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Abstract: Even today, most biomarker testing is executed in centralized, dedicated laboratories using
bulky instruments, automated analyzers, and increased analysis time and expenses. The development
of miniaturized, faster, low-cost microdevices is immensely anticipated for substituting for these
conventional laboratory-oriented assays and transferring diagnostic results directly onto the patient’s
smartphone using a cloud server. Pioneering biosensor-based approaches might make it possible
to test biomarkers with reliability in a decentralized setting, but there are still a number of issues
and restrictions that must be resolved before the development and use of several biosensors for the
proper understanding of the measured biomarkers of numerous bioanalytes such as DNA, RNA,
urine, and blood. One of the most promising processes to address some of the issues relating to the
growing demand for susceptible, quick, and affordable analysis techniques in medical diagnostics
is the creation of biosensors. This article critically discusses a short review of biosensors used for
detecting nucleic acid biomarkers, and their use in biomedical prognostics will be addressed while
considering several essential characteristics.

Keywords: biosensors; deoxyribonucleic acid (DNA); biomarker; microfluidics; point-of-care-testing
(POCT)

1. Introduction

Biosensing techniques have become one of the hot topics of interest that are exponen-
tially growing due to their excellent performance and high throughput [1]. Biosensors have
several advantages, such as high throughput, sensitivity, selectivity, real-time detection,
ease of use, affordability, speed, and a minimum requirement of reagents [2–4]. Generally,
biosensors were executed by assimilating the exclusive specificity of genetic responses and
the great compassion of corporeal sensors. Thus, there has been an extensive opportunity
for solicitations for biological and biochemical sensing methods, as these are pervasive
in diverse fields such as food safety, healthcare, clinical, agriculture, environment, and
pharmaceutics [5–8]. A biosensor is an analytical electronic microdevice that produces an
electric signal via a bioreceptor and targets molecular interactions. Herein, the primary
working principle of a biosensor is to sense the biorecognition incident and translate it into
a determinate signal in a procedure called electronic signal processing [9,10]. The essential
components of biosensors comprise (i) a biorecognition system or bioreceptor proficient
in sensing the bioanalyte, (ii) a transducer that transforms the biorecognition component
into a quantifiable signal, and (iii) an electric signal that is processed and incorporated to
concoct the signal and to display it on a smartphone in an eco-friendly manner. Usually,
biosensors can be categorized based on the bioreceptor event or transducer engaged for
several applications. Firstly, in context, the receptors contain the recognition system, such as
cells, nucleic acids, proteins, antibodies, peptides, and enzymes. Secondly, concerning the
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sort of transducer, such as optical (reflection, luminescence, absorption, refraction, fluores-
cence, etc.), electrochemical (amperometric, potentiometric, conductometric, impedimetric,
etc.), and mass-based (piezoelectric) [11–16]. Biosensors show a prodigious prospective for
evolving analytical tools with limitless applications in diagnosing, averting, and treating
pathogens, mostly by identifying the associated specific biomarkers. In addition, these are
anticipated to contest the ASSURED criteria recognized by the World Health Organization
(WHO); the elaboration is as follows: affordable, sensitive, specific, user-friendly, rapid and
robust, equipment-free, and deliverable to end-users [17–21]. Biosensors are commonly
used as point-of-care-testing (POCT) devices for biomedical applications that can detect
proteins, peptides, oligonucleotides, hormones, metabolites, etc.; these samples can act as
biomarkers that are allied with the disease status [22,23].

In recent times, portability has attained a wide range of significance due to its potential
applicability to the POCT [24]. The biorecognition of virus status at the receptor has gained
wide consideration from several scholars and scientists in the past few decades. Nucleic
acids are among the most significant biomarkers and are often studied biomolecules due
to their strong connection to gene expression. Even minor DNA sequence variations can
lead to distinguished biomedical and clinical insinuations. For example, single nucleotide
polymorphisms (SNPs) are alleged to disclose the inherent information of specific predis-
positions to viruses and the mixed reactions to treatment. Thus, DNA-based biosensors
are essential to integrate quantification tactics to identify the existence of common profuse
mutations [25–27].

