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Abstract: Phenolic compounds (PhCs) are ubiquitously distributed phytochemicals found in many
plants, body fluids, food items, medicines, pesticides, dyes, etc. Many PhCs are priority pollutants
that are highly toxic, teratogenic, and carcinogenic. Some of these are present in body fluids and
affect metabolism, while others possess numerous bioactive properties such as retaining antioxidant
and antimicrobial activity in plants and food products. Therefore, there is an urgency for developing
an effective, rapid, sensitive, and reliable tool for the analysis of these PhCs to address their environ-
mental and health concern. In this context, carbonaceous nanomaterials have emerged as a promising
material for the fabrication of electrochemical biosensors as they provide remarkable characteristics
such as lightweight, high surface: volume, excellent conductivity, extraordinary tensile strength,
and biocompatibility. This review outlines the current status of the applications of carbonaceous
nanomaterials (CNTs, graphene, etc.) based enzymatic electrochemical biosensors for the detection
of PhCs. Efforts have also been made to discuss the mechanism of action of the laccase enzyme for
the detection of PhCs. The limitations, advanced emerging carbon-based material, current state of
artificial intelligence in PhCs detection, and future scopes have also been summarized.
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1. Introduction

Phenolic compounds (PhCs) are extensively used in the production of dyes, chemi-
cal analysis, disinfectants, synthesis of artificial resins, petrochemicals, pharmaceuticals,
textiles, paints, and medical industries [1,2]. These PhCs are present in body fluids, and
certain PhCs have potential antioxidant properties [3]. A diverse variety of PhCs display
varied impacts on biotic and abiotic components.

PhCs used for industrial purposes and a few released from the body (e.g., estrogen) are
ubiquitous pollutants that are toxic even at low concentrations. The level of PhCs toxicity
is in the range of 9–25 mg L−1, while the water purity standards set by the US EPA allow
a threshold value of approximately 1 ppb of phenol in the case of surface water [1]. The
European Commission has prescribed a 0.001 mg L−1 concentration limit of PhCs in natural
water, whereas the Central Pollution Control Board of India has restricted 1.0 mg L−1 of
a phenolic compound as the benchmark for discharge of water to inland surfaces under
the Environment (Protection) Rules, 1986. When discharged into the environment without
prior treatment, these compounds lead to severe complications and long-term health issues
for humans, animals, and marine systems [4]. Drinking water containing PhCs may cause
diseases such as indigestion, skin burns, muscle tremor, liver problems and kidney damage
in humans, and death of fish in aquatic regions [2]. In contrast, some other PhCs present in
food and body fluid are responsible for preventing disease by balancing blood pressure
and stress, reducing cardiovascular diseases, and providing healthy antioxidants [5,6]. The
effects and sources of widely used PhCs have been summarized in Table 1.

Various chromatographic and spectroscopic techniques have been used to detect and
quantify PhCs. These laboratory techniques require tedious process of sample pretreatment
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from water bodies, which are time-consuming and costly [7]. For rapid and efficient
detection, it is necessary to develop portable and more sensitive on-site tools comprising
resourceful materials to reduce the devastating effects caused by PhCs. In this context,
biosensors can be considered the most reliable techniques for on-site and specific detection
of PhCs [8] (Figure 1a).
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Figure 1. Scheme representing (a) a biosensor for PhCs detection using a carbon-based matrix to
support the laccase enzyme and (b) the comparative conductivity of carbon−based materials.

Table 1. Harmful effects and sources of widely used PhCs on humans and animals.

S.No. PhCs Effects Sources Ref.

1. Catechol • Protein destruction in the body
• Damage to DNA

• Coal conversion process
• Crude wood tar
• Coal tar production

[9]

2. Bisphenol A • Endocrine troublesome effects
• Interruption of the onset of puberty

• Food and beverage packaging
• Flame retardants
• Building materials and electronic components
• Paper coatings

[10]

3. Caffeic and
dihydrocaffeic acids

• Damages DNA in the presence of copper
• Antioxidant property
• Prevents cardiovascular disease
• Reduces stress

• Wine
• Coffee
• Spices and herbs

[11]

4. Chlorophenol • Mouth scorching
• Necrotic gashes in the respiratory canal

• Bleaching
• Iron and steel industries
• Paper pulp and paper board mills
• Dye and pharmaceutical industries

[12]

5. Hydroquinone
• Damages chromosome
• Toxic to soil microbial activities
• Skin irritation

• Food and Rubber industries as an antioxidant
• Paint and fuel industries as a stabilizer
• Cosmetic industries

[13]
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Table 1. Cont.

S.No. PhCs Effects Sources Ref.

6. Para-cresol
• Central nervous system disease
• Cardiovascular system
• Lungs and kidneys diseases

• Fumigants
• Disinfectant
• Explosives

[14]

7. Estrogen • Endocrine disability
• Breast cancer • Urine [15]

8. Dopamine • Enhance brain functions and memory
• Regulates blood pressure • Brain [16]

9. Galliac acid
• Antioxidant
• Reduce the risk of cardiovascular diseases
• Prevent certain cancer

• Wine
• Chestnut
• Berries

[17]

The advantages of using biosensors include high sensitivity, accuracy, short response
time, reliability, longer shelf life, and user-friendliness [7,18–20]. Biosensors can detect
a very low amount of contaminant even from a composite medium, (wastewater) and
are considered reliable for quantifying the total phenolic content in food by checking
antioxidant properties of the foodstuff [21,22]. Several bio-recognition components have
been used to detect polyphenols, such as microorganisms [23], DNA [24], whole cells [18],
anti-bodies, and enzymes [25]. For monitoring PhCs, enzymatic biosensors based on
laccase (Lac) [26], horseradish peroxidase [27], and tyrosinase [28,29] have proven to be the
most effective due to their ability to directly catalyze electron transfer reactions without
introducing cofactors into the reaction medium. Different supporting matrices such as
conducting polymers, metal and metal oxide nanoparticles, carbon nano tubes (CNTs),
graphite, silica gel, activated charcoal, reduced graphene oxide (RGO), glass surfaces,
etc., have been used for the immobilization of these enzymes [30]. The comparative
conductivities of such materials have been shown in Figure 1b.

In the current review article, we discuss:

• The recent progress in carbon-based nanomaterials (CNMs)-based Lac biosensors;
• The structure, mechanism of action, and immobilization methods of the Lac enzyme

on CNMs;
• The application of CNMs-based Lac biosensors for the detection of PhCs present in

food and body fluids;
• The limitations of highly utilized graphitic materials and challenges.

