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Abstract: Silver ion (Ag+) is one of the most common heavy metal ions that cause environmental
pollution and affect human health, and therefore, its detection is of great importance in the field of
analytical chemistry. Here, we report an 8-nucleotide (nt) minidumbbell DNA-based sensor (M-DNA)
for Ag+ detection. The minidumbbell contained a unique reverse wobble C·C mispair in the minor
groove, which served as the binding site for Ag+. The M-DNA sensor could achieve a detection
limit of 2.1 nM and sense Ag+ in real environmental samples with high accuracy. More importantly,
the M-DNA sensor exhibited advantages of fast kinetics and easy operation owing to the usage
of an ultrashort oligonucleotide. The minidumbbell represents a new and minimal non-B DNA
structural motif for Ag+ sensing, allowing for the further development of on-site environmental Ag+

detection devices.

Keywords: DNA sensor; silver ion detection; minidumbbell; non-B DNA; C·C mismatch

1. Introduction

Silver ion (Ag+) has been widely used as an antiseptic in cosmetics, building materials,
and medical products owing to its antibacterial properties [1–4]. However, overuse of Ag+

inevitably leads to environmental pollution. Human exposure to Ag+ pollution mainly
comes from the release of airborne silver nanoparticles and natural water contaminated by
industrial sources [5,6]. The tolerable concentration of Ag+ in drinking water is ~927 nM as
recommended by the World Health Organization [7]. Excessive Ag+ ingestion can cause
certain serious health consequences, such as respiratory system injury, organ failure, and
even cancer [6,8–11]. Various methods have been developed for detecting low concen-
trations of Ag+ in environmental samples and drinking water sources. At present, Ag+

detection is mainly carried out by conventional analytical methods such as inductively
coupled plasma mass spectrometry [12], optical emission spectrometry [13], atomic ab-
sorption spectrometry [14,15], and laser ablation microwave plasma torch optical emission
spectrometry [16]. These conventional methods are sensitive and selective, but they rely on
expensive instruments and intensive labor.

In recent years, nucleic acid molecules have gained prominence in the fields of sensing
and material science because of their programmability and predictability by forming com-
plementary base pairs [17]. DNA molecules have been used to design sensors for detecting
metal ions such as Ag+, UO2

2+, Cu2+, Ca2+, Mg2+, Hg2+, and Pb2+ [18–26]. In general, there
are mainly two DNA-based strategies for Ag+ detection. The first strategy utilizes an Ag+-
dependent DNAzyme that can irreversibly cleave an RNA or DNA substrate in the presence
of Ag+ [22]. The second strategy is based on the well-established knowledge that Ag+ binds
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to cytosine (C) at the N3 site to coordinate and stabilize a C·C mismatch [27,28]. Ag+ can
induce the formation of DNA i-motif or hairpin structures that contain C·C mismatch(es),
thus giving reporting signals upon DNA conformational change [26,29–33]. Moreover, the
duplex or hairpin-forming strands can also be assembled onto nanomaterials for signal am-
plification [34–38]. The second strategy can achieve a low detection limit, but the reported
ones generally used relatively long oligonucleotides, which might make the Ag+-induced
DNA conformational change slow. For instance, a DNA sensor based on a 20-nucleotide (nt)
hairpin required an incubation time of at least 10 min for Ag+ detection. Therefore, a DNA
sensor using a short oligonucleotide is expected to have advantages of fast response, easy
operation, and probably anti-interference capability in a complex environment, which allow
for the further development of on-site environmental detection devices [33,39].

Minidumbbell (MDB) is a type of non-B DNA structure formed by 8–10-nt sequences [40,41].
The MDB structure was initially found to form in CCTG tetranucleotide repeats, which are
associated with the neurodegenerative disease of myotonic dystrophy type 2 [40,41]. The CCTG
MDB is simply composed of two repeats, i.e., 5’-CCTG CCTG-3’, and each repeat folds into a
type II tetraloop. The C1-G4 and C5-G8 adopt Watson-Crick loop-closing base pairs; C2 and
C6 fold into the minor groove, whereas T3 and T7 stack on the C1-G4 and C5-G8, respectively
(Figure 1) [40]. One of the most interesting features of this MDB is that the two minor groove
residues formed a unique reverse wobble C2·C6 mispair containing one/two hydrogen bond(s)
or Na+-mediated electrostatic interactions at neural pH [42], or a C2+·C6 mispair containing
three hydrogen bonds with C2 being protonated at acidic pH (Figure 1) [43]. Upon lowering
the pH from 7 to 5, the melting temperature (Tm) of the CCTG MDB was increased from ~20 ◦C
to 46 ◦C [43]. Apart from pH, we wondered if Ag+ could coordinate the C2·C6 mispair to
stabilize the MDB and then induce a DNA conformational change for Ag+ sensing. Here we
report a novel and minimal DNA sensor, based on the CCTG MDB, for Ag+ detection with high
sensitivity and fast kinetics.
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CCTG2 and CAGG2, respectively. As a control, a self-complementary 8-bp duplex formed 
by 5’-GCAGCTGC-3’ was used. The high-performance liquid chromatography (HPLC)-
purified DNA samples were purchased from Sangon Biotech (Shanghai, China), and they 