Recently, microfluidics has been associated with progressive ideas, which include
lab-on-a-chip (LoC) or micro-total-analysis systems (µTAS), that are being established
hastily in most research fields due to their assorted prospects and are set to transform the
clinical, biochemical, medicinal, biological, healthcare, environmental, food, and agriculture
industries [28–30]. This technology has emerged in innovative and scientific investigations
for numerous biomedical and clinical applications. It deals with science and technology
that processes a minuscule volume of reaction samples (<10−18 L) using microchannels
ranging from 10 to 100 µm [31,32]. This primarily started its endeavor in the execution of
gas chromatographic devices in the mid-1950s; successively, great appliances were being
examined to drive and regulate the fluid flow within microfluidic devices [33–36]. Generally,
microfluidic technology relates to fluid mixing, unraveling, relocating, and handling in a
small capillary. Haeberle et al. [37] described several microfluidic platforms designed for
applications related to microfluidic-based devices. In addition, for delicate identification,
these microfluidic-based platforms can be easily coupled and comprehended to brace with
diverse biosensor detectors [38,39]. The critical advantage of microfluidic-based biosensors
can be recognized in their competence to manage micro/nanoliters of solutions, providing
an opportunity to study with a small sample volume for bioanalytical POCT devices [40,41].
Furthermore, by utilizing hydrodynamic services in microchannels with various cross-
sections, inertial microfluidic-based systems manage particles, atoms, molecules, and cells
passively. These factors have led to the microfluidics field advancing toward large-scale
commercial production, playing a significant role in the field’s development, especially in
the biomedical area for detecting various biomarkers. Further, a receptor binds the sample,
and a transducer transforms the response into an electric signal that electrochemical sensors
can determine. Here, the electrode acts as a transducer in electrochemical sensors [42–44].

Recently, the biosensor definition was selected by the IUPAC standard; nevertheless, a
modern-time appropriate description of the biosensor was earlier expressed by Newman.
It refers to a compact analytical device integrated with a bioreceptor component associated
with a physiochemical transducer. Clark was the pioneer in the subject of biosensors,
publishing a study on the oxygen electrode in 1956. The 1st generation of biosensors were
electrocatalytic devices that integrated enzymes with transducers that translated them into
electrical signals. In the 2nd generation, affinity biosensors took advantage of discrete
biological elements such as receptors, antibodies, and nucleic acids. Further, next generation
biosensors are all of these interactions; an affinity interaction, such as DNA–DNA, antibody,
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antigen, protein, or DNA binding, controls the obligatory between the target analyte
and the restrained biomolecule on the transducing element [16,45,46]. The immobilized
molecule provides the biosensor system’s specificity. Since then, a sizable number of
biosensors with applications in medical diagnosis have been reported in the literature.
Actually, this field uses 80% of commercially available biosensor-based devices. Usually,
biosensors are employed with several transducing components, such as thermometric,
optical, electrochemical, magnetic, and piezoelectric. In the past decades, DNA-based
sensing has begun to be used in clinical diagnostics for practical purposes to sense the
presence of pathogenic types that cause infections, recognize genetic polymorphisms, and
detect fact mutations [47–50]. Table 1 describes the prominent biosensor companies and
target analytes involved in the market.

Table 1. Prominent biosensor companies and targets involved in the market.

Company Foundation Year Targets Cost (~$) Ref.

Abbott 1888 Glucose biosensor 48.85 [51]

Affymetrix 1992 Pharmaceutical research - [52]

Applied Biosystems 1981 Affinity chip 69.95 [53]

ARKRAY, Inc. 1960 Creatinine biosensor 21.25 [54]

Bayer Diagnostics 1958 Glucose biosensor 42.78 [55]

Becton Dickinson 1897 Glucose biosensor 45.37 [56]

Biacore 1984 Affinity sensors for medical research 56.32 [57]

Cleome Innovations 2021 Medical POCT devices 18.26 [58]

Eppendorf Inc. 1989 Medical diagnostics 19.37 [59]

LifeScan 1981 Lactate 14.31 [60]

Molecular devices 1983 Pharmaceutical - [61]

Nanogen 1993 Glucose, urea, creatinine,
and lactate biosensors 20.35 [62]

Roche Diagnostics 1896 Glucose biosensors 38.21 [63]

Renalyx Healthcare Systems 2013 Creatinine and albumin sensors 19.21 [64]

YSI Inc. 1948 Lactate 13.24 [65]

A biosensor is a logical apparatus that identifies deviations in biological progressions
and translates them into electric signals. The term biological process can refer to any
biomaterial such as tissues, acids, enzymes, cells, or microorganisms. It is an amalgamation
of a biosensing component and a transducer, which transforms the information into electric
indicators. Moreover, there will be an amplifier circuit that contains a signal conditioning
platform, a controller or processor, and a display section. Figure 1 shows the block diagram
of biosensors describing from the sample to the end-term detection.
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Figure 1. Block diagram representation of biosensors: from analyte to detection.

