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Abstract: In this work, it has been experimentally proven that the kinetic performance of a com-
mon Direct Catalytic Ethanol Fuel Cell (DCEFC) can be increased by introducing nanostructured
(ZnII,AlIII(OH)2)+NO3

−·H2O Layered Double Hydroxides (LDHs) into the anode compartment.
Carrying out the measurements with the open-circuit voltage method and using a kinetic format, it
has been shown that the introduction of LDHs in the anodic compartment implies a 1.3-fold increase
in the calibration sensitivity of the method. This improvement becomes even greater in the presence
of hydrogen peroxide in a solution. Furthermore, we show that the calibration sensitivity increased
by 8-times, when the fuel cell is modified by the enzyme catalase, crosslinked on LDHs and in the
presence of hydrogen peroxide. The fuel cell, thus modified (with or without enzyme), has been used
for analytical applications on real samples, such as biological (human saliva) and hand disinfectant
samples, commonly used for the prevention of COVID-19, obtaining very positive results from
both analytical and kinetic points of view on ethanol detection. Moreover, if the increase in the
calibration sensitivity is of great importance from the point of view of analytical applications, it must
be remarked that the increase in the speed of the ethanol oxidation process in the fuel cell can also be
extremely useful for the purposes of improving the energy performance of a DCEFC.

Keywords: modified direct catalytic ethanol fuel cell; efficiency improvement using LDHs; catalase
enzyme crosslinking LDHs; application to check ethanol in saliva; disinfectant solutions

1. Introduction

It is known that, despite the global oxidation reaction, which takes place in the anodic
section of a Direct Catalytic Ethanol (or methanol) Fuel Cell (DCEFC) exploiting metal
catalysts, such as Pt, Ru, Pd, and so on, seeming relatively simple, it is actually characterized
by a laborious series of reactions, which generally makes the complete oxidation of the
alcoholic fuel by the cell quite slow [1,2].

For the cell used in this work, having catalysts of the Pt-Ru type, the anodic total
reaction for ethanol and methanol can be, respectively, schematized, in the simplest and
most concise way, as the following:

C2H5OH + 3H2O −−−−−→ 12H+ + 12e− + 2CO2 (1)

and:
CH3OH + H2O −−−−−→ 6H+ + 6e− + CO2 (2)
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However, as mentioned above, this is accomplished through several processes. The
first steps transform ethanol (or methanol) into oxidized derivatives are generally the
slowest ones [1–3]. In the literature, it is already reported that some types of LDH (Lay-
ered Double Hydroxide) compounds can catalyze the oxidation of ethanol in an alkaline
environment [4], according to the following reaction:

CH3CH2OH + 3OH− −−−−−→ CH3CO(ads) + 3H2O + 3e−

On the other hand, it is widely reported that in the presence of Pt alone, during
the catalytic oxidation reaction of methanol, even in a neutral environment, intermediate
oxidized species are formed, such as CH2O [5,6], according to a reaction that is not very
fast [7]:

Pt-CH2OH −−−−−→ Pt(s) + HCHO + H+ + e−

While, in the case of ethanol, it can probably be written analogously as:

Pt-CH3CH2OH −−−−−→ Pt(s) + CH3CHO + 2H+ + 2e−

or even [8]:

CH3CH2OH −−−−−→ CH3CHOads −−−−−→ CH3CHO + 2H+ + 2e−

In recent years, a certain number of studies, based on LDHs of the type (ZnII,AlIII

(OH)2)+NO3
−·H2O, were conducted by our research group, obtaining good results, espe-

cially from an analytical point of view [9–12]. Furthermore, encouraging results have been
obtained, both analytical, e.g., on alcoholic drinks, beverages [13–15], drugs, or pharma-
ceutical formulations [16–21], and also for energy purposes with the use of glucose and
carbohydrates [15,22] by means of a simple and inexpensive DCEFC. We, therefore, came
up with the idea of trying to accelerate the catalytic reaction of our fuel cell by inserting
our previously used LDHs, housed inside a small dialysis tube, into the anodic section
of the fuel cell (already containing metals, such as Pt and Ru) [9–11]), as already carried
out by our team but using an enzyme instead of LDHs [14]. In other words, the basic
idea is to realize an extremely simple and inexpensive device, starting from the same fuel
cell already used in previous works, without essential modifications [13–22]. However,
in this case, we operated in open-circuit mode, rather than in a potentiostatic way, since
this mode has two undoubted advantages: firstly, it proved to be very reproducible and,
secondly, the method does not necessarily require one to determine the Optimized Applied
Potential (OAP) [13,23,24]. Indeed, the OAP determination may cause inaccuracy and poor
reproducibility of the measurement, as it can undergo variations upon repeated measure-
ments, especially on real samples. Thus, operating in open-circuit mode and recording
the experimental trend of the “charge curves” of the cell potential, we realized that, using
a kinetic format, it is possible to prove the proposed hypothesis, i.e., the possibility to
accelerate the anodic catalytic process of our fuel cell by inserting a weighted amount of our
LDHs, within a small dialysis tube, into its anodic section, already containing Pt and Ru
metals, and using ethanol as fuel. Therefore, the experiments performed, using this open-
circuit kinetic format and fuel cell containing LDHs, we obtained positive results, which
became even better in the presence of hydrogen peroxide in fuel solution. Subsequently, a
further increase in the kinetic performance of the fuel cell was obtained by immobilizing the
catalase enzyme on our LDHs through adsorption and subsequent crosslinking processes,
as in our previous works [9,10], obtaining even better results.