Figure 1. The averaged solution nuclear magnetic resonance (NMR) structure of the CCTG MDB at
pH 7 (PDB ID: 5GWL) and pH 5 (PDB ID: 7D0Z). C2 and C6 formed predominantly a one-hydrogen-
bond mispair at pH 7, whereas they formed a stable three-hydrogen-bond mispair at pH 5 with C2
being protonated.

2. Materials and Methods
2.1. DNA Sequence Design and Sample Preparation

Our designed M-DNA sensor was a duplex formed by the CCTG MDB strand (5′-
CCTG CCTG-3′) and its complementary strand (5′-CAGG CAGG-3′), which were named
CCTG2 and CAGG2, respectively. As a control, a self-complementary 8-bp duplex formed
by 5′-GCAGCTGC-3′ was used. The high-performance liquid chromatography (HPLC)-
purified DNA samples were purchased from Sangon Biotech (Shanghai, China), and they
were further purified in our laboratory using diethylaminoethyl sephacel anion exchange
column chromatography and Amicon Ultra-4 centrifugal filter devices. The ultra-violet
(UV) absorbance at 260 nm was measured for DNA quantitation.
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2.2. Preparation of SYBR Green I (SGI) and Metal Ion Stock Solutions

SGI (10,000×) was purchased from Beijing Solarbio Science and Technology Co., Ltd.
(Beijing, China) and diluted using DMSO to a final concentration of 100× or 10× as the
stock solution. It is noted that SGI 1× was equivalent to a concentration of 1.96 µM. The
analytical-grade AgNO3, KCl, LiCl, CaCl2, MgCl2, MnCl2, CoCl2, CuSO4, BaCl2, and
NiSO4 were purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China) and
dissolved using DI water to a final concentration of 50 µM as the stock solutions.

2.3. NMR Experiments

To monitor the binding of Ag+ to the CCTG MDB, NMR experiments were performed
using a Bruker AVANCE NEO 400 MHz spectrometer. One-dimensional (1D) 1H NMR
experiments were conducted at 25 ◦C using the excitation sculpting pulse sequence to
suppress the water signal.

2.4. Circular Dichroism (CD) Experiments

CD experiments were performed using a Chirascan V100 CD spectrometer with a
bandwidth of 1 nm at room temperature, unless otherwise specified. The CD samples
(~100 µL) were placed in a cuvette of 0.5 mm path length, and the CD spectra were collected
from 200 to 350 nm with a step size of 1 nm. For each sample, three sets of scans were
acquired, and an average value was taken. CD spectra were background-corrected using
the corresponding buffer solution.

2.5. Fluorescence Experiments

Fluorescence experiments, except for the kinetic study of Ag+ sensing, were performed
using a Shimadzu RF-6000 spectrometer at room temperature. The fluorescence samples
(~2 mL) were placed in a 10 mm four-sided glazed quartz cuvette, and the fluorescence
spectra were collected from 512 to 650 nm with a step size of 1 nm. Fluorescence intensity
was recorded at 520 nm with an excitation wavelength of 492 nm. The excitation and emis-
sion band widths were 5 nm. For a kinetic study of Ag+ sensing, fluorescence experiments
were performed using an Edinburgh FLS1000 photoluminescence spectrometer at room
temperature. The sample containing a DNA sensor in the absence of Ag+ (~2.5 mL) was
first placed in a 10 mm four-sided glazed quartz cuvette, and the fluorescence intensity at
520 nm was recorded from 0 to 180 s with a step time of 2 s. Ag+ was then added to this
sample, and the fluorescence intensity was immediately recorded from 0 to 180 s with a
step time of 2 s. The excitation and emission band widths were 2 nm.

The detailed sample conditions for NMR, CD, and fluorescence experiments are stated
in the figure legends.

