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Abstract: Molecularly imprinted polymer (MIP)-based luminescent chemosensors combine the
advantages of the highly specific molecular recognition of the imprinting sites and the high sensitivity
with the luminescence detection. These advantages have drawn great attention during the past
two decades. Luminescent molecularly imprinted polymers (luminescent MIPs) towards different
targeted analytes are constructed with different strategies, such as the incorporation of luminescent
functional monomers, physical entrapment, covalent attachment of luminescent signaling elements
on the MIPs, and surface-imprinting polymerization on the luminescent nanomaterials. In this review,
we will discuss the design strategies and sensing approaches of luminescent MIP-based chemosensors,
as well as their selected applications in biosensing, bioimaging, food safety, and clinical diagnosis.
The limitations and prospects for the future development of MIP-based luminescent chemosensors
will also be discussed.

Keywords: luminescent; molecularly imprinted polymer; chemosensor; transition metal complex;
quantum dots; organic dye

1. Introduction

Chemosensors are composed of a receptor functional moiety and a reporter, which can
produce a detectable signal response, such as absorption, luminescent or electrical, to reflect
the binding of an analyte with the receptor via non-covalent host-guest interactions. For an
ideal chemosensor, the host-guest interaction must be highly specific to the targeted analyte
and preferably with high binding affinity to achieve high selectivity and sensitivity [1–4].
As a result, receptor design is crucial for the successful development of chemosensors but
is usually the most challenging task. On the other hand, the high sensitivity and non-
destructive nature of luminescence, both fluorescence and phosphorescence, are attractive
features for a chemosensor’s reporter. In this context, the development of luminescent
molecular devices, such as switches, sensors, and molecular machines, has been an active
area of research in supramolecular photochemistry. To design luminescent chemosensors, a
luminophore is connected to the receptor so that the binding event between the receptor
(host) and the targeted analyte (guest) induce a change of its emission properties, which
serve as the read-out signals for the qualitative and quantitative determination of the
analyte [4–8].

The extensive developments of molecularly imprinted polymers (MIPs) have provided
an effective way for preparing materials with receptor sites, which are highly specific to the
molecular template used in the preparation of the MIPs or molecules with high structural
similarity, including the distributions of the functional group moieties, hydrophobicity, and
polarity. In addition to the highly selective binding receptors, MIPs are also well-known for
their inherent mechanical and chemical stability, strong binding affinity, short development
time, and low cost with well-developed preparation strategies [9–11]. Generally, the in-situ
polymerization of the monomer, functional monomer, and crosslinker in the presence of
a target template molecule is employed to synthesize MIPs. The functional monomers
are designed with substituents or groups to interact with template molecules. Due to the
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interactions, such as hydrogen bonds or non-covalent interactions, between the functional
monomer and the template, the reaction mixtures are pre-organized such that the template
molecules are surrounded by functional monomers. Upon cross-linking polymerization,
the template molecules are encapsulated in the polymer matrices. After the removal of
the template molecules, template-shaped cavities with complementary functional groups,
sizes, and shapes best-fitting the template molecules become the highly selective receptor
site for the template molecules. These molecular imprinting technologies have been well-
established to develop materials with highly selective receptors and thus widely exploited
in many significant applications in different fields, including biosensors, solid-phase extrac-
tion, chromatographic separation, catalysis, drug-controlled release, chemical analysis, and
hybrid with organic polymers (such as MOFs) to make composite materials [12–16]. The
merits of the imprinting effect of MIP are characterized by the imprinting factor, binding
capacity, and selectivity. Amongst, the imprinting factor is determined by comparing the
amount of bound analyte by MIP and its corresponding nonimprinted polymer (NIP), the
selectivity is determined by the outcome of rebinding assay compared between the target
analyte and structural analog, and the equilibrium binding capacity is normally measured
by HPLC, GS-MS, and UV-vis. The details of measurement have been described in a recent
review [17].