2. Materials and Methods
2.1. Apparatus

The commercial fuel cell used in this research was made in Plexiglas®; the electrodes
were made in Pt-Ru black catalyst and a Nafion™ polymeric exchange membrane (PEM).
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As a typology, a (DCEFC) Direct Catalytic Ethanol (or Methanol) Fuel Cell could be defined,
marketed as H-TEC F111 by Fuel Cell Store (College Station, TX, USA). To carry out the
measurements, the Fuel Cell was connected to a potentiostat mod. Em-Stat, provided by
Palmsens (Houten, The Netherlands), and to a PC, by means of PSTrace Software version
4.6 data interface.

2.2. Measurement Format

The fuel cell operates in open-circuit and in batch mode, recording the increase in the
voltage charge curve. For each measurement, after a hydroalcoholic solution (about 2 mL)
with a fixed concentration of ethanol was introduced into the fuel cell, the open-circuit
voltage value was immediately and continuously recorded, until a constant-maximum
potential was reached. At this point, the slope value of the tangent line at the point of
maximum slope to the obtained curve was found.

Each measurement, thus, was carried out first by recording the potential curve, op-
erating with the cell as such, filled with hydroalcoholic solution. Subsequently, a second
curve was recorded in identical conditions, but introducing about 63 mg of LDHs, within
a small cylindrical dialysis membrane (i.e., the maximum amount of LDH that could be
contained in the cylindrical dialysis membrane) into the anodic section of the cell, for the
entire duration of the measurement, as shown in Figure 1.
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Figure 1. Schematic representation of the fuel cell used, where a small cylindrical dialysis membrane
containing LDHs was inserted in the anodic section: (a) Anodic section of fuel cell. (b) Cathodic
section of fuel cell. (c) Filling hole of the fuel cell with hydroalcoholic solution. Diameter 3.5 mm.
(d) Hole containing the small cylindrical dialysis membrane (diameter of about 3.4 mm) containing
LDHs, immersed 3 cm in the hydroalcoholic solution. (e) Holder of the cylindrical dialysis membrane
with a diameter of approx. 2 mm. (f) Gap containing 63 mg of LDHs. (g) Cavity containing the two
circular Pt-Ru electrodes, separated by a graphitized Nafion membrane. (h) To Em-Stat potentiostat.

The same apparatus (modified fuel cell) shown in Figure 1 was also used with the
measurements in the presence of the catalase enzyme. The immobilization of catalase in
LDHs of the (ZnII,AlIII(OH)2)+NO3

−·H2O type was carried out by adding three different
amounts, i.e., 40 mg, 60 mg, and 90 mg of catalase (powder) to 63 mg of LDHs. The two
components were carefully homogenized through the addition of one–two micro drops of
0.1 mol L−1 pH 7 phosphate buffer solution.

The small quantity of paste, thus obtained, was placed in a glass crystallizer with
an emery lid. A small open glass capsule (1.5 cm in diameter), containing 30 mg of
glutaraldehyde (25%), was also placed inside the crystallizer. The crystallizer was then
closed by means of its lid and the glutaraldehyde drops were allowed to evaporate, so
that the crosslinking reaction between the nanostructure of LDH and the catalase absorbed
on the latter took place by glutaraldehyde. After placing the closed crystallizer in the
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refrigerator for a few hours, the obtained paste granules were quantitatively placed inside
the small cylindrical dialysis membrane and kept stretched by a small rigid support placed
inside. Finally, the small cylindrical membrane was sealed and inserted into one of the two
cylindrical holes of the fuel cell.

A first set of measurements was carried out with only LDHs in the dialysis membrane
and the fuel cell filled with 2.50% ethanol hydroalcoholic solution; in a second set of
measurements, the LDH-catalase compound was employed and a fixed concentration of
H2O2 (12 mmol L−1) was added in the hydroalcoholic solution. In both cases, the increase
in the potential, generated between the respective anodic and cathodic ends of the fuel cell,
was recorded.

