physical sensor. (A) GSR and ST
detection through SKINTRONICS and (B) stress analysis under various environments [83]. (C) The
device, fabricated using a flexible printed circuit board to produce ECG and measure GSR; (D) its
detection of various physiological signals when exercising, resting, and performing mental tasks,
and their analysis for stress monitoring [84]. (E) The epidermal sensors that can produce ECG and
measure RR and GSR, and (F) comparison of mental fatigue detection accuracy using multimodal
sensors and a single sensor [85].

Zeng et al. showed a multimodal epidermal electronic system for detecting ECG,
RR, and GSR signals, as illustrated in Figure 2E, using machine learning algorithms to
detect mental fatigue [85]. The main problem when measuring physical biomarkers is the
vulnerability to daily movements, such as body motion. However, this group’s multiplexed
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sensor system exhibited considerable stability when measuring ECG signals under different
conditions, such as yawning and compressing or stretching the body. In the case of com-
pression and stretching, the sensor provided stable waveforms. Although the amplitude
of the ECG signal decreased after being attached to the body for 24 h, an intact waveform
was measured. Three physical biomarkers were extracted for validation and featured as
the training data for machine learning. By utilizing these data, up to 89% accuracy can
be obtained when machine learning is conducted for physiological data collected by the
sensor (Figure 2F). Moreover, using these results, they were able to confirm the change
in stress levels over time due to various mental-related activities. When machine learn-
ing was utilized, higher accuracy was achieved when integrating all the biomarkers, as
compared to a single sensor. This shows the requirement for a multiplexed sensor system
for stress monitoring. Kim et al. invented a stretchable hybrid electronic system (SHE) for
physiological data monitoring, with wireless, soft, comfortable properties that obviate the
need for skin preparation or electrolyte gels with aggressive adhesive properties [87]. SHE
can produce ECG measurements and measure HR and RR, in order to detect the condition
of a patient, such as the presence of mental stress. As mentioned above, ECGs can have
respiratory artifacts; therefore, it can be utilized by considering HR and RR extractions. The
SNR was higher in SHE than in commercial systems, and the two systems showed a high
correlation when the data obtained from the two systems were compared, with slopes of
0.9760 for HR and 1.0545 for RR. Further, the SHE was used for long-term ECG monitoring
for seven days, and demonstrated the advantages of real-time monitoring. Although SNR
dropped by 3.3 dB over time, there were no significant changes of the ECG waveforms
from day 1 to day 7, and the SNR was still measured at 18.2 dB. By using these parameters,
real-time and accurate stress monitoring can be achieved.

Similar to the above research, commercial attempts are being made to precisely track
the physical status on a wearable platform by carefully positioning various sensors, includ-
ing those measuring GSR, HRV, BP, and skin temperature. Examples include the popular
watches; Fitbit (Fitbit, San Francisco, CA, USA), Galaxy watch (Samsung, Suwon, Republic
of Korea), and Apple watch (Apple, Cupertino, CA, USA). Additionally, the industry is
constantly seeing the emergence of new patch-type products, such as Vivalink’s VitalScout.
The need for multiplexed sensing to improve accuracy, and the market for wearable stress
monitoring devices, are both expanding as these products are being developed regularly
and new companies are entering the market.

3.2. Multiplexed Physical–Chemical Sensor Systems

The detection of multiple signals in terms of the physiological reactions to stress by a
physical multiplexed sensor system helps in complementing two or more signals by cross-
validation [105,106] and achieving greater accuracy [84] than when a single biomarker
is detected in stress monitoring. Although this multiplexed physical sensor system is a
promising device for monitoring stress, the complex signals derived by stress are not fully
understood when a multiplexed sensor detects the same type of signal. When the HPA axis
becomes dysfunctional as a result of chronic stress, brought on by prolonged exposure to
stress [107], this results excessive and accumulated cortisol [39], which makes it difficult
to identify acute stress and chronic stress when using multiplexed physical sensor. In the
case of a multiplexed chemical sensor system, the signals of the chemical biomarkers are
easily affected by heat sources [108], such as body temperature. Additionally, chemical
biomarkers extracted from sweat have a sweat-to-blood lag [80] that causes a time delay,
leading to the inaccurate monitoring of acute stress, resulting in difficulties in the treatment
and elimination of stressors. This implies that collecting signals from various types of
signals is necessary for stress monitoring with a comprehensive view. As there is only
limited research on physical–chemical multiplexed sensor systems that can monitor mental
stress, those that sense at least two different types of physiological signals are discussed
in Section 3.2. In this paragraph, compensating for the limitations of individual signals
and certain multiplexed physical–chemical sensor systems of several groups that can be
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applied to achieve a more comprehensive perspective on the monitoring of mental stress is
mainly reviewed.