Recently, few articles have focused on discussing the importance of Lac enzymes
for many applications. However, to the best of our knowledge, none of them focus on
the application of CNMs, which can resolve the major challenge in the development of
Lac-based biosensors for the detection of PhCs.

2. Transduction Principle for Monitoring PhCs

The biosensor has emerged as an interesting analytical approach for the detection of
PhCs. It mainly consists of two components, including biological entities (analyte and
receptor) and a transducer [31]. Enzyme-based sensors are prominently explored due to
their ease of selectivity, sensitivity, reliability, and usage [32,33]. In this context, Lac has
been considered a greener bio-recognition component supported on modified conducting
carbon-based matrices for the detection of PhCs. An enzymatic biosensor produces signals
targeted to the analyte’s concentration by combining an enzyme with the transducer, and
the transducer converts the signal received into a quantifiable response [34]. Ampero-
metric biosensors aim to electrochemically convert non-active analytes into products by
catalysis depending on the enzyme system that performs oxidation and reduction at the
surface of the working electrode. Das et al. [35] fabricated Lac-based amperometric biosen-
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sor based on an osmium tetroxide/poly 4-vinyl pyridine/multi-walled carbon nanotube
(MWCNT)/Nafion/carbon black/GCE electrode for pyrocatechol detection in environmen-
tal samples. Kavetskyy et.al. [36] investigated an electroconductive immobilized matrix
based on microporous carbon fibers and the Lac enzyme using the amperometric transduc-
tion principle. A successive assessment of biosensors was performed by detecting industrial
pollutant catechol from actual communal wastewater samples. There is a limited number
of optical biosensors reported in the literature that use CNMs for the detection of PhCs, one
of which comprises carbon quantum dots (C-QDs) and the Lac enzyme [37]. An optical
biosensor based on a sol-gel immobilized Lac was also developed for the detection of three
isomeric PhCs (catechol, resorcinol, and hydroquinone) in real and tap water samples [38].

2.1. Electron Transfer and Reaction Mechanism in Lac

Lac is the largest subgroup of multi-copper oxidases, comprising four copper atoms
in different oxidation states, as shown in Figure 2a. Lac has the capability to catalytically
oxidize a variety of PhCs in the presence of molecular oxygen by performing a four-electron
reduction of oxygen to water. The substrate undergoes reduction by the Lac enzyme
conjoining its four-electron oxidation leading to the reductive cleavage of molecular oxygen
(O=O) bonds by four electrons along with four Cu atoms. The Cu atoms forming the core of
Lac are sub-divided into three types, based on the electron paramagnetic resonance (EPR)
spectroscopic technique in the literature [39,40]:

• Type 1 (Cu C1) has trigonal coordination with one sulfur atom of cysteine (cys) and
two nitrogen atoms of histidine imidazole units. The fourth coordination is with S of
methionine attached axially and far more than the other three. Therefore, the structure
seems distorted in the form of tetrahedral geometry with triagonal elongation [41]. It
possesses intense blue color resulting from the strong electronic absorbance at 600 nm
(charge transfer: S of cysteine to Cu, ε = 5000 M−1 cm−1) in UV/visible spectroscopy,
and its paramagnetic nature has been confirmed using EPR spectroscopy.

• Type 2 (Cu C2) has been found to be coordinated with two nitrogen atoms of histidine
units and one water ligand. Although it is colorless, EPR studies have revealed its
paramagnetic nature via ultrafine splitting.

• Type 3 (2Cu C3) comprises two anti-ferromagnetically coupled Cu atoms each tetrag-
onally coordinated with three nitrogen atoms of histidine units and one bridged
hydroxide group. The bridged hydroxide leads to electron-paired Cu sites. The oxi-
dized form shows weak absorbance under UV-visible spectrum having a shoulder at
around 330 nm (charge transfer: OH to Cu), and EPR studies show no signal signifying
their diamagnetic nature.

The histidine units are, therefore, coordinated in a 2:2:6 ratio for Cu C1, Cu C2, and
2Cu C3, respectively. The bonds connecting Cu and N of histidine are slightly different in
bond lengths. The approximate Cu–N bond length for all categories of Cu is 2 Å A, some
Cu–N bonds are of greater bond length, and some are found to be slightly smaller. The
distance between Cu C1 and binuclear Cu atoms (2Cu C3) is found to be around 12 Å,
whereas, in the trinuclear Cu cluster, the distance between Cu C2 and binuclear Cu atoms
(2Cu C3) is observed at about 4 Å.
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activity of the Lac enzyme for a phenolic and non-phenolic substrate [42].

The Electron Paramagnetic Resonance (EPR) of Lac have been observed to be per-
turbed in the presence of strong anion binding, leading to the disturbance of the EPR signal
intensity of Cu C2 and in the anti-ferromagnetic coupling of 2Cu C3. At the same time,
the electron reduction of molecular oxygen and discharge of water takes place at a tri-
nuclear cluster of Cu C2 and 2Cu C3 atoms. Based on the physical and chemical properties
of oxidoreductase Lac, the positioning of copper atoms has different well-defined redox
potentials (E0). Depending upon the chemical nature, the Lac enzymes obtained from ba-
sidiomycetes (mostly white rot fungi) are considered to have high redox potential, whereas
low redox potential is found to be possessed by Lac obtained from bacterial and plant
sources [40]. Other biotic sources of Lac enzymes have been listed in Table S1. However,
the physical structure shows that Cu C1 and 2Cu C3 have variable low (+E0 = 0.4–0.5 V)
and high (E0 = 0.7–0.8 V) redox potentials with respect to standard hydrogen electrodes.
The low and high redox potential of Cu C2 appears at approximately 0.4 V [43].

Biosensors based on tyrosinase, horseradish peroxidase, Lac, and polyphenol oxi-
dase enzymes have been broadly used for the detection of different PhCs. However, Lac
possesses higher stability and better catalytic ability for electron transfer reactions [44].
Lac-based biosensors are modest in assembling over other reported enzymatic biosensor
because they do not necessarily involve hydrogen peroxide as one of the co-substrates or
some other co-factors for the catalytic process.