2.3. Measurements in Real Samples by Fuel Cell

For the determination of ethanol in saliva: two different samples of 5.0 g of human
saliva were centrifuged for 10 min. Then, 3.2 g of each was brought to 5.0 g by adding
distilled and deionized water; 25 µL of H2O2 at 10% by volume and two different amounts
of ethanol, 0.004 g or 0.008 g, respectively, were rapidly added to both solutions, thus
obtaining two biological samples at different concentrations.

Approximately 2.0 mL of each solution was transferred into the anodic compartment
of the modified fuel cell with crosslinked catalase on LDHs. During the addition, we started
to record the potential difference between anode and cathode of the fuel cell, operating in
open circuit.

The percentage of ethanol in saliva samples was recovered using a constructed calibra-
tion curve of ethanol (CAS, 99.9% by volume) solution, in a range 0.015–0.29%, and a fixed
concentration of H2O2 (12 mmol L−1).

For the determination of ethanol in anti-COVID-19 disinfectant samples, the three
different commercial solutions were first diluted 1:20 with distilled and deionized water
and homogenized; then, 25 µL of H2O2 10% by volume was added to each solution.
Approximately 2.0 mL of each solution was transferred into the anodic compartment of the
modified fuel cell with only LDHs. During the addition, the potential difference between
anode and cathode of the fuel cell, operating in open circuit, was recorded.

The percentage of ethanol in anti-COVID-19 disinfectant samples was obtained using
a specifically constructed calibration curve with denatured alcohol at 90% by volume, in a
range 1.75–9.00%, and a fixed concentration of H2O2 (12 mmol L−1).

Lastly, all the numerical values reported in this work are always the average of at least
three repeated experimental determinations.

2.4. Reagents, Materials, and Real Samples

The dialysis membrane (D-9777, Sigma-Aldrich, Steinheim, Germany) and catalase
from bovine liver (EC 1.11.1.6) were provided by Sigma-Aldrich (Steinheim, Germany);
hydrogen peroxide RPE at 30% v/v, by Carlo Erba (Milan, Italy) and 3% v/v, by AIESI
(Naples, Italy) Ethanol (CAS: 64-17-5), 99.9% purity, was supplied by Sigma Aldrich (Milan,
Italy), while denatured ethanol, 90% by volume, was purchased in local pharmacies (Rome,
Italy). Zinc nitrate hexahydrate (Zn (NO3)2·6H2O) and aluminum nitrate nonahydrate (Al
(NO3)3·9H2O) for LDH preparation were both from Sigma-Aldrich (Steinheim, Germany).

The used hydroalcoholic ethanol (or denatured ethanol) working solutions were
obtained by properly diluting, with distilled and deionized water (final conductivity 0.01–
0.02 µS), known volumes of ethanol.

The real samples analyzed were: (a) three sealed bottles, containing the commercial
anti-COVID-19 disinfectant solutions most used in Italy, produced by the Italian phar-
maceutical industry and purchased in public drug stores, in which the concentrations of
denatured alcohol declared by the manufacturers were, respectively, equal to: 66%, 70%,
and 74%, as well as minimal unquantified traces of other excipients, such as propylene
glycol, glycerin, imidazolidinyl urea, and natural flavors; (b) two samples, approximately
10 mL, of human saliva, donated immediately before the measurements by two of the
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authors of this article (aged 80 and 30, respectively, both male, and both recognized by the
health authority as healthy).

2.5. LDH Preparation and Characterization

To obtain the (ZnII,AlIII(OH)2)+NO3
−·H2O LDHs type, hereinafter also written several

times as (Zn–Al–NO3), in this work, we used the co-precipitation method for the synthesis
of LDHs, described in more detail in our previous works [11,12]. Briefly, to carry out
the synthesis of LDH of the type (Zn-Al-NO3): 50 mmol L−1 of aluminum nitrate and
150 mmol L−1 of zinc nitrate were dissolved in 200 mL of distilled and deionized water.
The pH of this solution was then adjusted to pH = 10 by means of NaOH; then, it was
placed in well-sealed container and kept for 12 h in an oven, maintained at a temperature of
90 ◦C. The precipitation of LDH occurred during this time period. The solution containing
the precipitate was cooled then centrifuged at 3000 revolutions per minute for about 12 min.
At the end, the precipitate was separated from the solution and washed repeatedly, first
with ethanol, then with distilled and deionized water. Finally, the solid, thus obtained, was
dried at a temperature of 45 ◦C and immediately used or stored in a closed container at
room temperature.