Several research groups have developed multiplexed physical and chemical sensors
consisting of a temperature sensor, which can be physically detected, to supplement the
perspiration analysis of chemical biomarkers. Gao et al. developed a multiplexed wear-
able sensor by analyzing the biomarkers in sweat. The developed sensor simultaneously
detects chemical biomarkers, including glucose and lactate, as well as the temperature
(Figure 3A) [89]. This temperature sensor could not only analyze the ST, in order to measure
the physiological conditions of an individual, but also eliminate the effect of temperature
on the chemical biomarkers, i.e., glucose and lactate, as shown in Figure 3B. To enable
long-term stress monitoring, they conducted on tests the sensors for up to five weeks
to evaluate their stability. Each sensors showed less than 10% drift over the five weeks,
indicating that stress monitoring in daily life is feasible. Similarly, Nakata et al. used a
temperature sensor for compensating the limitations in pH detection, because pH potential
is proportional to temperature according to the Nernst equation [90]. This multiplexed
physical–chemical sensor is illustrated in Figure 3C. The effect of temperature change on
pH is also shown in Figure 3D, with the pH value calibrated by utilizing the linearity of the
temperature sensor.

Although measuring both physical and chemical biomarkers has a positive effect, such
as supplementing the value for achieving accurate measurements related to stress, the
multiplexed physical–chemical sensor system exhibits certain challenges when detecting
the physiological signals, because the sensor requires an energy source for its operation as
a module [109]; moreover, its energy source should not disturb the other types of sensors
(which is referred to as crosstalk). Imani et al. designed a multiplexed physical–chemical
sensor system by integrating an ECG electrode and a lactate sensor with negligible crosstalk.
They also discussed the interference caused by the application of voltage to hybrid sensors,
which can affect the ECG measurements (Figure 3E) [91]. Furthermore, they discussed the
shunting effect, in which the electrically conductive medium shunts between the lactate
sensor and the ECG electrodes, due to the ions that are present in sweat. They eliminated the
shunting effect by creating a gap between each layer and adding a hydrophobic substrate.
The geometry of the multiplexed physical–chemical sensor system and the real-time and
simultaneous detection of HR are shown in Figure 3E,F, respectively.

Moreover, the correlation between chemical and physical biomarkers was analyzed by
Sempionatto et al. [30]. They described a patch-type hybrid sensor for detecting glucose,
lactate in interstitial fluid, sweat, and blood pressure to identify the unexplored correlation
between chemical and physical biomarkers; their multiplexed sensor system was designed
as shown in Figure 3G. They also demonstrated negligible crosstalk, which occurs when one
sensor changes the signals of the other sensor (Figure 3H). Chen et al. developed wearable
and flexible, organic, thin-film, transistor-based modules to monitor physical and mental
stress, utilizing pH and HR sensors, respectively. However, this research is limited, as it
does not integrate the modules or perform simultaneous measurements to detect mental
stress; however, to the best of our knowledge, and based on the suggestions of this group
in their proposed future works, a combination of both physical and chemical biomarkers
can be applied for monitoring mental stress [110]. Hence, the real-time detection of both
physical and chemical biomarkers can achieve a more comprehensive understanding of the
physiological reactions related to mental health. This could lead to the removal of stressors,
which are different in every individual; moreover, the management of these stressors can
prevent the progression of stress-related chronic disease.
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Figure 3. Multiplexed physical–chemical sensor systems. The compensation of one sensor by another
sensor is shown. (A) Illustration of the hybrid sensor design, consisting of glucose, lactate, and
temperature sensors, and the detection site of various biomarkers. (B) The graph (left) shows the
change in current as temperature increases, on 100 µM of glucose and 5 mM of lactate. The other graph
(right) shows the compensation of the chemical biomarkers according to the different temperature
states [89]. (C) Description of the hybrid sensor containing temperature and pH sensors; (D) shows
the calibrated results of pH by utilizing the temperature sensor [90]. (E) Actual sensor design of
patch-type electrocardiography electrodes and the lactate sensor (comprising three electrodes that
are linearly arranged at the center). (F) The graph (below the sensor design) shows the effect of
applying a potentiostat to the heart rate measurements [91]. (G) The sensor’s design consists of
chemical sensors for detecting glucose and lactate and physical sensors for detecting blood pressure
(BP). (H) Graphs illustrating the ability of the sensor to eliminate the crosstalk between the applied
voltage, which was used to detect the chemical biomarkers and the applied ultrasound that was used
to detect the BP. The upper graph shows glucose–BP detection, and the lower graph shows lactate–BP
detection [30].
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3.3. Multiplexed Chemical Sensor Systems