2. Nucleic Acid-Based Biosensors

An analytical microsystem that includes an oligonucleotide with a known base se-
quence or composite construction of nucleic acid incorporated into or closely linked to a
signal transducer is generally known as a nucleic acid biosensor [66]. DNA-based biosen-
sors can be used to find biochemical or biological species and DNA/RNA templates. The
majority of nucleic acid biosensors, also known as genosensors, are based on the extremely
specific hybridization of complementary strands of DNA or RNA molecules [67,68]. The
transducer is the element that transforms the biorecognition event into a quantifiable signal,
while the probe serves as the biorecognition molecule and recognizes the target DNA when
it is immobilized on the transducer surface. In nucleic acid biosensors, the hybridization
event has been detected using a variety of detection technologies, including label-free ones
such as piezoelectric and SPR transduction and others that frequently require labels, such
as electrochemical approaches [69–71]. Recently, a number of reviews that explain all the
critical facets of the transduction phase have appeared in the literature [72–75]. Figure 2
illustrates the classification of nucleic acid-based biosensors for the detection of nucleic acid.

The capture probe’s design is unquestionably the crucial preanalytical stage because
the hybridization response’s specificity relies mainly on the bioreceptor element’s capabili-
ties to seize oligonucleotides. The creation of linear probes uses a variety of commercially
accessible firmware that may create detention of oligonucleotides inside highly conserved
or hypervariable areas of various genomes following their assembly and alignment. Final
tests include employing a basic local alignment search tool (BLAST) to check candidate
sequences for homologies, theoretical melting temperature, dimer formation, and length
(18–24 nucleotides) [76–79].

Stringency refers to the experimental factors influencing the hybridization occurrence
at the transducer reaction-mixture interface, which typically comprise the composition of
the hybridization and post-hybridization coating buffers and the response temperature.
The fundamental prerequisite for a functional system when working with complicated sets
of probes is the capacity of each probe to hybridize its target orders with high similarity
and specificity under the same demanding circumstances. Additionally, some probes
that can vary in chemical configuration and conformation have been used to assemble
nucleic acid-based sensors [70]. Peptide nucleic acids (PNAs) are neutral N-(2-aminoethyl)-
glycine pseudo-peptides that mimic DNA by attaching the nucleobases. PNAs have
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emerged as particularly intriguing oligonucleotide probe alternatives for the development
of electrochemical sensing, primarily due to the vastly differing electrical properties of their
molecular backbones [80–83]. There are many more articles that may be cited in support of
this claim, but the authors believe that the works that have tested actual samples should be
given more weight than those that have just been considered as a model sequence using
less complex synthetic oligonucleotides [84,85].
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Because of their extensive utility in screening factors, which is crucial in medical
diagnostics, drug delivery, and foodborne pathogens, these biosensors have recently gained
relevance. DNA, peptide nucleic acid (PNA), RNA, and aptamers are the numerous kinds
of DNA molecules [75,86]. This occurs when the target sequence complements the probe
sequence immobilized on the transducer, exhibiting selectivity for non-complementary
sequences. Additionally, the biosensor can be categorized according to the biorecognition
component: Single-stranded DNA (ssDNA), also referred to as a DNA aptamer, double-
stranded DNA, and triple-helical DNA are all examples of DNA-based biosensors. Figure 3
illustrates the hybridization process between the DNA probe and target strands [87,88].
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2.1. Riboswitches

Riboswitches are mRNA components that regulate the production of mRNA on the
same molecule in which they are encoded by binding to particular metabolite ligands. An
expression platform and an aptamer domain make up riboswitches [89]. This switching
in the secondary structure of the riboswitch regulates gene expression. Riboswitches are
conceptually seen as an advancement of aptamer-based biosensing technology [90].