The characterization of the product obtained was carried out using an X-ray Diffrac-
tion spectrometer (XRD) and other instrumental methods: Fourier-Transform Infrared
Spectroscopy (FT-IR), Thermo-Gravimetric analysis (TGA), Differential Thermal Analy-
sis (DTA), and Scanning Electron Microscopy (SEM), described and reported in previous
works [10,11,25,26].

3. Results and Discussion
3.1. Modification of Fuel Cell to Increase Its Performance

As already mentioned, to prove the assumptions of this research, several voltage
charge curves of the fuel cell were constructed and recorded, operating in open-circuit mode,
using different concentrations of hydroalcoholic solutions of ethanol, ranging between
1.25% and 15.0%. Each experiment was firstly carried out with the anodic section of the fuel
cell containing only the hydroalcoholic solution and subsequently repeating experiments
with 63 mg of (Zn–Al–NO3), within a small cylindrical dialysis membrane inserted in the
fuel cell, filled with the same hydroalcoholic solution.

The voltage charge curves, with and without LDHs, and the tangent line at the point of
maximum slope to the obtained curves, for each concentration of hydroalcoholic solution,
are represented in Figure 2.
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Figure 2. Open-circuit fuel cell voltage charge curves as voltage vs. time, performed by operating
with different percentages of hydroalcoholic solution: (A) 1.25%, (B) 2.50%, (C) 5.00%, (D) 7.50%,
(E) 10.0%, and (F) 15.0%. Each figure shows the tangent line (c) at the point of maximum slope to the
obtained curves: (a) in the presence of LDHs (63 mg), (b) without LDHs.



Biosensors 2023, 13, 441 6 of 16

The slope values, with and without LDHs, were calculated and are compared in
Table 1 and as a bar chart diagram in Figure 3, for each of the different percentages of
hydroalcoholic solution used. This represents a characteristic index of the speed of the
charging process of the system under examination.

Table 1. Comparison of the slope values of the tangent line at the point of maximum slope to the
obtained curves, without and with LDHs (63 mg), at the different percentages of hydroalcoholic
solution used.

% Ethanol
Slope without LDHs Slope with LDHs

[V s−1] [V s−1]

1.25% 5.12 × 10−5 ± 3.79 × 10−6 7.10 × 10−5 ± 7.32 × 10−6

2.50% 1.76 × 10−4 ± 2.10 × 10−5 3.17 × 10−4 ± 3.83 × 10−5

5.00% 4.19 × 10−4 ± 3.23 × 10−5 5.13 × 10−4 ± 4.19 × 10−5

7.50% 8.35 × 10−4 ± 1.65 × 10−5 1.15 × 10−3 ± 5.95 × 10−5

10.0% 9.87 × 10−4 ± 1.85 × 10−5 1.24 × 10−3 ± 5.34 × 10−5

15.0% 1.34 × 10−3 ± 6.37 × 10−5 1.39 × 10−3 ± 9.55 × 10−5
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Figure 3. Comparison by bar chart diagram of the slope values of the tangent line at the point of
maximum slope to the obtained curves, without (blue bars) and with (orange bars) LDHs (63 mg), at
the different percentages of hydroalcoholic solution used.

The slope values, reported both in Table 1 and in Figure 3, were calculated in a range
of ethanol in hydroalcoholic solution, between a minimum value of 1.20% and a maximum
value of 15.0%. This interval is not small, considering the fact that the maximum concentra-
tion recommended by the manufacturer should not exceed higher alcohol concentrations
than about 3%, even though, in previous works, it was possible to ascertain that our fuel
cell could operate even at significantly higher ethanol concentrations.

Two calibration curves, displayed in Figure 4, recorded both in the absence and
presence of LDHs using the slope values reported in Table 1, were obtained.

A constant-maximum value of potential difference generated by the fuel cell, equal
to 612 mV, is reached with a speed of charging proportional to the percentage of ethanol
contained in the hydroalcoholic solution, as shown in Figure 2.