2.2. Activity of the Lac Enzyme

The catalytic activity of Lac depends on the copper (Cu) atoms. All the Cu sites show
different functions. Cu C1 is the primary electron acceptor from the reduced substrate. The
high redox potential (790 mV) of Cu C1 is the reason for substrate oxidation at its site [39].
Further, the electron received by Cu C1 is delivered via Cys-His pathways to the trinuclear
Cu cluster that shows an inter-electron transfer mechanism, which takes place between Cu
C1 and 2Cu C3 positions. Due to this transfer of an electron from one Cu site to another,
the step where the oxygen molecule is reduced to water by four electrons replicates. It has
been reported that H2O2 was not detected during the steady state [45]. At the same site, an
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oxidized form of the enzyme has been generated. During this aerobic oxidation process,
2Cu C3 accepts two electrons in the presence of Cu C2. The presence of Cu C2 is found to
be necessary for the acceptance of electrons by 2Cu C3. In short, the Lac enzyme is oxidized
by reducing oxygen to water followed by the oxidation of the substrate leading towards
the terminus of the catalytic mechanism by reducing the oxidized Lac enzyme to Lac again.

The Lac enzyme does not possess the ability to oxidize non-phenolic substrates directly.
To increase the range of compounds that can be oxidized using the Lac enzyme, several Lac-
based mediator compounds have been reported. These Lac-based mediator compounds
consider the substrate as an intermediate, exhibiting higher redox potential and indirectly
oxidizing non-phenolic substrates [43] (Figure 2b). The mediators enhance the catalytic
performance of the Lac enzyme, acting as a co-catalyst. The catalytic mechanism for non-
phenolic compounds initiates with the conversion of Lac into oxidized Lac on the same
side, leading to the reduction of oxygen to release water. The mediator works by oxidizing
the substrate and reducing itself to the original mediator, indicating completion of the co-
catalytic mechanism [42]. A standard mediator must be low in molecular weight to avoid
hindrance due to size and should possess a high redox potential to enhance the catalytic
oxidation process. An efficient mediator must perform several consecutive cycles deprived
of deterioration. For example, (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) is
one of the most frequently used mediator for oxidation of non-phenolic compounds [43].

Enzymes undergo specific interactions with certain chemical carriers and substrates
to undergo genetic and chemical modifications to increase their catalytic activity. In this
context, Zhang et.al. reported that flower-like Cu3(PO4)2.3H2O nanocrystals integrated
with Lac shows 6 times activation in the activity of the Lac enzyme [46]. Whereas, Wu et al.
found a 1.5 to 4 times increase in the activity of fungal Lac after its pre-incubation with
different organic solvents such as methanol, acetone, dimethylformamide, and dimethyl
sulfoxide [47]. On the other hand, the influence on enzymatic activity has also been studied
based on mutagenesis focusing on the residue at certain position and pH. Another method
to enhance activity is through the use of multienzyme, which involves channeling different
substrates, kinetics matching, and 3-D distribution of the involved enzymes. These methods
can be utilized to engineer the best enzyme–substrate relationship to provide superior
catalytic performance [46].

2.3. Immobilization Matrix

In addition to the several merits of the Lac enzyme, the use of the Lac enzyme for
biosensor application has not been explored much because of the denaturation of the
enzyme by the external environment. In order to increase the stability, lifetime, efficiency,
and reusability, and to equilibrate the cost of developed biosensors for detection of PhCs,
the efficient immobilization of the Lac enzyme onto suitable matrices is very important [48].
Immobilization provides a way to increase the ability of enzymes by reducing the cost of
production [49], leading to better stability of the biosensor [50], strategies for reproducibility,
ease of recovery [49], etc. Moreover, the involvement of new bonding, entrapment, and
crosslinking also enhances the shelf life of enzymes [51,52]. Immobilization maintains
the structural stability and functional possessions of the immobilized enzyme by proper
attachment to the surface of the appropriate matrix so that the required activity of the
enzyme can be retained throughout the repetitive use of sensor [53,54]. Immobilization
methods vary from one enzyme to another and depend on the type of application for which
the enzymes are being used. An ideal matrix must be physically rigid, chemically inert, and
insoluble in enzymes to preserve its catalytic properties. The immobilization matrix should
be thermally and photo-chemically stable, showing effective charge transfer capability.
Furthermore, there must be permissible diffusion of a bio-catalytic reaction between the
substrate and matrices on which the enzyme has to be immobilized [55].

Effective immobilization also helps to restrict the gross movement of biomolecules,
thus leading to the fabrication of a stable and accurate biosensor. The different immobi-
lization techniques include (i) covalent bonding, (ii) adsorption, (iii) cross-linking, (iv) en-



Biosensors 2023, 13, 305 7 of 26

trapment, and (v) encapsulation (Figure 3a–c) [56]. One more method, i.e., the electrospray
deposition technique, has also been reported for Lac immobilization on carbon black-
nanomodified screen-printed electrodes, as shown in Figure 3d [57]. Several physical and
chemical factors, such as pH, temperature, solubility, concentration, etc., influence the
immobilization strategies. Large numbers of organic and inorganic matrices have been
used for immobilizing the Lac enzyme. In particular, conducting polymers [58], metal
nanoparticles [59], metal oxides [60], silica [61,62], clay [63], CNMs, metal–organic frame-
works [64], etc. Conducting polymers (CPs) have been widely explored for the fabrication
of Lac-based biosensors because of their good compatibility with enzymes and electron
conduction ability. In the case of CPs, conductivity can also be varied by hosting doping
materials. Calitri et al. [65] evaluated the total phenolic content using CPs poly(aniline-co-
2-aminobenzylamine) supported on MWCNT by immobilizing Lac. Yaropolov et al. [66]
fabricated a Lac biosensor using three CPs electrodes, viz., Nafion, poly(ethyleneimine),
and Eastman AQ 29D supported with GCE for amperometric determination of PhCs. The
synthesis of polydopamine nanoparticles based on a bacterial cellulose composite was also
accomplished as a compatible matrix for Lac immobilization. Meso-porous silica sieve
matrices possess compatibility and uniformity with respect to well-ordered pore structure,
size, density, and surface characteristics. Amperometric detection of catechol has been
reported where magnesium-doped mesoporous silica sieve–polyvinyl alcohol composite
has been used as a matrix [67]. Li et al. constructed a disposable biosensor using silica
sphere on the surface of MWCNT with a screen printed electrode (SPE) for immobilizing
Lac and detecting dopamine [68]. The major problem with this sensor is the film formation
ability and lower conductivity.
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a Au matrix: (a) direct adsorption, (b) covalent binding, (c) sol-gel encapsulation, Adapted with
permission from Ref. [56]. Copyright © 2013 Elsevier and (d) the electrospray deposition technique
for Lac immobilization on carbon black-nanomodified SPE. Adapted with permission from Ref. [57].
Copyright © 2020 Elsevier.