The use of MIPs in the development of chemosensors offers another advantage, as
the polymeric systems are well-known to provide collective responses to enhance their
sensitivity by “amplifying” the signals compared to single molecular systems [18]. The
amplifying effect enables the detection of the binding event by gravimetric methods using
a highly sensitive quartz microbalance [19]. However, the use of an expensive and sophisti-
cated microbalance has limited their applications in the research laboratory. To extend their
applications as portable or real-time monitoring sensors for on-site utilization, a signal-
transducing component has been introduced to the receptor-containing polymer. Optical
signaling, including absorption and luminescence, is one of the preferable means as it is
easily detected with portable devices or even the naked eye. For example, chemosensors
for aromatic explosives such as 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (DNT)
can be developed by conjugation of a suitable fluorophore into a polymer main chain [20].
Polymer-based luminescent chemosensors for metal cations such as lead(II), palladium(II),
and iron(II) ions have also been developed [21–23]. In these chemosensors, the binding
of the target molecules/ions onto the polymer can be reflected by the quenching of fluo-
rescence of the fluorophore. Apart from “turn-off” fluorescent chemosensors, the more
sensitive “turn-on” polymer-based chemosensors have also been developed [24,25].

Given the ease of developing highly selective receptors from MIPs, the amplification effect in
polymer-based sensors as well as the highly sensitive luminescent detection, the recent advances
in luminescent MIP-based sensors and devices are reviewed in this article. The design strategies
and classifications of luminescent MIP-based chemosensors and their selected applications in
biosensing, bioimaging, food safety, and clinical diagnosis (Figure 1) will also be discussed.
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2. Molecular Imprinting Strategy

As mentioned above, MIPs, as selective sorbents, are prepared from a mixture contain-
ing at least two essential components, namely functional monomers for interacting with
the template or structurally-related molecule that acts as a template. The design concept
of MIP was first reported and demonstrated using silica matrices by Polyakov’s seminal
work ninety years ago. Different strategies for preparing MIP have been rapidly developed
over the past few decades due to the exponential growth and development of organic
polymers [26].

In the syntheses of MIPs, the template-monomer(s) adduct was formed in the reaction
mixture via one or more intermolecular interactions, such as reversible covalent bond
formation, semi-covalent or non-covalent interactions (electrostatic affinity, van der Waals
interactions, hydrophobic forces, and coordination with a metal center). The subsequent
polymerization is performed in the presence of an initiator and crosslinker in the solvent.
With crosslinking polymerization, the orientation of monomers and the functional sites
that bound with the template molecule are fixed and rigidified by crosslinking units in
a three-dimensional network to avoid their random movement. Subsequent removal of
the template molecules from the MIP matrix leaves robust binding sites that are highly
selective to the template molecule and structurally similar molecules having the same
functional groups (Figure 2). These highly selective receptors are usually referred to as the
“imprinted” sites of MIP [27].
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In general, MIPs can be prepared by copolymerization reactions of a combination of
the most commonly used building blocks (monomer and crosslinker) in the presence of tem-
plate molecules, initiators, and solvents, as summarized in Table 1. Although different types
of MIPs are designed based on the same principle as illustrated in Figure 2, their imprinting
performance is strongly dependent on the building blocks, types of target molecules as well
as the polymerization conditions, including temperature, initiator, and solvents [28,29]. The
molecular design of the monomer, crosslinker, template, and polymerization conditions to
enhance the imprinting factors have been extensively reviewed [28–34]. In these reviews,
the development of functional monomers with complementary functional moieties to form
donor-acceptor interactions with the template molecules [30–32] and the effects of crosslink-
ers and solvents on controlling the recognition site as well as polymer morphology are
discussed in detail [33,34].