Furthermore, the most interesting thing is that, comparing the slope values reported
in Table 1, in Figure 3, and in Figure 4, they are higher in the presence of LDHs for each
hydroalcoholic solution tested. This means that the speed of charging of the fuel cell
was essentially greater in the presence than in the absence of LDHs. In conclusion, the
presence of LDHs exerts a catalytic effect on the oxidative process of ethanol, which was
added to the catalytic one due to the Pt-Ru of the electrodes in the Fuel Cell. Indeed,
the catalytic properties of LDH nanostructures are well documented in the literature,
in a plethora of chemical processes (i.e., oxidation of organic substances, air pollution
elimination, oxidation of carbohydrates, dehydrogenation reactions [27], but above all
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catalytic oxidation of alcohols to low temperatures [28]). It is also observed that the increase
in the speed of the catalytic process, due to the presence of LDHs, is more evident in more
diluted hydroalcoholic solutions. This is naturally due to the fact that, at high percentages
of ethanol, the overall catalytic oxidation rate increases significantly, and it becomes more
difficult to separate the catalytic contributions provided by the presence of LDHs from
those obtained with the Pt-Ru electrodes.
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Once the positive effect of LDHs of the Zn-Al-NO3 type on the catalytic oxidation of
ethanol had been ascertained, we wanted to verify experimentally whether the enzyme
catalase, which, as is known, can, by itself, catalyze the oxidation of ethanol [29], once
immobilized on LDHs by adsorption and crosslinking by means of glutaraldehyde vapors,
can further increase the rate of catalytic oxidation of ethanol. For this purpose, experiments
were carried out by placing within the dialysis membrane, inserted in the anodic section
of the fuel cell, the LDH-catalase mixture, according to the weight ratios (1:0.7 w/w), or
(1:1 w/w), or (1:1.5 w/w), as shown in Figure 5, where the open-circuit fuel cell loading
curves, as voltage vs. time, were recorded at a fixed concentration of 2.50% ethanol in
hydroalcoholic solution.

Finally, the last three measurements reported in Figure 5 were obtained in the same
operating conditions but also in the presence of different concentrations of hydrogen
peroxide in solution, i.e., 4, 12, and 40 mmol L−1, respectively.

In Figure 6, a comparison can be observed in the form of a bar chart diagram, showing
the slope values of the tangent line at the point of maximum slope to the obtained voltage–
charge curves reported in Figure 5.

It is possible to observe how the presence of catalase causes a considerable increase
in the rate of catalytic oxidation of ethanol, both for LDHs modified and, obviously, for a
pristine Fuel Cell. Moreover, the increase in the catalytic effect is proportional to the ratio
by weight (catalase/LDHs), although the response variations due to the different weight
ratio are almost negligible when compared to the huge increase due to only the presence
of the catalase enzyme itself. In practice, it seems that the strong increase in the catalytic
velocity is due, above all, to the presence of the enzyme, rather than the relative increase in
its quantity, crosslinked on the fixed quantity of LDHs.
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The last three results reported in Figure 6, obtained in the presence of the catalase
enzyme and hydrogen peroxide in solution, can probably be interpreted starting from this
idea: the catalase enzyme exerts its catalytic capacity on the oxidation of ethanol, essentially
when H2O2 is also present in solution, according to reactions:

Cat + H2O2 ←−−−→ Cat-H2O2 (3)
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Cat-H2O2 + CH3CH2OH −−−−−→ Cat + 2H2O + CH3CHO (4)

in accordance with the literature [30,31]. However, in the presence of the catalase enzyme
alone (i.e., without hydrogen peroxide), the catalytic effect should almost not be detected;
as can be seen from what is reported in Figures 5 and 6, a non-negligible catalytic effect on
the oxidation of ethanol is clearly produced, as previously observed by some of the authors
of this article [16].

We think that the explanation of this result might be found, most likely, in the formation
of a certain amount of hydrogen peroxide in the aqueous solution, thanks to the presence
of LDHs and, more specifically, thanks to the presence of metal ions contained in these
layered crystals, according to reactions of the following type:

O2 + 2(H+ + e−)→ H2O2

as reported in the literature [32,33].
Even the presence of carbonaceous material present on the sides of the Nafion mem-

brane of the fuel cell seems able to facilitate the formation of H2O2, as well as the pH value
itself [34], in which our fuel cell operates, i.e., around neutrality, where the CO2 in solution
is essentially present in the form of bicarbonate.

On the other hand, the formation of some superoxides and hydroxyl radicals has been
effectively found, for example, in the presence of some types of LDHs, even if ternary [35].

This could also explain the fact that, as observed in the experiments we carried out,
the increase in the amount of catalase enzyme crosslinked inside the dialysis membrane
seems to have a rather modest effect. It can probably be assumed that the concentration of
the H2O2 formed is the limiting factor, even when it comes into contact with a greater and
greater growing quantity of enzyme.

The catalytic effect of the catalase enzyme in ethanol oxidation, in the presence of
hydrogen peroxide, can also be confirmed by the results reported by the last three bars
in Figure 6, where additions of H2O2 in solution further increase the speed of the ethanol
oxidation reaction and also the kinetic response of the fuel cell.

Moreover, Figures 5 and 6 show that the kinetic response of the fuel cell naturally
increases with the quantity of hydrogen peroxide added in solution, as expected. However,
it is not advisable to increase the concentration of H2O2 in solution above a certain value, at
least in the operating conditions used by us, in order to avoid the formation of gas bubbles
(probably O2, according to reaction (4) shown above), leading to the formation of a strait of
gas around the dialysis membrane; as a consequence, the solution contained in the fuel cell
could be unable to freely penetrate inside the small cylindrical dialysis membrane, thus
limiting a further increase in the speed of the catalytic reaction.