The recent era specifically focuses more on immobilization matrices based on nanoma-
terials. Although many other matrices have been used to support enzymes, nanomaterials-
based matrices are widely explored because of their numerous benefits. Introducing
nanomaterial matrices into the enzyme-based biosensors led to improved sensitivity, lower
detection limit and higher response time, better stability and rigidity, a longer shelf life,
and speeding up the fabrication process [69]. There is a broad spectrum of nanomateri-
als, including metal nanoparticles, metal oxide nanoparticles, nanostructured polymer
composites, nanofibers, nanorods, etc., utilized in the field of biosensing for polyphenol
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detection. Sofia et al. demonstrated numerous methods for covalent immobilization of the
Lac onto several matrices (Figure 4), and concluded that the approach based on the linkage
of carbon-based materials through EDC-NHS to −COOH functionalized matrices was
less effective than the Lac bonded with the -NH2 group using glutaraldehyde to support
amminated carbon based matrices [70].
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3. Carbonaceous Nanomaterial-Based Lac Biosensor

Carbon-based nanomaterials (CNMs) are one of the most explored nanomaterials
for biosensor applications. Carbon nanomaterials have comparable dimensions to redox
proteins, and thus can be used as an effective electrical connector with redox enzymes.
The most common CNMs used to support the Lac enzyme in biosensing applications
include graphene (Gr), reduced GO, carbon nanotubes, carbon quantum dots, and graphene
quantum dots (Figure 5) as summarized in Table S2. These CNMs possess a tremendous
ability to detect phenolic pollutants as they have a large surface-to-volume ratio, which in
addition to sensing, helps in the adsorption of pollutants. Table 2 shows the application of
different CNMs-based Lac biosensors for the detection of phenols.
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Table 2. Biosensors used for the detection of phenols using the Lac enzyme.

S.No. Matrix Method of Analysis Analyte Matrices Linear Range LOD Ref.

1. PANI/MG composite ChronoAmp Hydroquinone Gr 0.4–337.2 µM 2.94 µM [71]

2. Microporous carbon fibers ChronoAmp Catechol C F 0.01–0.05 mM <5 µM [36]

3. Au NP/graphene NP-SPE ChronoAmp Hydroquinone Gr 4–130 µM 1.5 µM [72]

4. Polyvinylpyrrolidone/CS/RGO Amp 17 α-Ethinylestradiol RGO 0.25–20 pmol L−1 0.15 pM [73]

5. Rh/GO DPV 17β-estradiol GO 0.9–11 pM 0.54 pM [74]

6. PEDOT, GO nano-sheets DPV Catechol GO 0.036–0.35 µM and 0.35–2.5 µM, 0.032 µM [75]

7. RGO-MWCNT ChronoAmp Epicatechin equivalents RGO & MWCNT 1–300 µM 0.3 µM [76]

8. Poly L-lysine/Citric acid-Gr/GCE DPV 17β-estradiol Gr 4 × 10−13–5.7 × 10−11 M 1.3 × 10−13 M [77]

9. Poly(dithienotetraphenylsilane) Fluorescence Dopamine G-QDs 1–200 µM 80 nM [78]

10. SPCE/anthraquinone-COOH-MWCNT Amp Catechol MWCNT 0.002–0.061 µM [79]

11. G/PANABA/MWCNT ChronoAmp Phenol G & MWCNT 0.0005–0.4 mM 0.5 µM [65]

12. Bacterial Cellulose/cMWCNTs/ZIF-8 Bisphenol A MWCNT 0.01–0.4 mM 1.95 mM [80]

13. Pt NP/GO SWV Chlorogenic acid GO 0.56–7.3 µmol L−1 0.18 and 0.59 µM [81]

14. Au–ZnO/NP/ITO Amp Catechol NC 75 nM–1100 µM 25 nM [82]

15. D glucan/carbon black paste/Au NP SWV Hydroquinone C 2.00–56.5 µM 0.474 µM [83]

16. F, N-doped carbon dots CV Catechol F,N-CD 0.1–0.45 mM 0.014 µM [84]

17. Thin polydopamine film/carbon surfaces ChronoAmp Caffeic acid, rosmarinic acid,
and gallic acid C 1–150 µM 0.29 µM [85]

18. PPy/GCE Amp Catechol GCE 1–60 µM [86]

19. PANI/
CuCNFs Amp Hydroquinone C/Cu NF 500 nM–110 µM 0.24 µM [87]

20. BMIMBF4-CS and MWCNT SWV Bisphenol A MWCNT 8.4 ± 0.3 nM [88]

21. Plastic packaging waste derived CNTs/SPCE Para cresol CNT 0.2–25 ppm 0.05 ppm [89]

22. Au-MXene (Ti3C2) Amp Catechol Ti3C2 0.05–0.15 µM 0.05 µM [90]

23. Enzyme POXA1b and
POXA1b-Vmh2/MWCNT ChronoAmp Catechol and Dopamine MWCNT 2–30 pM, 0.1–800 µM and

0.015–90 µM 2 pM and 15 nM [91]

24. BC/c-MWCNTs/LAC@ZIF-90 membrane DPV Catechol MWCNT 20–400 µM 1.86 µM [92]

25. CMB/CBPE SWV Quercetin Carbon black 4.98–50.0 × 10−8 M 2.6 × 10−8 M [93]

26. OMC-SPE SWV Serotinin Mesoporous carbon 0.1–1.2 mu M 316 nM [94]
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Table 2. Cont.

S.No. Matrix Method of Analysis Analyte Matrices Linear Range LOD Ref.

27. TiO2/nafion/graphitic CV Gallic acid G 0.125–175 mu M 0.125 mu M [95]

28. Fe3O4-Pc-cMWCNTs DPV Rosenmerinic acid cMWCNT 0.2–400 mu M 0.182 mu M [96]

29. MnO2/GNP decorated SPCE Amp Caffeic acid GNP 0.3 µM–0.4 mM 1.9 mu M [97]

30. Cellulase/c-MWCNTs Amp Catechol cMWCNT 10–160 mu M 0.004 mu M [98]

31. Au-RGO/SPE DPV Catechol RGO 1 mM–1 nM 3.3 µM [99]

32. SPCE modified Gr-AuNPs with CS DPV Bisphenol A Gr 0.05–12 µM 0.023 mu M [100]

33. Ag-ZnO/
MWCNTs/SPE DPV Bisphenol A MWCNT 0.5–2.99 mu M 6 nM [101]

34. CS-Fe2O3/RGO ChronoAmp Bisphenol A RGO 6–228 ppb 18 nM [102]

35. GO/Fe Pc composite Adrenaline GO 1.8–92 µM [103]

36. TiO2-GPE DPV Methyldopa GPE 10–180 mu M 1 mu M [104]

37. G-QDs Catecholamine G-QDs 1–120 µM 83 nM [105]

38. Gr/Cu/Fe3O4 composites DPV Bisphenol A Gr 7.2–18 µM 1.7 µM [106]

39. PEDOT/Au/cMWCNT Catechol cMWCNT 0.1–0.5 and 11.99–94.11 µM 0.11 and 12.26 µM [107]

40. Gr/PPy nanotubes/SrCuO2 DPV 2,4-Di chlorophenol Gr 1–50 mu M 0.18 mu M [108]

41. RGO-MoS2 ChronoAmp Hydroquinone RGO 1–100 µM 0.1 µM [109]
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3.1. Carbon Nano-Tube (CNT)-Based Lac Biosensors