With the highly selective binding sites, MIPs have found a wide range of applications
such as solid-phase extraction (SPE), sensors, membranes, catalysis, synthesis, and drug
delivery [35,36]. Moreover, the high thermal stability and structural rigidity of MIPs enable
their use under harsh conditions. Owing to the unique features of structure predictability
and recognition specificity, molecularly imprinted polymers are universally applied in
sample pretreatment, chromatographic separation, and chemical/biological sensing [37,38].
With the recent advance in surface imprinting technology together with the hollow porous



Biosensors 2023, 13, 295 4 of 24

polymer synthesis, MIPs with high adsorption capacity and high imprinting efficiency,
good morphology, uniform size, and ideal surface properties can be obtained [39]. The
surface MIPs on hollow porous polymers are ideal to be used as sorbents and stationary
phases for sample pretreatment and chromatography [40]. Further enhancements of the
surface areas, interfacial properties, and binding capacity have also been achieved by
incorporating the composite imprinting strategy into sol-gel processes for nanomaterials
and nanoimprinting [41,42].

Table 1. Commonly used reagents in the preparation of MIPs.

Components Examples

Monomer

Acrylic acid
Methacrylic acid
2-Vinylpyridine

Styrene
4-Vinylaniline

Methyl methacrylate
1-Vinylimidazole

Acrylamide

Crosslinker

Ethylene glycol dimethacrylate
Divinylbenzene

1,1,1-Trimethylolpropane trimethacrylate
1,3-Diisopropenyl benzene
Pentaerythritol triacrylate

Solvent

Acetonitrile
2-Methoxyethanol

Methanol
Chloroform

Tetrahydrofuran
N,N-Dimethylformamide

Initiator

Benzoyl peroxide
Azobisisobutyronitrile
Ammonium persulfate

Ethyl 2-chloro-propionate

3. Design Strategies of Luminescent MIPs for Chemosensing Applications

Luminescence detection has been providing a significant and attractive approach for
numerous chemical, biological, and environmental species because of its high sensitivity,
non-destructive nature, and stability [4–8]. As demonstrated in recent decades, many
luminescent MIP-based sensors possess high sensitivity of luminescence detection and
high selectivity of MIP recognition [43–46].

For emissive analytes, their MIP-based chemosensors can be non-emissive and thus
are generally prepared using the standard method for MIPs using the analyte as the
template. As the luminescent properties of the analytes would change upon binding
with the imprinted sites of the MIP due to the changes in the micro-environment and the
electronic properties resulting from the binding interactions, such changes can be used for
the qualitative and quantitative determination of the analyte. Selected examples include
MIP-based sensors for enrofloxacin and fluoroquinolone analogs [47] and rhodamine
derivatives [48]. As most of the target analytes are non-emissive, there are only a few
reports on this type of MIP-based luminescent chemosensors.

For non-emissive analytes, luminescent chemosensing can be achieved by displace-
ment or competitive assay using a non-emissive MIP with a luminescent-labeled analyte as
the template [49,50]. However, this design cannot be widely applied as luminescent label-
ing of the target analyte can be extremely challenging or even impossible. The introduction
of luminophore into the MIP to report the binding event of the imprinted site represents a
more versatile design strategy for developing luminescent MIP-based chemosensors [51].
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With this strategy, different types of luminophores, including fluorescent organic com-
pounds, luminescent transition metal complexes, nanoparticles, and quantum dots with
different emission characteristics, can be rationally chosen to successfully develop the
luminescent MIP-based chemosensors [43–46,52,53].

Early design of luminescent MIPs is mainly based on the physical entrapment or chem-
ical modification of the MIPs through the addition of luminescent dye or polymerizable or-
ganic fluorescent-dye-containing monomers in the preparation of MIPs, respectively [54,55].
However, most of the fluorescent moieties in the MIPs do not show any emission responses
to the binding event of the imprinted receptors because they are randomly embedded
in MIP, and most of them do not have any electronic communication with the receptor
moieties. To increase the luminescent responses to the binding event of the imprinted
receptors, monomers with both fluorescent and binding moieties have been used [56].
However, the syntheses of the highly functionalized monomer are usually complicated,
and the fluorescent responses of the MIPs are still not as strong as the receptor-containing
fluorescent monomer in the solution state. To further enhance the emission changes of
the MIPs upon binding with the target guest molecules at the receptors, a new design
of luminescent MIPs by chemical modification of the imprinted receptor sites of the non-
emissive MIPs with the emissive dyes has been reported [57]. With the recent development
of luminescent nano-particles and nano-clusters, which show intense emission with narrow
emission band, large Stokes shift, and readily tunable emission characteristics [58], new
designs of luminescent MIPs with core-shell structures have been prepared by surface
imprinting polymerization on these luminescent nano-particles. However, the successful
signal transduction of the binding event of the surface-imprinted polymer to perturb the
emission of the nano-particles remains challenging.