3. Results
3.1. Ag+ Induces a Conformational Change from Duplex to MDB

One-dimensional (1D) 1H NMR experiments were first performed to investigate if
Ag+ could bind to C2·C6 mispair of the CCTG MDB. It showed that upon adding Ag+ to
the CCTG MDB, the H6 proton signals of C2 and C6 became broadened while those of T3
and T7 remained sharp and almost unchanged, suggesting that Ag+ bound to the C2·C6
mispair (Figure 2). Besides, C1 H6, G4 H8, C5 H6, and G8 H8 peaks were also found to be
broadened, as it has been reported that Ag+ could also bind to C-G base pairs [44].

We then tested if Ag+ could promote MDB formation to induce a DNA conformational
change, which is the prerequisite of most DNA sensors. For this aim, we prepared a DNA
duplex formed by the CCTG MDB strand (5′-CCTGCCTG-3′), namely CCTG2, and its
complementary strand (5′-CAGGCAGG-3′), namely CAGG2, at pH 8/7/6 and collected
CD spectra to monitor DNA conformational change upon Ag+ titration at 25 ◦C. These
two strands formed a duplex in the absence of Ag+, as indicated by a positive CD band
at 265 nm (Figure 3A–C, black lines) [45]. Upon adding Ag+ to the duplex, a new major
band at 290 nm was observed at pH 6, but not obvious at pH 7 and 8, when the DNA:Ag+
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ratio was 1:2 (Figure 3A–D, red lines). The CD band at 290 nm was characteristic of the
CCTG MDB [46], suggesting that Ag+ efficiently induced a conformational change from
the duplex to the MDB at pH 6. Notably, the DNA:Ag+ ratio of 1:2 showed the maximum
population of Ag+-induced MDB (Figure 3C). This may because Ag+ is also non-selectively
bound to C-G base pairs in the MDB (Figure 2), and thus more Ag+ is required to promote
MDB formation.
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Figure 3. CD spectra of 15 µM CCTG2 and CAGG2 with 0, 5, 15, and 30 µM Ag+ in 10 mM NaPi at
pH 8 (A), pH 7 (B), and pH 6 (C). (D) CD spectra of 15 µM CCTG2 and CAGG2 in 30 µM Ag+ at pH
8, 7, and 6 at 25 ◦C. (E) CD spectra of 15 µM CCTG2 and CAGG2 without Ag+ and with 30 µM Ag+

(pH 6) at 25 ◦C and 35 ◦C. Absorbance at 290 nm is characteristic of the free CCTG MDB.

We did not further lower the pH as previous work has demonstrated that the CCTG
MDB completely dissociated from the duplex owing to its much higher thermodynamic
stability than the duplex at pH 5 [43], therefore there would not be further conformational
change upon adding Ag+. We also performed the Ag+ titration at 35 ◦C to examine if
this system could function at an elevated temperature. However, the CD signal of MDB
was observed without adding Ag+ (Figure 3E), which could be attributed to the relatively
higher thermodynamic stability of MDB than duplex at 35 ◦C and pH 6. Zhang et al. have
also reported that a higher temperature leads to partial melting of the initial DNA duplex
and thus a lower sensitivity [47].
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3.2. Design and Optimization of the CCTG MDB-Based DNA (M-DNA) Sensor

Based on the Ag+-induced formation of CCTG MDB at pH 6 (Figure 3C,D), we de-
signed the M-DNA sensor, which was simply composed of the 8-bp duplex formed by
CCTG2 and CAGG2. SYBR Green I (SGI) was used as a fluorescence reporter and it was
expected to emit strong fluorescence when bound to the duplex in the absence of Ag+ while
giving weak fluorescence when the duplex was converted to MDB in the presence of Ag+

(Figure 4A). To ensure SGI will not affect the DNA conformational change, CD spectra
were collected without and with adding SGI, and the results showed that Ag+-induced
conformational change still effectively occurred (Figure S1).
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Figure 4. (A) Schematic of the M-DNA sensor for Ag+ detection. (B) Normalized fluorescence
intensity at 520 nm as a function of time for the M-DNA sensor in the absence of Ag+ (black) and
after adding 50 nM Ag+ (green). (C) Fluorescence spectra of the M-DNA upon titrating Ag+ ranging
from 0 to 200 nM (left) and the fitting curve constructed using fluorescence intensity at 520 nm and
log[Ag+]/log[M-DNA] (R2 = 0.99) (right). Error bars were standard deviations obtained from three
replicative experiments.

At pH 6, the M-DNA concentration and SGI:M-DNA ratio were further optimized.
Two M-DNA concentrations (50 and 200 nM) and four SGI:M-DNA ratios (0.1:1, 0.5:1, 1:1,
and 5:1) were tested to find the condition that would give the largest fluorescence change
in response to Ag+. The DNA concentration and SGI:M-DNA ratio were finally optimized
to be 50 nM and 1:1, respectively (Figure S2). Therefore, the M-DNA used for Ag+ sensing
in the following experiments contained 50 nM CCTG2, 50 nM CAGG2, and 50 nM SGI in
10 mM NaPi at pH 6, unless otherwise specified.