To reduce experimental errors in noninvasive stress measurements using chemical
sensors, especially the biomarkers in sweat, two or more stress-related chemical biomarkers
should be measured instead of measuring a single biomarker, as performed in conventional
methods. Furthermore, to enable real-time monitoring, a patch- or wearable-type sensor
must be developed. Conventional stress sensors are based on physical biomarkers, such
as GSR, ST, and HR measurements. However, physical biomarkers are easily induced
by non-stress-related causes, such as weather conditions and motions in daily life [111].
Therefore, there is a requirement for a chemical sensor that extracts and senses stress-related
biomarkers in sweat. The stress biomarker in sweat with the greatest potential is cortisol,
and there are many single sensors that measure cortisol in conventional studies. However,
to improve the accuracy of stress monitoring, multiple chemical biomarkers that are related
to cortisol need to be detected simultaneously. We propose that detecting biomarkers using
various metabolic reactions associated with cortisol can identify new chemical biomarkers
related to stress. This is because increased levels of cortisol influence the regulation of
diverse physiological processes, such as glucose levels and carbohydrate metabolism [112].
In this paragraph, we described the multiplexed chemical sensors, with the potential to
measure stress by detecting various stress-related chemical biomarkers.

Pali et al. developed wearable awareness through continuous hidrosis (WATCH)
sensor to continuously monitor the biomarkers in sweat, i.e., cortisol and glucose [95]; the
study identified that the HPA axis is activated because of stress, and the HPA axis stim-
ulation leads to an increase in cortisol levels, which stimulates gluconeogenesis, leading
to an increase in glucose levels. Another study revealed that chronic stress has evident
effects on glucose metabolism, which increases the activities of key gluconeogenic enzymes
due to stress [113]. WATCH, which is a multiplexed chemical sensor system, was used for
the simultaneous detection of both cortisol and glucose, as well as for their continuous
monitoring. To detect the biomarkers, cortisol aptamers and glucose oxidase enzymes were
used. To evaluate long-term stress monitoring, they measured cortisol and glucose concen-
trations for a total of 8 h and 35 min in 10 individuals, analyzing how the concentration
of each biomarker fluctuated in human sweat. The study also established a correlation
between glucose and cortisol in sweat and demonstrated the potential use of glucose as a
biomarker for stress.

Because of the lack of stress-related chemical biomarkers, we suggest glucose as an
alternative stress-detecting chemical biomarker, considering the aforementioned studies.
Martin et al. described a flexible epidermal microfluidic detection platform capable of
the continuous and real-time monitoring of glucose and lactate levels in sweat, using
oxidase enzymes [96]. This multiplexed platform for an efficient and fast sampling of sweat
is fabricated through lithography and screen-printing. This platform is accessible as a
stress-monitoring multiplexed chemical sensor, because lactate is another stress-related
chemical biomarker. Chronic stress-induced epinephrine, which is a vital stress hormone,
activates lactate dehydrogenase A to generate lactate and promotes the increase in lactate
levels [114]. Moreover, lactate has almost 2–10 times higher concentrations in sweat than
blood, having the potential to be utilized in a wearable monitoring sensor system [27,91,115].
Koh et al. reported epidermal microfluidic devices that can directly and reliably harvest
sweat to measure pH, lactate, glucose, creatinine, and chloride, using colorimetric chemical
assays based on enzymatic reactions [97]. As mentioned, lactate and glucose can be used
as indicators to measure stress. The devices were able to detect each biomarker for up
to 6 h in real-time monitoring, in daily life, and evaluated the capability of monitoring
biomarkers. Moreover, creatinine is another chemical biomarker with the potential to be
used for detecting stress, because of the exaggerated response of blood pressure to mental
stress, which is associated with elevated plasmatic creatinine levels [116]. As such, when
more biomarkers are measured by a multiplexed chemical sensor, a greater correlation to
stress can be identified.
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In addition to the lack of stress-related chemical biomarkers, continuous monitoring
and sensing the low concentrations of chemical biomarkers in sweat are challenges in
multiplexed chemical sensor systems. Mugo et al. introduced a flexible system targeting
multiple biomarkers, by using electrochemical sensors, for the simultaneous detection of
cortisol and pH in sweat, with a rapid detection within 1 min and reusability of up to
30 days [98]. To achieve a more stable system, the group utilized a molecularly imprinted
polymer (MIP), a synthetic receptor, for detecting cortisol, instead of the traditional aptamer
or antibody. This group demonstrated that both cortisol and pH are perceptive chemical
biomarkers that can be used for indexing physiological stress. The introduced multiplexed
chemical sensor was fabricated using a conductive microneedle as the substrate and two
detection chambers, comprising a polyaniline layer for pH sensing and a cortisol molec-
ularly imprinted polymer for cortisol sensing. Within 1 min, the pH-sensing chamber
responded linearly to pH values in the range of 3.0–9.3, while the cortisol sensor exhibited
linear changes within 0–100 ng/mL, with a limit of detection of 1.4 ± 0.3 ng/mL, which
was evaluated at variable pH values in the 3.0–9.3 range. This multiplexed chemical sensor
system can be used as a real-time stress monitoring device with superior linearity, based on
its accurate detection of stress.