3.1. Using Luminescent Monomer as a Building Block of MIPs

Through the copolymerization of luminescent monomer in the preparation of MIPs,
emissive MIPs with the emission properties derived from the luminophore of the monomer
can be obtained. This method has been extensively explored in the past decade for the devel-
opment of luminescent chemosensors. For example, Rurack and coworkers [56] designed a
fluorescent monomer containing both urea-receptor and nitrobenzoxadiazole fluorophore
to prepare a fluorescent MIP. Based on the binding of the urea group with the carboxy-
late, fluorescent MIP with imprinting sites specific for N-carbobenzyloxy-l-phenylalanine
(Z-L-Phe) can be prepared by reversible addition-fragmentation chain-transfer (RAFT)
polymerization of the fluorescent monomer, ethylene glycol dimethacrylate (EDGA) and
benzyl methacrylate (Figure 3a). With the hydrogen-bonding interactions between Z-L-Phe
and the urea functional group in the binding site, a strongly bonded complex adduct is
formed to avoid the formation of the non-emissive deprotonated species. As a result, the
presence of Z-L-Phe leads to a pronounced enhancement of fluorescence, which can be
used for qualitative and quantitative analysis of Z-L-Phe. It is worth noting that the solvent
used for the RAFT polymerization also plays an important role in the binding affinity and
sensing responses of the resulting MIP.

Another example is illustrated in fluorescent tetracycline-imprinted polymers re-
ported by Zhang and coworkers [59]. By copolymerization of a fluorescent monomer
(2-hydroxyethyl anthrancene-9-carboxylate) methacrylate (AnHEMA), methacrylic acid
monomer, and EDGA crosslinker in the presence of tetracycline as a template, fluorescent
MIP for tetracycline (Tc-MIP) can be obtained. However, the tetracycline-binding of such
MIP is limited in organic solvents due to its hydrophobicity, and thus the fluorescent re-
sponse for the chemosensory application cannot function in aqueous and biological media.
To introduce the hydrophilicity of the fluorescent Tc-MIP so that it can function in an aque-
ous medium and undiluted bovine serum, poly(2-hydroxyethyl methacrylate) (PHEMA)
as hydrophilic polymer brushes grafted on the surface of fluorescent Tc-MIP nanoparticles
were prepared. The hydrophilic polymer brushes were introduced by the addition of a well-
defined PHEMA with a dithioester end group in the RAFT precipitation copolymerization
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reaction (Figure 3b). With the PHEMA-grafted fluorescent Tc-MIP, significant fluorescence
quenching resulting from the binding of tetracycline could be observed in the biological
milieu. Apart from organic fluorescent MIPs, silica-based fluorescent MIPs designed using
a similar synthetic strategy with a fluorescent monomer have also been reported [60]. By
one-pot copolymerization of a fluorescent monomer containing fluorescein fluorophore
(FITC) and amino-receptor containing monomer, 3-aminopropyltriethoxysilane, and the
tetraethoxysilane in the presence of naproxen as the template under a catalyst-free condition,
fluorescent silica-based MIP nanoparticles showing fast and specific sensing luminescent
response towards naproxen can be obtained (Figure 3c).
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Although wide varieties of organic fluorescent functional monomers are observed to
have good compatibility with polymeric materials and relatively high fluorescent intensities,
their universal applications are hindered by the broad and tailing emission peaks. These
limitations are more pronounced in MIPs with fluorophores and receptors derived from
two separated monomers, in which the emission of some of the fluorophores is unaffected
by the binding event. Moreover, poor photostability and photobleaching of these MIPs
have also been reported [46].