This aspect is clear also when we analyze the curve (h) in Figure 5, where the voltage
response of the system seems to collapse rapidly when the gas bubbles give rise to a large
bubble of O2 around the dialysis membrane and immediately increases again, as soon as
this large O2 concentration around the membrane finally detaches from the membrane
itself.

Therefore, at least in our experimental conditions, the most convenient concentration of
hydrogen peroxide in solution to obtain a sufficiently high reaction rate, without significant
disturbances from the gas bubbles produced by the catalytic reaction itself, should be about
12 mmol L−1.

Figure 7 reports the slope values, expressed as a bar chart diagram, of the tangent
line at the point of maximum slope to the voltage–charge curves obtained using fixed
1:1.5 LDHs/enzyme ratio and keeping the concentration of H2O2 constant in solution,
equal to 12 mmol L−1, at different percentages of ethanol in hydroalcoholic solution,
ranging between 0.015% and about 0.29%. The considered low concentration interval is, in
fact, the most useful for carrying out alcoholometric determinations in human saliva, such
as those described in the following paragraph.
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These operating conditions allowed to construct a calibration curve, shown in Figure 8,
used precisely for this purpose (i.e., measurements at low concentrations, such as those
present in saliva); in fact, it can be observed that the slope value of this enzymatic calibration
curve is approximately 6-times greater than the slope value of the calibration curve obtained
in the presence of only LDHs (Figure 4) in the dialysis membrane, inserted in the fuel
cell (i.e., without enzyme or H2O2) and by almost 8-times greater than the slope of the
calibration curve obtained with the fuel cell, i.e., without any modifications made in its
anode compartment (see Figure 4).
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Figure 8. Calibration curves used for ethanol determination in human saliva samples. Calibration
curve obtained by «kinetic methods» (slope values vs. increasing percentage of ethanol), using
the enzymatic fuel cell modified by catalase, crosslinked with LDHs (1:1.5 by weight) and H2O2

(12 mmol L−1) in solution, in the hydroalcoholic solutions tested. Green stars represent the percentage
of ethanol found in biological samples (saliva).

3.2. Applications on Real Samples Using the Suitably Modified Fuel Cell

A series of applications, in previous research, was carried out by employing a non-
modified fuel cell on real matrices, consisting of alcoholic beverages, such as different types
of wines, beers, and spirits, or drugs (hydroalcoholic extracts, etc.), containing significant
percentages of ethanol [14–22]. In the present work, the development of modified fuel cells,
especially enzymatic, based on catalase immobilization on LDHs through adsorption and
crosslinking mechanisms, ensured not only a considerable operational duration greater
than at least one month but also a considerable increase in the calibration sensitivity by
almost 8-times compared to the simple unmodified fuel cell, as mentioned in the previous
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paragraph. Above all, it allowed us to propose a method to determine the percentage of
ethanol in human saliva.

In fact, it is known that with normal breathalyzer tests, based on photometric mea-
surements [36,37], determinations are made on saliva samples containing concentrations of
ethanol ranging between approximately 4 × 10−3 and 5 × 10−2 mol L−1 (corresponding to
ethanol percentages between 23.3 × 10−3% and 29.1 × 10−2%). Since the calibration curve
in Figure 8 is sufficiently linear between approximately 15 × 10−3% and 29.2 × 10−2%, it
can certainly be used for suitable determinations of ethanol content in saliva.

We, therefore, carried out measurements of this type, using the format described in the
Section 2.3, adding proper percentages of ethanol to human saliva, i.e., operating at ethanol
percentages belonging to the range of interest (see Figure 8) found in the alcoholometric
determinations in saliva, reported in the literature [36,37].

Table 2 reports the determination of ethanol concentration in diluted real samples,
where it can be observed that the difference between the percentages of nominal ethanol
and those measured experimentally never exceeds around 4.3%; this is acceptable accuracy
for such complex and diluted biological samples.

Table 2. Results of ethanol determination in real samples: two human saliva (named BS1 and BS2)
and three diluted (1:20) disinfectant solutions (named DS1, DS2, and DS3).

Samples

(a)
% Nominal Final

Values Added in the
Sample

(b)
% Experimental

Found Value
(RSD % ≤ 4.0)

∆% = [(b − a)/a]%

BS1 0.07 0.073 +4.3
BS2 0.17 0.167 −1.8

% Nominal Values
Reported by

Producer

% Experimental
Found Value

(RSD % ≤ 4.5)
∆% = [(b − a)/a]%

DS1 3.30 3.49 5.76
DS2 3.50 3.70 5.71
DS3 3.70 3.87 4.59

BS = Biological Sample (human saliva), DS = Disinfectant Sample.