To further verify whether the CCTG MDB played an important role in the M-DNA
sensor for Ag+ detection, we also performed Ag+ titration on a controlled DNA (named
C-DNA), which was an 8-bp self-complementary duplex. When the mixture of 50 nM
C-DNA and 50 nM SGI in 10 mM NaPi at pH 6 was titrated with Ag+, there was only a
little change in fluorescence intensity (Figure S3), suggesting that the CCTG MDB played
an irreplaceable role in Ag+ sensing.

3.3. Kinetics, Sensitivity, and Selectivity of the M-DNA Sensor

One of the most interesting features of this M-DNA sensor is using an ultrashort 8-nt
oligonucleotide, which is expected to undergo a much faster conformational change than
longer i-motif and hairpin sequences [26,29,30,32]. Therefore, we also evaluated the kinetics
of this M-DNA for Ag+ sensing. The fluorescence intensity (520 nm) of the M-DNA sensor
without Ag+ was recorded from 0 to 180 s with a step time of 2 s. Ag+ was then added
to the same sample, and the fluorescence intensity was immediately recorded from 0 to
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180 s with a step time of 2 s. Figure 4B shows that immediately after adding Ag+, the
fluorescence intensity drastically decreased and remained almost unchanged through the
entire monitoring process for 180 s. Therefore, it is safe to conclude that the reaction was
completed within the acquisition time for the first data point, i.e., 2 s. It was reported that
the Ag+-triggered conformational change from a single-stranded DNA to a 21-nt i-motif
was complected in ~15 s [26,29,30,32], therefore it is reasonable that the conformational
change to an 8-nt MDB was much faster.

The M-DNA was then used to sense Ag+ at various concentrations ranging from 0 to
200 nM (Figure 4C). There was a good linear correlation between the fluorescence intensity
and log[Ag+]/log[M-DNA]. Following the rule of three times the standard deviation over
the blank response [48], the Ag+ detection limit was determined to be ~2.1 nM. As the
tolerable level of Ag+ in drinking water is ~927 nM [7], the detection limit of the M-DNA
sensor should be sufficient for detecting Ag+ in real samples containing Ag+.

The anti-interference capability of the M-DNA sensor for Ag+ detection in a complex
environment was also evaluated. As the drinking water source may also contain other
metal ions, we evaluated the fluorescence response of M-DNA to K+, Li+, Ca2+, Mg2+,
Mn2+, Co2+, Cu2+, Ba2+, and Ni2+, and the result showed only tiny fluorescence changes
upon adding these ions (Figure 5A). Furthermore, an additional experiment was also
performed to examine if the M-DNA could detect Ag+ in the presence of these interfering
metal ions. Upon adding 50 nM Ag+ to the solutions containing the respective interfering
metal ions, the fluorescence change became significant and achieved a similar level to that
of only 50 nM Ag+ (Figure 5B). Na+ was not included as an interference ion in this study
because the buffering system contained 10 mM NaPi. Approximately 10 to 200 mM Na+

are also commonly used in buffering systems for many DNA-based sensors to neutralize
the negatively charged phosphodiester backbones [26,29–31,34]. The concentrations of
non-Ag+ ions vary in different water samples, e.g., few mM Na+ in most China river and
lake basins [49] and hundreds mM Na+ in sea water [50]. The M-DNA sensor should
be applicable for detecting Ag+ in common river and lake basins, and its performance
may need to be further improved for sensing Ag+ in water samples containing high
concentrations of interfering ions (e.g., sea waters).
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ions (blue) and (B) 50 nM non-Ag+ metal ions plus adding 50 nM Ag+ (blue). The fluorescence
change in the presence of only 50 nM Ag+ was shown as a reference (red). Error bars were standard
deviations obtained from three replicative experiments. F0: initial fluorescence intensity in the
absence of Ag+; F: fluorescence intensity after adding 50 nM AgNO3 or other metal ions.
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3.4. Ag+ Detection in Tap Water and Lake Water Samples Using the M-DNA Sensor

To examine the performance of the M-DNA sensor for Ag+ detection in other water
sources, we detected Ag+ in tap water samples and two different lake water samples. The
local tap water and lake water samples were collected and boiled for 5 min to remove
chlorine, and lake water samples were further filtered with a 0.22 µm membrane following
the reported procedures in the literature [26]. The M-DNA sensor was prepared using
the treated tap and lake water samples instead of laboratory DI water, and no Ag+ was
detectable in these samples. We then added Ag+ with known concentrations to the M-DNA
sensor and recorded the fluorescence intensity. The Ag+ concentration was calculated using
the calibration curve shown in Figure 4C. The recovery ranged from 93.3% to 98.5% in
tap water samples and 96.7% to 107.8% in lake water samples (Table 1), revealing a good
accuracy of the M-DNA sensor for Ag+ detection in environmental water sources.