The benzene-type hexagonal arrangement of carbon atoms forming hefty cylindrical
molecules constitutes a quasi-one-dimensional CNT [110,111]. This allotrope of carbon has
an enormous surface area in terms of a large length-to-diameter ratio and is observed to be
just one atom thick [111]. CNTs exhibit extraordinary properties, such as being lightweight
and stable, with excellent electronic, thermal, and mechanical properties [112]. A CNT lacks
solubility in aqueous media, and the introduction of chemical functionalization increases
their solubility in different solvents and increases their potential for biosensor applica-
tions [113]. CNTs are conjugated with many metal and metal oxide nanoparticles such as
Au, Fe, Pd, Pt, Cu, Fe3O4, ZrO2, etc., for biosensing application [79,114]. However, certain
factors such as the bundling effect, increment in the number of walls, and aggregation can
cause problem while using CNTs.

3.2. Carbon Nanofibers (CNFs)-Based Lac Biosensors

A CNF is a one-dimensional nano range fiber with a hollow core with a diameter of
10 to 500 nm and a length in the range of 0.5 to 200 µm [115]. In CNFs, strands of layered
stratified graphite sheets are stacked on a single molecule which have different variations
such as platelets, ribbon, cones, herringbone, cups, etc., in the nano size range [116,117].
It has remarkable mechanical and chemical properties, due to which they are superior to
other fibers. The presence of a graphitic structure enables their larger area and excellent
thermal and electrical conductivities. In addition, they do not become oxidized easily.
Other characteristics such as a low density, a high Young’s modulus, thermally stabil-
ity, low defects, a more significant aspect ratio, and a condensed structure make CNFs
suitable matrix materials [118]. These advantages lead to their applications in ceramics,
fuel cells, cement composition, etc. [119]. Yang et al., used electrospinning, carbonization,
and the solvothermal technique to fabricate a novel Lac-based biosensor for monitoring
hydroquinone using TiO2 decorated copper and carbon composite nanofibers [120]. Re-
cently, combined electrospinning and an in situ polymerization technique for synthesizing
polyaniline-encapsulated carbon/copper composite nanofibers have been reported for the
detection of hydroquinone in river water [87].

3.3. Carbon Quantum Dots (C-QDs)-Based Lac Biosensors

C-QDs are low-cost and water-soluble QDs that are easy to synthesize and have
core carbon atoms organized in sp2 hybridization bearing oxygen-containing functional
groups (hydroxyl, carboxyl, carbonyl) [121,122]. The biocompatibility, electronic properties,
photostability, and photo-luminescent radiation emission of C-QDs have been explored
for different applications such as photodegradation, sensing, bioimaging, drug delivery,
catalysis, energy conversion, optical electronics, etc. [123].

C-QDs do not interact with all analytes directly, and very few biosensors have been
reported based on C-QDs as a biosensor matrix for the detection of phenols. Recently, a
fluorescent sensor has been reported utilizing the unique optical properties of C-QDs for
the detection of dopamine using photo-luminescent [37]. However, the quantum yield of C-
QDs is generally low, and they are difficult to reproduce due to their geometric arrangement
and challenging structural characterization [124].

3.4. Graphite-Based Lac Biosensors

Graphite has been utilized as electrode material in amperometric biosensors due to its
exceptional electronic and catalytic properties. Cato et al. used bare and modified graphite-
epoxy decorated with either tyrosinase or the Lac enzyme and copper nanoparticles for
the voltammetry detection of antioxidant activity phenols that are present in rosé cava
wines [125,126]. Ibarra Escutia et al. also developed an amperometric biosensor, entrapping
the fungal Lac enzyme onto polyvinyl alcohol photopolymer and graphitic SPE for sensing
PhCs in tea infusions [127]. However, graphite lacs in scope for the modification of an
electrode because of its lower functionality and poor solubility in organic solvents, due
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to which the derivatives of graphite offer more promising biosensing properties and are
highly utilized.

3.5. Graphene (Gr) and Its Derivatives-Based Lac Biosensors

Gr is a single-layered sheet of carbon obtained after isolation from stacked layers
of graphite having a thickness in atomic dimensions bearing a hexagonal layout of sp2

hybridized carbon atoms. Gr provides a large surface area, excellent electrical conductiv-
ity due to its highly conjugated structure, comparable tensile strength, and remarkable
biocompatibility [128]. Gr-based materials provide an enhanced signal response in electro-
chemical biosensing [129]. Due to these properties, Gr sheets have been widely utilized as
an immobilization matrix for immobilizing various enzymes, including Lac, for detecting
various phenolic compounds. Palanisamy et al. fabricated a Lac enzyme-based biosensor
to detect catechol using Gr cellulose microfiber composite-improved screen-printed carbon
electrodes [44]. A biosensor based on the Lac enzyme immobilized on a polymer-like
polyaniline (PANI) and magnetic graphene electrode has been introduced recently by Lou
et al. for detecting hydroquinone [71].