Small molecules such as ions, metabolites, or uncharged RNA can all be directly bound
by riboswitches. A riboswitch in molecular biology is a regulatory section of a messenger
RNA molecule that binds a tiny molecule, changing how the mRNA-encoded proteins are
produced. Riboswitches can also recognize a variety of compounds with high specificity,
including nucleic acids, peptides, carbohydrates, coenzymes, metallic ions, and amino
acids [91]. Riboswitches are a promising alternative for biosensing methods since they
can distinguish between molecules with identical structures [92]. Adenosylcobalamin
concentrations have been effectively used as a biomarker of the metabolic phase in cell cul-
tures, for instance, using a new biosensor that can distinguish between adenosylcobalamin
and methylcobalamin.

2.2. Aptamers

These biosensors are a family of ssDNA or ssRNA oligonucleotides used in bio-
chemistry. These are classified as nucleic acid-based biosensor biorecognition elements
in biosensing systems. Targets that aptamers can bind to include proteins, medications,
cells, and tissues. High selectivity and affinity have been reported for DNA aptamers,
which bind to various analytes, including nucleic acids, cells, proteins, viruses, and tiny
compounds such as aflatoxin B1, dopamine, cocaine, and metal ions. Additionally, it has
been demonstrated that they can differentiate between enantiomers. However, due to the
2’-hydroxyl functional group in RNA aptamers, they often have a higher binding affinity
than DNA aptamers to the identical target sequence [93,94].

The binding is the biorecognition event that promotes interaction between the target
ligand and the aptamer, a modification in the conformation of the secondary and structures
of the aptamer’s tertiary level. Consequently, in these structural modifications, aptamer-
based biosensors are in charge of producing a frequently detectable signal. The antigen-
antibody and aptamer identification models share certain resemblances regarding the
binding pattern mechanism. A significant advantage of aptamers is their three-dimensional
structure, which allows for high similarity and binding selectivity [95].

Aptamers are produced with excellent repeatability and inexpensive production costs,
can withstand extreme ecological conditions, and can be kept without extra precautions.
Finding the precise ssDNA/ssRNA sequences that can attach to the target ligand is the
main obstacle in developing aptamer-based biosensors. As a result, libraries of random
oligonucleotides and combinatorial approaches are used to select the aptamer sequence. It
is a flexible tool since it enables the development of some variants to enhance properties
such as the effectiveness and affinity of the aptamer [95].

2.3. Peptide Nucleic Acids (PNA)

The PNAs are synthetic DNA analogues that lack the sugar-phosphate backbone of
natural nucleic acids in favor of a neutral peptide-like backbone made up of repeating
N-(2-aminoethyl) glycine units. PNAs advantages over native nucleic acid substitute higher
stability, including resistance to enzymatic cleavage, improved selectivity, neutral charge,
and the ability to be synthesized using standard peptide solid-phase synthesis procedures
are all features of DNA and RNA [96,97].

Environmental monitoring, food safety applications, and early disease diagnoses such
as cancer have all benefited from the development of RNA or DNA detection biosensors
based on PNA. Table 2 summarizes the performance characteristics of various nucleic
acid biosensors.
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Table 2. Summary of performance characteristics for the various nucleic acid biosensors.

Biorecognition
Component Bioanalyte Transducer Limit of Detection Application Ref.

DNA Nuclei acids QCM 450 fM Eco-friendly
biointerfaces [98]

ssDNA RNA Fluorescence 180 pM Early disease
diagnosis [99]

PNA ssDNA GCE 2.58 pM NS [100]

PNA

miRNA-492
suggested

biomarker for
PDCA

Graphite oxide
with gold NPs 8 nM Early identification

of PDCA [101]

PNA RNA G-FET 0.2 aM NS [102]

Aptamer PDGF CNT -
Atherosclerosis,

fibrosis,
malevolent viruses

[103]

ssDNA Synthetic DNA of
E. faecalis

Electrode with
Gold NPs 3.4 amol L−1 Early detection of

pathogens in food [104]

Aptamer
Synthetic DNA of

Group B
Streptococci

Gold NPs 0.5 fM Early detection of
bacteria [105]

Arched probeaptamer,
Hairpin probe-1 and 2

Salmonella
typhimurium Luminescence 1.6 CFU mL−1 Adulteration in

milk [106]

3D-Printed PMMA chip
Salmonella enteritis
and Staphylococcus

aureus
Luminescence 5 CFU mL−1

Microfluidic-based
biosensor for
identification

of virulent

[107]