Furthermore, we made other determinations regarding a very current requirement,
i.e., the possibility to check the content of ethanol in alcohol-based disinfectant solutions,
placed on the market to prevent COVID-19 infection.

In this case, due to the high ethanol percentage in tested solutions, it was not necessary
to use the enzymatic fuel cell but was sufficient to use a modified one with only LDHs.
However, since it was observed, in some side tests, that adding H2O2 in solution to an LDH-
modified fuel cell is able to increase the sensitivity of the measurement, in a non-negligible
way, i.e., to enhance the oxidation kinetics of ethanol, we made our measurements by using
hydrogen peroxide (see the bar chart diagram shown in Figure 9).

On the other hand, it is well documented in the literature that H2O2 is able to oxidize
ethanol, especially in the presence of metal catalysts, such as Pt, or Au, or ions of Fe, Co,
Cu [38], or complexes of ruthenium ion [39]. Therefore, it was foreseen that the catalytic
effect of the fuel cell due to the platinum and ruthenium present in the anode benefited
from the presence of hydrogen peroxide in solution. Thus, we decided to carry out the
ethanol determinations in the disinfectant samples using this last configuration of the
modified fuel cell, i.e., containing both LDHs and hydrogen peroxide in solution.



Biosensors 2023, 13, 441 12 of 16

Biosensors 2023, 13, x  12 of 17 
 

BS2 0.17 0.167 -1.8 

 % Nominal Values Re-
ported by Producer  

% Experimental Found 
Value  

(RSD % ≤ 4.5) 
∆% = [(b − a)/a]% 

DS1 3.30 3.49 5.76 
DS2 3.50 3.70 5.71 
DS3 3.70 3.87 4.59 

BS = Biological Sample (human saliva), DS = Disinfectant Sample. 

Furthermore, we made other determinations regarding a very current requirement, 
i.e., the possibility to check the content of ethanol in alcohol-based disinfectant solutions, 
placed on the market to prevent COVID-19 infection. 

In this case, due to the high ethanol percentage in tested solutions, it was not neces-
sary to use the enzymatic fuel cell but was sufficient to use a modified one with only 
LDHs. However, since it was observed, in some side tests, that adding H2O2 in solution to 
an LDH-modified fuel cell is able to increase the sensitivity of the measurement, in a non-
negligible way, i.e., to enhance the oxidation kinetics of ethanol, we made our measure-
ments by using hydrogen peroxide (see the bar chart diagram shown in Figure 9). 

On the other hand, it is well documented in the literature that H2O2 is able to oxidize 
ethanol, especially in the presence of metal catalysts, such as Pt, or Au, or ions of Fe, Co, 
Cu [38], or complexes of ruthenium ion [39]. Therefore, it was foreseen that the catalytic 
effect of the fuel cell due to the platinum and ruthenium present in the anode benefited 
from the presence of hydrogen peroxide in solution. Thus, we decided to carry out the 
ethanol determinations in the disinfectant samples using this last configuration of the 
modified fuel cell, i.e., containing both LDHs and hydrogen peroxide in solution. 

 
Figure 9. Comparison by bar chart diagram of the slope values of the tangent line at the point of 
maximum slope to the voltage–charge curves, obtained by fuel cell, fed with ethanol solution: pris-
tine, modified with LDHs, pristine with H2O2 in solution (12 mmol L−1), modified with LDHs and 
H2O2 in solution (12 mmol L−1), and modified with LDHs and H2O2 in solution (12 mmol L−1), but 
fed with denatured ethanol (90% by volume) instead of 99.9% by volume of ethanol. 

However, for this purpose, it is not possible to use a calibration curve built using 
ethanol (CAS, 99.9% purity, supplied by Sigma Aldrich) as fuel; rather, it is necessary to 
use denatured ethanol at 90.0% by volume, since commercial disinfectant solutions for 
COVID-19 contain considerable percentages of ethanol, but of the denatured type, with 
additives, such as b-denatonium benzoate, thiophene, methyl ethyl ketone, and, in some 
cases, a red dye (C.I. Red 24). These additive components can interfere with the catalysis 
of ruthenium ion (especially denatonium and red dye) [40] and reduce the response of the 

Figure 9. Comparison by bar chart diagram of the slope values of the tangent line at the point
of maximum slope to the voltage–charge curves, obtained by fuel cell, fed with ethanol solution:
pristine, modified with LDHs, pristine with H2O2 in solution (12 mmol L−1), modified with LDHs
and H2O2 in solution (12 mmol L−1), and modified with LDHs and H2O2 in solution (12 mmol L−1),
but fed with denatured ethanol (90% by volume) instead of 99.9% by volume of ethanol.