Graphene Oxide (GO) is a derivative of Gr having abundant epoxy functional groups
on the surface of Gr sheets with a large surface-to-volume ratio. Although the conductivity
of GO is lower than graphene (presence of oxygen functionality), it has been reported as an
immobilization matrix due to its solubility in water and its potential for the immobilization
of enzymes on its surface without the use of crosslinker [130,131]. Maleki, et al. fabricated a
biosensor using poly(3,4-methylenedioxy-thiophene), GO nano-sheets, and the Lac enzyme
to detect catechol [75]. An electrochemical sensor utilizing GO and a molecularly imprinted
polymer was developed for selective and sensitive detection of 2,4-dichlorophenol in water.
It was also optimized to estimate 2,4-dichlorophenol in real water samples [132]. The
introduction of oxygen functionality to GO led to a reduction in the conductivity of GO,
while the debut of RGO led to better conductivity compared to that of pristine graphene.
Moreover, it provides promising characteristics such as easy assembling, cost-effectiveness,
higher mobility, biocompatibility, etc. [133]. A large array of materials and composites
have been used for doping RGO sheets to synergistically enhance the catalytic activity and
electron transfer process of biosensors for the detection of different phenolic pollutants
such as 17β-estradiol [74], catechol [134], estriol [135], etc. Using RGO as a matrix for
the Lac enzyme, Mei et al. fabricated RGO palladium–copper electrodes for the sensitive
determination of catechol [134]. Eremia et al. developed a disposable biosensor using
platinum nanoparticles/RGO composite supported on carbon screen-printed electrodes for
the assessment of caffeic acid. They reported the kinetics of the detection of polyphenol
electrochemically and claimed that the fabricated biosensor can be used for evaluating
the total phenolic content in tea infusions [136]. Despite all the benefits, there are certain
limitations of using GO and RGO such as quick agglomeration, reduction in conductivity
after undergoing functionalization, and the use of toxic chemicals during synthesis. These
can perhaps be overcome by the use of advanced 2D materials.

3.6. Graphene Quantum Dots (G-QDs)-Based Lac Biosensors

G-QDs are considered zero-dimensional nanomaterials which are derived from the 2D
sheet of graphene [137]. G-QDs exhibit better solubility than CNTs and displays biocom-
patibility, low toxicity, and stability. High quantum yield, edge effects, and confinement
make it different from other carbon nanomaterials [138,139]. Top-down synthesis of G-QDs
from graphene is a multistep and cost-effective process, while bottom-up synthesis of
G-QDs from polycyclic aromatic compounds proceeds via complex steps and requires
costly chemicals and equipment. G-QDs demonstrate remarkable photoluminescence and
robust quantum properties [140]. Baluta, et al. used the fluorescence technique to detect
dopamine using a Lac-based ceramic biosensor supported by graphene QDs. The fabricated
biosensor was also modified using a conducting polymer [78]. Unlike graphene, G-QDs
have zero band gap and can be modified using functional groups due to the edge effect [97].
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Vasilescu et al. modified G-QDs electrodes using molybdenum disulfide, and the fabricated
Lac-based biosensor has been used for the detection of caffeic acid and were proven to
be useful for estimating the total phenolic content in red wine [141]. Inspite of several
applications, the use of G-QDs is still challenging as the formation of a single layer of
high-quality G-QDs is difficult. In addition, its synthesis suffers from toxic organic solvents,
a long reaction time, and low yield, which limits its use for industrial purposes. Different
applications of CNMs to detect PhCs have been summarized in Figure 6.
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4. Applications of Lac-Based Biosensors
4.1. Detection of Phenolic Pollutants in Wastewater

Water bodies contain waste from different sources in the form of dyes and harmful
chemicals that affect various life forms (both flora and fauna). Toxic chemicals, dyes, and PhCs
are major raw contributors from various textile, plastics, leather, and paper industries. PhCs
also merge into water bodies from the oil, gas, and coal industries. Conventional methods
such as photo-catalytic degradation, distillation, ozonation, extraction techniques, membrane
processes, advanced oxidation process, and enzymatic biological methods have been used to
remove these dyes and phenolic pollutants from wastewater [142,143]. Before their removal,
it is important to implement a real-time monitoring device to determine which pollutant is
to be treated and how much to reduce the cost and time for wastewater treatment methods
is very crucial. The major water pollution-contributing phenolic compounds are catechol,
hydroquinone, and Bisphenol-A.

Hydroquinone (Hq) is a widely used raw material in chemical industries as a dye
intermediate and black and white photo developer and in cosmetics as a skin-lightening
agent as well as a polymerization inhibitor. Studies reveal that high exposure to Hq may
lead to skin-irritating effects, and it is also harmful to soil microorganisms. Recently,
PANI/magnetic graphene immobilized Lac enzyme-modified electrodes were developed
that show superior biosensing activity for Hq in real water samples [71]. Upan, et al.
introduced a flow-injection amperometric sensor using a glutaraldehyde cross-linked Lac
enzyme onto CNT-modified SPE for estimation of Hq in water sample [144]. rGO-MoS2
nanocomposite has been used to detect Hq using chronoamperometry technique [109].
Synthetic catechol, on the other hand, has been utilized extensively in the production of
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pesticides, pharmaceuticals, chemical perfumes, etc. [145,146]. Similar to Hq, it is also used
in the field of black-and-white photography. Several biosensors have been developed for
the evaluation of catechol. A biosensor based on an artificial neural network-integrated
system has been formulated for the assessment of real water samples containing cate-
chol under a wider linear range using poly(3,4-ethylenedioxythiophene) (PEDOT), GO
nano-sheets, and Lac [75]. Kong, et al. used a graphite electrode-based intercalated mont-
morillonite for the electrochemical determination of catechol [147]. One of the fabricated
biosensor-based on Lac/Polyvinylpyrrolidone/chitosan/rGO electrospun has been shown
in Figure 7a [73]. Also, simultaneous detection of Hq and catechol has been carried out us-
ing Lac/aminopyrine/RGO/GCE electrode in water samples d [148] (Figure 7b). Bisphenol
A is a component of hard plastic that are being used daily in different forms such as bottles,
medical equipment, household electronic items, sports equipment, etc. [149]. Schematic
representation of Lac/CNT/SPCE electrode for detecting p−cresol in real water samples
and p−cresol produced during the Fenton process has been depicted in Figure 7c [89].
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Figure 7. (a) Illustration for Lac/Polyvinylpyrrolidone/chitosan/rGO electrospun nanofibers
for 17α− Ethinylestradiol electrochemical detection in synthetic and human urine. Adapted
with permission from Ref. [73]. Copyright © 2018 Elsevier, (b) Schematic representation of
Lac/aminopyrene/RGO/GCE electrode for the detection of phenols in water samples. Adapted with
permission from Ref. [148]. Copyright © 2013 Elsevier (c) Lac/CNT/SPCE electrode for detecting
p−cresol in real water samples and p−cresol produced during the Fenton process. Adapted with
permission from Ref. [89]. Copyright © 2021 Elsevier.
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Bisphenol A leaches into our bodies mainly through food containers as it is used to
coat the inside of food containers and drink cans. Numerous studies reveal that it acts as
an endocrine disrupter even at a very low dose [150]. Bisphenol A can cause DNA damage,
so monitoring its amount in water is necessary. Jalalvand, et al. used biosensing electrodes
as layer-by-layer modified GCE with methylene blue-DNA/MWCNTs-chitosan/palladium
nanoparticles/fullerene C60 [151]. An rGO-(4-ferrocenylethyne) phenylamine/AuNPs/GCE
electrode has been used for the detection of Bisphenol A infused in milk samples [152].
Lac–thionine–carbon black-modified SPE was formulated by Portaccio, M., et al. for the
assessment of endocrine disruptors in tomato juice samples [153]. Paracresol is also a
water-polluting phenol, as illustrated in Figure 6a, and quite recently, a Lac/CNT/SPCE
electrode has been used for its detection in real water samples. More importantly, paracresol
formed while performing the Fenton process has a good resemblance with that of the results
obtained using the HPLC technique [89].