Polyacrylamidehydrogel:
aptamer strands Microcystin-LR Colorimetric 3.5 ng L−1 Detection of

fresh fish [108]

Aptamer hairpin Salmonella
typhimurium Gold electrode 0.98 fM

Genomic DNA
from clinical anal/
vaginal samples

[109]

ssDNA = single-stranded deoxyribonucleic acid; PDCA = pancreatic ductal adenocarcinoma; PNA = peptide
nucleic acid; RNA = ribonucleic acid; NPs = nanoparticles; GCE = glassy carbon electrode; QCM = quartz crystal
microbalance; G-FET = graphene field effect transistors; CNT = carbon nanotube; PDGF = platelet-derived growth
factor; NS: not specified.

The aforementioned biosensors’ performance traits, which include quick detection,
competitive LOD, linear range, and specificity, are generally in line with the ASSURED
standards. Most research strongly emphasizes parameter optimization, storage stability
assessment, regeneration potential, manufacturing repeatability, and application to com-
posite/genuine matrices [110]. It is essential to highlight the execution of nanomaterials
for biosensing devices because they are crucial for cutting-edge biosensor designs and
represent a rapidly growing field [111].

Rutten et al. [112] demonstrated a fully integrated microfluidic platform encoded with
nanoparticles combined with a microchannel for the simultaneous detection of several
diseased-based biomarkers. Hybridization chain reaction (HCR) was investigated as a
general strategy to achieve the anticipated sensibility by benefiting from this multiplex
platform’s distinctive properties. The sensitivity was dramatically increased by an influ-
ence of 104, down to low fM LOD values, compared to a non-amplified reference system
(Figure 4A). The efficient but incredibly straightforward isothermal and protein-enzyme-
free signal quantification technique achieves LODs for several targets ranging from 33 ± 4
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to 151 ± 12 fM. Further, the proposed method can be used directly as a general strategy for
the profound and accurate multiplex identification of diverse object compounds.
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Anisa Kaur et al. [113] described a nanotweezers (NT)-based sensing approach that
works on a single FRET pair and is proficient in sensing several objects. The authors
proposed sensors that are sensitive to the low picomolar range (10 pM) and can distin-
guish between targets with a single base incongruity using nucleic acid mimics of miRNA
biomarkers unique to triple-negative breast cancer (TNBC) (Figure 4B). These straightfor-
ward hybridization-based sensors have a lot of potential for sensitively detecting various
nucleic acid biomarkers.

Wang et al. [114] designed a padlock probe (PP) to sense nucleic acid MTases, which
syndicates target identification with the rolling circle amplification (RCA) technique without
refinement or using other probes. By introducing MTase to the PP, which served as the
enzyme’s substrate, the PP was methylated and protected against the cleavage reactions of
HpaII, lambda exonuclease, and ExI, as well as absorption, and the PP started RCA. Thus,
after mixing SYBR dye with the RCA, the fluorescent signal could be quickly identified
(Figure 4C). This technique’s linear range for M.SssI was 0.5–110 U/mL, and the detection
limit was around 0.0404 U/mL. Furthermore, tests for complex biological settings offer
opportunities for potential use in complex ecosystems. The developed detection technique
can additionally screen medications or inhibitors for MTases.
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Coelho et al. [115] reported a digital microfluidics (DMF) technology made explicitly
for LAMP of nucleic acid; real-time quantification was accomplished to screen the cancer
biomarker c-Myc, which is linked to 45% of all human malignancies. Herein, 90 pg of
the target nucleic acid (0.5 ng/L) was successfully amplified in less than an hour after
completely modifying the sample and chemicals on this proposed platform. Additionally,
using two mixing techniques that provide better fluorescence readouts, low-frequency
alternating-current actuation and back-and-forth droplet motion onto the DMF droplets,
we investigate the effectiveness of a novel mixing strategy in DMF (Figure 4D). The impacts
of fluorophore bleaching are reduced through successive droplet irradiation and on-chip
sample splitting via DMF procedures. Finally, compared to benchtop techniques, LAMP
processes require 2 µL, a 10-fold volume reduction.