3.2. Chemical Surface Functionalization with a Luminophore

MIPs can be made luminescent through immobilization strategies by attaching lu-
minescent signaling elements. Chemical surface functionalization methods are applied
to provide covalent binding sites for exterior luminescent moieties. The commonly used
functional groups for covalent immobilization include thiol, amino, carboxyl, hydroxyl,
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vinyl, and azide groups [61–63]. With these functional groups on the MIPs, luminophores
can be covalently immobilized on the surface, including the molecular recognition cavities,
or directed to the designed sites through click reactions and post-imprinting modification.
This strategy has been extensively explored since 2010 [57]. Upon grafting luminescent
labels, the luminescent signals can be detected by emission spectroscopy based on the
intrinsic properties of luminescent signaling elements [57,64,65].

Wang and coworkers [66] developed a fluorescent protein-imprinted polymer sensor
for the fast detection of glycoproteins. In this study, the thiol groups are used for linkage
with 4-vinyl phenylboronic acid through click reaction to serve as recognition and lumi-
nescent signaling moiety. The 4-vinyl phenylboronic acid forms the imprinted recognition
cavity as well as extends π-conjugation to enhance the luminescence properties (Figure 4a).
Takeuchi and coworkers [67] reported a fluorescent sensing platform for exosome detection.
Using antibody-conjugated exosomes with polymerizable methyacryloyl group as tem-
plates, MIPs with imprinted cavities can be prepared. Subsequent removal of the exosomes
would leave the imprinted sites with thiol groups. Fluorophores can then be directed to the
thiol groups on the cavity to form an immobilization linkage and to serve as a reporter for
the binding event between the cavity and the exosomes (Figure 4b).

With luminophores attached through covalent bonding, a chemical surface function-
alization is a promising tool for translating recognition events into luminescent signals.
However, maintaining the integrity of the binding cavities after chemical surface function-
alization so as not to weaken the selectivity remains a challenging issue.
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3.3. Physical Entrapment

Since the first report of luminescent lanthanide-based copolymer sensors by Murray
and coworkers [54,68], lanthanide metal ions/complexes, especially those of terbium(III)
and europium(III), have been extensively used as luminophores for developing lumines-
cent MIP-based sensors. The popularity of lanthanides can be attributed to their unique
luminescent properties, such as narrow emission bandwidths and extremely long emission
lifetimes. Lanthanide ions can be incorporated into the polymer matrix through physical
entrapment. After physical entrapment, the lanthanide ions are surrounded by the rigid
polymeric matrix, and thus they are highly stable. Moreover, they also exhibit similar
photophysical properties as in the solution state [69].

For example, Pan and coworkers [70] incorporated [Eu(TTA)3phen] into poly(amidoamine)
dendrimer to serve as a luminescent additive dispersing on the surface of the molecularly
imprinted membrane for the selective recognition of salicylic acid (Figure 5a). Moreno-
Bondi and coworkers [71] developed a molecularly imprinted nanofilament polymer with
physically entrapped Eu(III) ions for fluorescent sensing of enrofloxacin. In their report,
the entrapped Eu(III) ions can be derivatized by enrofloxacin in the solution state to form a
europium-enrofloxacin complex. By the detection of the change in the emission intensity,
in-situ monitoring of the enrofloxacin can be achieved (Figure 5b). As the luminescent
lifetimes of lanthanides are significantly longer than the polymer backbone, time-resolved
emission spectroscopy can be used to discriminate the background emission from the
polymer backbone.
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3.4. Encapsulation

Luminescent MIPs can also be fabricated by encapsulation with luminescent micro-
or nano-particles, which are produced by emissive nanomaterials or immobilization of
luminophores on the solid-supported micro- or nano-particles. These types of emissive
MIPs are commonly prepared by surface molecularly imprinting techniques on solid
luminescent substrates. For example, Yan and coworkers [72] fabricated a fluorescent
core-shell MIP sensor for selective detection of λ-cyhalothrin. The imprinting sites are
formed on the surface of the modified SiO2 beads with a fluorescent dye FITC as the
fluorescent reporter. To prepare SiO2 spheres with FITC, FITC is first conjugated with
3-aminopropyltriethoxysilane and then coated on SiO2 spheres. The resulting core-shell
fluorescent MIP sensor can quantify λ-cyhalothrin with a wide range of 10–60 nM and a
detection limit of 9.17 nM, according to the Stern–Volmer quenching study (Figure 6a).