One of the main causes of the accumulation of phenolic compounds in water bodies is
their heavy usage in the agricultural sector as insecticides, pesticides, and herbicides. Pesti-
cides such as pentachlorophenol undergo degradation in water into different chlorophenols.
Chlorophenols easily leach from soil into water bodies as they are water-soluble and have
also been widely used for impregnating wood [154]. The washing away of byproducts
from agricultural materials into water bodies plays a significant role in polluting water.
Biosensors help in the detection of these pesticides with ease. Carbamates are among
widely used pesticides in insecticides, nematicides, fungicides, acaricides, or herbicides
for increasing the yield of crops as a prophylactic measure. However, for non-targeted
organisms, carbamates are toxic due to their deliberate discharge into the soil and sub-
sequently into water bodies, leading to ill effects on the environment and human health
worldwide [155]. These are also among the list of endocrine disruptors as of Bisphenol
A [156], and thus become an important analyte for intensive monitoring. A novel enzyme-
based biosensor has been developed by Oliveira et al. for the estimation of carbamate
pesticide applied on tomato and potato crops using direct immobilization of Prussian blue
functionalized Lac on graphene-modified carbon paste electrodes [157]. They also detected
pirimicarb pesticide by immobilizing Lac on composite carbon paste electrodes containing
an MWCNTs paste electrode modified by the dispersion of Lac within the optimum com-
posite matrix [158]. Pesticides cause a higher threat to vegetables and fruits, which easily
carry food-borne microbes and pesticide residue into our bodies when eaten raw [159].
Therefore, it is necessary to investigate the amounts of pesticides to protect the endocrine
system of human beings and animals. For governing food safety, Oliveira et al. constructed
a dual enzyme (Lac and tyrosinase)-based biosensor immobilized on to Au nanoparticles,
chitosan, and graphene-doped carbon paste electrodes in order to detect the number of
different carbamate residues in fruits [160].

4.2. Detection of Phenolic Compounds in Food

PhCs from natural compounds are found in vegetables, fruits, cereals, beverages, and
red wines. The nutritional value of plants, fruits, and vegetables can be determined by
quantifying their PhCs content [161]. It has been reported that PhCs rich food items prevent
oxidative damage leading to age-associated diseases by terminating free radicals generated
after cell metabolism [162]. Biosensors have proven to be an important technique to check
the monitoring of food quality by detecting PhCs in plants and food products. De Macêdo,
et al. estimated the total phenolic content with the help of a Lac immobilized graphite
electrode in dry extracts of red fruits [163]. Honey is commonly used as an alternative to
normal sugar due to its good antioxidant properties [164]. The authenticity of honey can be
evaluated by inspecting its total phenolic content and antioxidant capacity using a real-time
biosensor. De Oliveira Neto reported an electroanalytical method for immobilizing the
Lac enzyme onto a carbon paste electrode for detecting both the antioxidant nature and
total phenolic content of honey. The results correlate with the data obtained using the
spectroscopic method [165].
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Among generally consumed beverages, tea contains various PhCs (phenolic acids,
flavonoids, tannins, catechins, etc.), possessing a variety of biological activities that can
lead to cancer prevention, anti-aging, cardiovascular diseases, and oxidative stress in
the brain. Tea infusions have excellent antioxidant properties and contain a high per-
centage of caffeic acid. Caffeic acid was determined from a tea infusion by Eremia, who
constructed disposable biosensors based on platinum nanoparticles-RGO-Lac biocom-
posite electrodes [136]. Rawal et al. constructed Lac/Fe3O4NPs/cMWCNT/PANI/Au,
Lac/MnO2NPs/cMWCNT/PANI/Au, and Lac/AgNPs/cMWCNT/PANI/Au electrodes
for measuring the total content of phenols in tea leaf extract [59,166]. The total phenolic
content in tea leaf extract and in black radish root was also quantified by Ibarra-Escutia, P.,
et al. with the help of an amperometric biosensor based on carbon SPE [167]. On the other
hand, coffee, a worldwide beloved and traded beverage, holds potential for reducing high
blood pressure and high cholesterol, risk to pancreatic cancer, and bone loss. All varieties
of coffee contain lipids, vitamins, and carbohydrates accompanied by variable amounts
of PhCs including chlorogenic acid and caffeic acid that are responsible for forecasting
their virtuous qualities and categories [168]. Chlorogenic acid is the major phenol in coffee.
Moreover, it is also a chief antioxidant among this beverage. GO paste/PtNPs, Lac, and
BOT (botryosphaeran) electrodes were fabricated by Salamanca-Neto, et al. to discriminate
the exceptional and traditional brewed coffee beverages by measuring chlorogenic acid [81].

PhCs were found to contribute to the color, astringency, mouth feel, and oxida-
tive stabilization of wine [169,170]. PhCs in wine give an advantage to hypertensive
patients based on their antioxidant nature by decreasing blood pressure [171]. Montereali
et al. reported the detection of polyphenols in wine using an amperometric biosensor
by immobilizing tyrosinase and the Lac enzyme onto ferrocene-modified graphite screen
printed electrodes [172]. A bioelectric tongue was fabricated to detect gallic acid, a tri-
hydroxy group containing compound in white wine, rose wine, and red wine [173]. The
differential pulse voltametric technique has been used for assessing gallic acid using a
[Cu2tpmc](ClO4)4/PVC matrix coated on graphite or carbon rods [174]. However, Almeida
et al. [85] used thin polydopamine film on carbon electrodes for the detection of gallic acid
from the chestnut shell obtained from industrial waste extract [141].