However, for this purpose, it is not possible to use a calibration curve built using
ethanol (CAS, 99.9% purity, supplied by Sigma Aldrich) as fuel; rather, it is necessary to
use denatured ethanol at 90.0% by volume, since commercial disinfectant solutions for
COVID-19 contain considerable percentages of ethanol, but of the denatured type, with
additives, such as b-denatonium benzoate, thiophene, methyl ethyl ketone, and, in some
cases, a red dye (C.I. Red 24). These additive components can interfere with the catalysis
of ruthenium ion (especially denatonium and red dye) [40] and reduce the response of
the fuel cell to ethanol, albeit not dramatically [20]. The interference and reduction in the
effects are confirmed by comparing the last two bars representing the slope values of the
voltage–charge curves provided by the fuel cell fed with ethanol and denatured ethanol
(see Figure 9).

Consequently, a new calibration curve was constructed, using the LDH-modified fuel
cell in the presence of H2O2 (12 mmol L−1) and using increasing percentages of denatured
ethanol instead of 99.9% ethanol as fuel. In Figure 10, we report the recorded voltage–
charge curves of the fuel cell, as voltage vs. time, performed by operating with different
percentages of denatured ethanol, that is: (a) 1.92%, (b) 3.60%, (c) 7.00%, and (d) 9.00%
in the presence of LDHs in the cylindrical dialysis membrane and hydrogen peroxide in
solution. The corresponding calibration curve, thus obtained, is shown in Figure 11. Lastly,
the results of the analyses carried out, using disinfectant samples, are reported in Table 2.

Figure 11 also shows the representative points of the percentages of denatured ethanol
found in disinfectant samples via linear interpolation on the calibration curve. The values,
thus obtained, are compared with those declared by the manufacturer in Table 2. It can
be observed how the percentage difference between the experimentally found values and
those declared never exceeds approximately +5.7%. These percentage differences (all
slightly positive) rise from the traces of other substances, as stated by the manufacturer,
such as benzyl alcohol, contained in the tested samples, which are also oxidized inside
the fuel cell. We can conclude that there is a more-than-acceptable agreement between
the percentages of ethanol declared and those found within the limits of experimental
precision, evaluated by carrying out at least three repeated measurements for each product
and always yielding ≤4.5%.
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4. Conclusions

In this research, we demonstrated how the presence of LDHs placed in the anodic
section of a fuel cell can improve the performance of a simple direct catalytic ethanol fuel
cell, since it helps to increase the speed of the oxidation reaction of the fuel (ethanol). The
idea of using LDHs as a catalyst to increase the performance of a fuel cell, even if different
from the one we used, i.e., (ZnII,AlIII(OH)2)+NO3

−·H2O, is not entirely new [41,42]. In other
cases, certain types of LDHs have been used as an anion transport membrane inside a fuel
cell [43,44]. The LDHs employed in these works are usually difficult to be synthesize, less
pure, and often also much more toxic than ours. Furthermore, the methods of introducing
LDHs into the anodic section of the fuel cell are much more complex than the one we
employed, which uses a simple cylindrical dialysis membrane support. This technique,
given its simplicity, is adaptable to most commercial fuel cells, without the need for
complicated modifications. It also turned out to be quite efficient, as well as practice. It was
also verified that a further increase in the sensitivity of the fuel cell modified with LDHs can
be obtained, if one operates in the presence of H2O2. Lastly, we demonstrated that the use
of a specific enzyme immobilized to LDHs through cross-linkage can significantly increase
the oxidation efficiency of our fuel cell. Nevertheless, even if the use of an enzyme is not a
new idea [16,45–48], we proved that the immobilization of the enzyme on the LDH and the
insertion of this system in a small dialysis membrane is, indeed, an efficient and feasible
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possibility. In this way, we realized a practical system that makes a kind of breathalyzer for
the determination of ethanol in human saliva. Finally, the simple modification of the anodic
compartment of the fuel cell with LDHs, in the presence of hydrogen peroxide, made it
possible to perform a sensitive analytical check for the determination of denatured ethanol
content in commercial products, sold for thorough hand disinfection, i.e., for the purpose
of protection against COVID-19.

Lastly, among the improvements achieved in this work from an analytical point of
view, it should not be forgotten that the increase in the speed of the ethanol oxidation
process in the fuel cell could also be extremely useful for the purposes of improving
the energy performance of a DCEFC. In fact, we intend to dedicate a forthcoming more
extensive study to this important problem and to carry out comparisons with very different
fuel cells based, for example, on recent Solid Oxide Fuel Cell (SOFC) [49] systems, such as
the Zn- Air Fuel Cell system [50] or methane-fueled SOFCs [51].
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