Using the multiplexed chemical sensor systems, stress can be measured by detecting
cortisol and its correlation with other chemical biomarkers. Hence, the newly identified
chemical biomarkers can correlate with stress levels even if they are at a low concentration
in sweat.

4. Conclusions and Future Prospects

Mental stress can lead to severe illnesses, including chronic diseases; however, it is
difficult to measure quantitively in daily life. Although, to monitor stress, conventional
stress measurement systems mainly use physical sensors to detect a single biomarker, this
approach is unsuitable for monitoring stress in real-time, and it is particularly difficult
to quantify accurately because of crosstalk or artifacts, which physical biomarkers can be
easily affected by. It is likely that chemical biomarkers are easily affected by the exter-
nal environment; therefore, the biomarkers need to be validated and calibrated through
compensating for each biomarker. Therefore, combinations of stress-related biomarkers
should be measured to secure the more accurate monitoring of stress and to achieve the
identification of the stress levels of individual through quantification. As a result, there are
several possible combinations of physical and chemical sensors that can be used. Therefore,
different combinations of physical and chemical sensors would be useful. Additionally,
there are evident benefits and drawbacks to sensor combinations.

Chemical sensors, or combinations of chemical sensors, can quantitatively monitor
changes in response to stress. However, in-the-state-of-art, the chemical biomarker-based
sensors have difficulties of measuring stress in real-time. With the development of chemi-
cal sensors, stress-related hormones in body fluids such as cortisol can be quantitatively
measured continuously, raising the possibility of using wearable devices for monitor-
ing chemical biomarkers of stress [59]. However, the number of stress-related chemical
biomarkers is insufficient, due to problems such as low concentrations, low accessibility,
and influence from the surrounding environment. Therefore, to achieve high-performance
stress monitoring, the system should be wearable, noninvasive, measurable in real-time,
and integrated with various sensors capable of measuring multiple biomarkers. When inte-
grating and configuring sensors, there are several restrictions and benefits in the systems
that are currently being developed. For instance, chemical sensors have capabilities in terms
of quantification, but are challenging to configure as wearable sensors, whereas physical
sensors are simple to utilize as wearable sensors, but difficult to use to assess stress levels.
When these sensors were integrated, challenges involving multiple sensor fabrication and
crosstalk brought on by signal interference between the sensors needed to be taken into
account. Physical sensors are well-developed into wearable platforms, but when measuring
signals, the environment has a significant impact, and the outcome may vary depending on
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the signal-processing method [43]. This makes physical biomarkers challenging to apply
in measuring stress levels. The currently commercialized watch-type wearable devices
widely used today incorporate numerous physical sensors to ensure long-term use with
high reliability. However, there is an increasing demand for the integration of chemical
sensors to achieve the accurate and quantitative measurement of human stress. When using
a chemical sensor, the measurement findings can be expressed quantitatively, but wearable
platform development has not advanced very far, and non-invasive measurements are
limited by the low concentration of biomarkers [26–28].

When building a multiplexed sensor, it is feasible to analyze the correlation of each
biomarker to find novel biomarkers or algorithms, and cross-validate the responses of
the physical and chemical sensors to ascertain whether the signal’s reaction is due to
stress [105,106]. Additionally, the calibration errors brought on by environmental factors,
such as ambient temperature or physical activity, allow for the continuous monitoring of
stress levels [23,89,90,93]. However, there are several restrictions that need to be solved,
such as challenges regarding material selection and the manufacturing process, as well as
crosstalk between integrated sensors [30,91]. Proper stress assessment can only be done
by overcoming this and optimizing the wearability of the device, reducing the stress that
users may experience by reducing the size of the system and the discomfort of wearing.

Ultimately, it is anticipated that research on multiplexed stress monitoring sensors
would increase in volume, to encompass not just quantitative stress monitoring, but also
regarding a range of disorders associated with stress, if these limitations are first solved.
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