Phenolic content can also be tested in medicinal plants. Lac-immobilized electrode-
posited MWCNT and chitosan film were used to investigate phenols (caffeic acid, gallic
acids, chlorogenic acid, and rosmarinic acid) present in the medicinal plants Salvia offic-
inalis and Menthapiperita [175]. The oil of Menthapiperita (Pepperment) contains specific
characteristic PhCs and is a well-known medicinal ingredient that is used in tea and herbs.
It has strong antioxidant properties and possesses an excellent potential as a repellent of
allergies, microbes, and tumors [176]. On the other hand, the herb Salvia officinalis (sage)
is used as tonic in medicine to improve memory, learning power, and reduce stress [177].
PhCs present in sage (Salvia officinalis) show excellent antioxidant behavior. Rosmarinic
acid is the chief phenol present on both herbs [178]. Eremia et al. determined rosmarinic
acid from in vitro saliva culture with Lac–Nafion-based biosensors [179].

4.3. Detection of Analytes in Body Fluids

Dopamine is a significant neurotransmitter of the brain, which plays vital roles in the
cardiovascular, central nervous, and endocrine systems [180]. Dopamine is found in lower
concentrations in patients with dementia, Parkinson’s disease, and schizophrenia [181].
The normal concentration of dopamine in the brain is necessary for maintaining accurate
blood pressure, learning, enthusiasm, physical activities, and cognizance before releasing
dopamine into the brain [37]. Therefore, a rapid clinical and sensitive diagnosis of dopamine
is in considerable demand for monitoring Parkinson’s disease and depression [182]. A
fluorescence-based sensor has been developed using the Lac enzyme and polydopamine on
the surface of G-QDs for dopamine detection [78]. Hua, et al. assessed the role of dopamine
in human urine samples using a synthesized β-Cyclodextrin inclusion complex as the
immobilization matrix onto RGO for the fabrication of a biosensor [183].
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Estrogens are responsible for both environmental pollution and harmful effects on hu-
mans [184]. For example, 17 β-estradiol is an environmental pollutant that is of paramount
concern amongst estrogens. It is also a natural steroid that regulates the female reproductive
system by contributing to estrogen [185]. Studies reveal that the release of 17β-estradiol
and estriol hormones is around 280–600 µg/day and 6000–10,000 µg/day for pregnant
women [156]. The presence of pollutants in food such as meat and milk lead to severe
diseases related to fertility and tumor issues in females [186,187]. Biosensors for detecting
estrogens from blood and urine are considered superior over other conventional methods
as they are simple, rapid, and sensitive [187,188]. Wang et al. developed an electrochemical
Lac enzyme poly L-lysine/citric acid-graphene biosensor to detect 17β-estradiol in urine
samples [77]. Urine contains conjugated forms of estriol accompanying water soluble
sulfates that hydrolyze promptly, leading to regeneration of the free form of estriol, sub-
sequently threatening human and marine lives and giving rise to water pollution [189].
A voltammetry sensor was constructed using cobalt-poly(methionine) modified GCE
for determining estriol hormone in urine and pharmaceuticals [190]. Lac functionalized
polyvinylpyrrolidone/chitosan/RGO hybrid nanofibers deposited onto fluorine doped tin
oxide (FTO) were electrochemically able to diagnose 17α—Ethinylestradiol in synthetic
and human urine samples [73] (Figure 6c).

5. Future Scope

It is believed that CNTs and graphitic materials offer faster response time and ap-
preciable sensitivity compared to traditional electrodes at minimal working potentials.
However, effort has been made to modify CNMs-based biosensors to have better control on
chemical and physical properties. The limitations may be overcome using the integration
of metal, conducting polymers, metal chalcogenides, etc., with CNMs, which can enhance
the performance of biosensors to address future challenges.

A lot of interest is now been focused on advanced 2D materials such as MXenes
(MXe), which was recently explored in the field of biosensors [191]. MXe has been found
to be better than graphene-based nanomaterials in terms of improved electron transfer
in the heterogeneous phase, low diffusion barrier, and stable dispersibility. This is due
to the presence of metal at the center on MX, which does not reduce its conductivity or
dispersibility even after functionalization and offers excellent biocompatibility. In this
context, MXe based biosensors are progressing toward the development of lab-on-chip
biosensing devices involving 5G communication [192].

Future generations demand quick and accurate detection of analytes [193]. New
aspects such as the internet of things and machine learning involving artificial intelligence
(AI) are being used in the advancement of point-of-care (POC) devices which are emerging
more promising technologies as compared to conventional healthcare monitoring [194].
Emphasis on advanced biosensor fabrication must be given to use AI for detecting phenols
and for their on-site and online monitoring in order to balance the content of phenol in
diverse applications, as discussed in this review article.

6. Conclusions

The reliable detection of PhCs using Lac-based biosensors may result in maintaining
permissible polyphenols in water, body fluids, and sustainable management of antioxi-
dant quality. Developing a biosensor for PhCs detection will provide a way to overcome
conventional techniques, which are time-consuming and expensive. The application of
Lac-based biosensors is mainly focused on the electrochemical transduction method. Am-
perometric biosensors are among the most reported techniques for detecting PhCs using
the Lac enzyme and carbonaceous matrices. The carbon-based matrix has shown enor-
mous potential to support the Lac enzyme by providing enhanced surface area, superior
conductivity, stability, and excellent mechanical strength. They have been used in diverse
applications to detect polyphenols from wastewater, wine samples, urine, fruits, vegetables,
juices, human serums, and beverages. The most significant limitation that remains is the



Biosensors 2023, 13, 305 18 of 26

leaching of the enzyme from the substrate. This can perhaps be improved using suitable
immobilization techniques and incorporation of nanomaterials to maintain the enzyme
activity. The integration of CNMs with Lac-based biosensors can be crucial in developing
POC devices for application in food, pharmaceuticals, and environmental monitoring. The
oxidizing characteristics of Lac make it an effective biocatalyst, which can also be utilized
for other applications related to the same mechanism. Enzyme modification, the multien-
zyme approach, AI, and advanced 2D materials should be explored for the development of
POC devices.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bios13030305/s1, Table S1: Sources of the laccase enzyme; Table S2: Doping
materials used in carbon matrices [195–199].
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fluoroborate, PVP: polyvinylpyrrolidone, NF: nanofiber, GPE: graphene doped carbon paste electrode,
Tyr: Tyrosinase, G: graphite, PANABA: poly-aniline-2-aminobenzylamine, OMC-SPE: organized
mesoporous carbon-modified carbon screen-printed electrode, cMWCNT: carbonylated multi wall
carbon nanotube, MG: magnetic graphene, PEDOT: poly(3,4-ethylenedioxythiophene), PPy: polypyr-
role, G-QDs: graphene quantum dots, POXA1b: laccase Pleurotus ostreatus, DPV: Differential
Pulse Voltametry, CV: Cyclic voltammetry, SWV: square wave voltammetry, Amp: Amperometry,
ChronoAmp: Chronoamperometry
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