Table 1. Ag+ detection in tap and lake waters using the M-DNA sensor.

Water Source Creal (nM) Ccal (nM) a Recovery (%)

Tap water

45 42 ± 4 93.3
90 86 ± 4 95.6

130 128 ± 5 98.5
150 143 ± 6 95.3

Lake water 1

45 46 ± 1 102.2
90 97 ± 8 107.8

130 133 ± 6 102.3
150 152 ± 6 101.3

Lake water 2

45 46 ± 4 102.2
90 87 ± 7 96.7

130 133 ± 25 102.3
150 155 ± 17 103.3

a The standard deviations were obtained from three replicative experiments.

3.5. Discussions on DNA-Based Ag+ Sensors

As surveyed from the literature, DNA-based Ag+ sensors can be generally classified
into three types: (i) mismatch-containing DNA functionalized with nanomaterials [34–37],
(ii) mismatch-containing DNA only [26,29,30,32], and (iii) DNAzyme [22] (Table 2). The
ensemble of mismatch-containing DNA and nanomaterials is an effective strategy to improve
the detection limit by taking advantage of amplified local DNA concentration and interaction
surfaces. Recently, Pal et al. have reported an electrochemical Ag+ sensor based on DNA
hairpin-functionalized nanoflakes with a detection limit of 0.8 pM [38]. Comparing with
the detection limits of other sensors using only mismatch-containing DNA (i-motifs and
hairpins), detection limit of the M-DNA sensor was the lowest. In addition, the M-DNA sensor
exhibited a response time of less than 2 s, which is kinetically much faster than those using
i-motifs and hairpins (Table 2). However, the M-DNA sensor requires a controlled acidic pH to
work, and this limitation may be further improved by chemical modification, such as cytosine
methylation, to enhance the thermodynamic stability of the CCTG MDB. Overall, the M-DNA
sensor uses an ultrashort oligonucleotide to achieve a high sensitivity and fast response for
Ag+ detection.

Table 2. Literature survey on DNA-based sensors for Ag+ detection.

DNA Sensor DNA Length (nt) Kinetics Detection Limit Ref.

DNA/graphene oxide 32 b 5 nM [34]
DNA/silver nanoclusters 12 <1 min a 10 nM [35]
DNA/gold nanoparticle 27 b 3.5 nM [36]

DNA/Fe3O4-gold nanoparticle 49 b 3.4 nM [37]
DNA/nanoflakes 20 c 0.8 pM [38]
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Table 2. Cont.

DNA Sensor DNA Length (nt) Kinetics Detection Limit Ref.

DNAzyme 83 60 min a 24.9 nM [22]
DNA hairpin 32 5 min a 59.9 nM [26]
DNA hairpin 20 10 min a 32 nM [29]
DNA hairpin 32 30 min a 4.3 nM [30]
DNA i-motif 21 15 s a 17 nM [32]

DNA minidumbbell 8 <2 s a 2.1 nM This work
a The kinetic data was derived from time-dependent fluorescence spectra. b There was no kinetic data available.
c The kinetic data was derived from time-dependent electrochemical change.

4. Conclusions

In sum, we have designed a smart DNA sensor for Ag+ detection using a new form of
non-B DNA, i.e., a minidumbbell, apart from the previously used hairpins and i-motifs.
Owing to its small size, it shows fast response, high sensitivity, high selectivity, and good
anti-interference capability for Ag+ sensing. The performance of this M-DNA sensor may
be further improved by chemical modification to further enhance the thermodynamic
stability of the CCTG MDB. A successful demonstration of this M-DNA sensor provides
new insights into Ag+ detection, and paves the way for designing DNA-based tools to
sense other metal ions and molecules.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios13030358/s1, Figure S1: CD changes of M-DNA with SGI
in 10 mM NaPi at pH 6 before and after adding Ag+; Figure S2: Fluorescence changes of various-
concentration M-DNA in 10 mM NaPi at pH 6, with different SGI:M-DNA ratios before and after
adding Ag+; Figure S3: Normalized fluorescence intensity at 520 nm of the M-DNA and C-DNA upon
titrating various concentrations of Ag+.
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