Kokabi et al. [116] proposed a neural network to prophesy nucleic acid quantities
united to paramagnetic drops. To this end, a custom-built microfluidic channel was used
to sense nucleic acid particles bound to slides by gauging the impedance peak response
(IPR) at numerous occurrences. Here, electrical measurements comprise the event and
imaginary/real portions of the highest concentration within a miniaturized device as the
input of deep-learning simulations to forecast nucleic acid concentration (Figure 5A). Ten
distinct deep-learning architectures were explicitly investigated. The proposed regression
model’s results show that an R-squared of 96% and a slope of 0.66 are feasible.
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Ventimiglia et al. [117] created a silicon lab-on-chip to detect nucleic acids using a
hybridization microarray and integrated PCR. A couple of PCR microdevices with a volume
capability of 11.2 L and a microarray-hybridization microchamber with a volume of 30 L,
which are fluidically united by buried bypass and made up of silicon LoC, were created
using bio-MEMS technology (Figure 5B). The nucleic acid microarray probe density was
observed, which ranged from 1315 to 2075 probe µm2, and the LOD was 18 target µm−2.
The direct identification of the beta-globin gene in human blood proved the principle for
silicon microchips.

Iwanaga et al. [118] reported that a meta surface biosensor made up of an all-dielectric
meta surface and a microfluidic transparent chip is described as a fast identification method
that chains DNA magnification and a precise fluorescence biosensor. The meta surface
biosensors recognized amplicons coming from attomolar SARS-CoV-2 nucleic acids, and
the magnification was carried out within an hour, according to a series of proof-of-principle
experimental results executed in the present scheme (Figure 5C). Furthermore, the de-
pendable infection test criterion of 110 ribonucleic acid copies/150 L, which is a need, is
significantly met by this detection competence.

Iwanaga et al. [119] described high-throughput and high-sensitivity meta surface
fluorescence biosensors pertinent for DNA templates. The silicon-on-insulator nanorod
array used in the all-dielectric meta surface biosensors has durable electromagnetic rever-
berations that recover fluorescence emission (Figure 5D). The meta surface fluorescence
biosensors function well as an uninterrupted detection method.

3. Conclusions and Outlook

Over the past two decades, nucleic acid-based biosensors using microfluidic technol-
ogy have shown progressive trends in healthcare applications with rapid, robust, reliable,
and reusable advantages. Several designs of nucleic acid biosensing devices have been
projected to record the reactions of discrete molecular biomarkers comprising lipids, tissues,
cells, proteins, nucleic acids, and other molecules engaged in the bioprocesses. Modern
nanotechnology, innovative enzyme engineering, exquisite designs based on complex se-
quence programs, precise base changes, and in vivo/in vitro applications of DNA-based
biosensors have all facilitated their use. These days, a wide range of well-established
nucleic acid-based biosensing devices have been described and extensively used in several
fields, including food safety, ecological screening, disease prognosis, clinical prognosis, etc.
Biosensors’ future endeavors can be divided into two categories: making them more spe-
cialized or generic; (i) A biosensor with a universal design is more suited for regular usage
by regular people, even at home. Folks typically want a conclusion that is straightforward
and suitable. The inability to implement a biosensor internationally is due to its lengthy
and challenging operation, high cost, and instrument reliance. For instance, when attempt-
ing to validate the presence of SARS-COV-2, lateral stream assessment is unquestionably
more feasible for a worldwide examination than RT-qPCR. (ii) Most likely, biologists, not
chemists, are the ones who want a more consistent biosensor. An ideal biosensor could
distribute precise information to track the presence of a bioprocess or realize its workings.
Therefore, producing high-performance biosensors in living cells or organisms is critical.
In spite of the substantial advantages of miniaturized biosensors in most of the domains,
there is still a need for portable devices because of their exploration of space and control of
machinery and processes. However, limitations of biosensors depicted in laboratory-based
studies and the implementation of cutting-edge technology include design, development,
stability, the lack of real-time data analysis amenities such as Bluetooth, internet-of-things
(IoT), and specific challenges in cyber-physical-systems (CPS) and machine learning. Fur-
thermore, these devices are still not fully active and reveal unconventional features that may
widely apply to point-of-care testing and industrial-scale applications. To overcome the
aforementioned challenges, a realization of real-time restraint hinders miniaturized biosen-
sors from practically commercializing these with adaptability and flexibility. Moreover, a
straightforward method for signal detection has been made available by the development
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of improved instrumentation. Therefore, developing advanced biosensors that integrate
DNA nanotechnology with attractive equipment will be a promising future direction.
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