For emissive nanomaterials, different strategies were used to incorporate these mate-
rials in the preparation of luminescent MIPs. These include the addition of nanoparticle
emitters in the conventional preparation of MIPs to give nanocomposite through chemi-
cal bonding or physical effects [73]; surface imprinting polymerization as a coating layer
with imprinted cavities on the surface of emissive nanomaterials similar to the example
described in Figure 6a [74] or on the surface of encapsulated luminescent inorganic nanoma-
terials (Figure 6b) [75]. The last strategy is exemplified in a recently reported molecularly
imprinted silica polymer on the perovskite quantum dots (QDs) encapsulated mesoporous
silica [74]. In this study, the emission properties of the QDs can be used for the detection of
2,2-dichlorovinyl dimethyl phosphate.
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tion of perovskite QDs in the mesopores of imprinted silica polymer for 2,2-dichlorovinyl dimethyl
phosphate detection. Adapted with permission [75]. Copyright 2020, Elsevier.

4. Classifications of Luminescent MIPs Based on the Nature of Luminophore
4.1. Luminescent Transition Metal Complexes-Functionalized MIPs

Different immobilization strategies, including the use of transition metal complexes
with alkene monomer-containing ligands [76–79], dithiobenzoate substituted ligands for
RAFT polymerization [80], physically entrapping into polymer network [81], and post-
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functionalization by surface chemical modification [61–67], have been used to prepare MIPs
functionalized with luminescent transition metal complexes. Amongst different types of
luminescent transition metal complexes, luminescent lanthanide complexes, especially
those of Eu(III) complexes, have been the most commonly reported (Table 2). This is due
to their emission characteristics showing visible-light luminescence, sharp bands, long
emission lifetimes, and large Stokes shifts [82], which could be readily distinguished from
background or interfering fluorescence derived from the polymer and other common
organic interfering compounds in biological systems. Selected examples of chemosensory
applications of the lanthanide-based MIPs are summarized in Table 2. As the emission
energy of lanthanides is insensitive to the change of the ligand and micro-environment, the
binding events in their MIP chemosensors would only result in quenching or sensitization
of their emission (Figure 7a) [83]. Apart from lanthanides, zinc(II) complexes [84,85] and
phosphorescent transition metal complexes [79,86] have also been reported but are much
less investigated. Unlike the f-f luminescence of lanthanides, the phosphorescence of the
transition metal complexes can be readily and systematically modified from the ligand
design and is sensitive to the change of the micro-environment. As a result, a shift of the
emission color in addition to the turn-on or turn-off of the emission intensity to report the
binding event in luminescent chemosensors derived from phosphorescent transition metal
complexes has also been developed (Figure 7b) [79].

Table 2. Selected examples of Lanthanide-based luminescent MIP chemosensors.

Lanthanide Complex Sensing Target λem Detection Range Limit of Detection Ref.

[Eu(TTA)3phen] Salicylic acid 614 nm 0–724 µM 174 µM [70]
EuCl3 Fluoroquinolone antibiotics 612 nm 0.5–50 µM 0.58 µM [71]

EuCl3·6H2O Picloram herbicide 616 nm –a –a [76]
EuCl3·6H2O Tenuazonic acid 615 nm 88.4–1040 µM 26 µM [77]

Tb(NO3)3·5H2O Melatonin 748 nm 0.004–2.153 nM 0.048 pM [78]
EuCl3·6H2O Pinacolyl methylphosphonate 618 nm 0–4.44 µM –a [80]

[Eu(TTA)3phen] Copper(II) 616 nm 10–100 µM –a [81]
TbCl3·6H2O Salicylic acid 545 nm 0.14–72.4 µM 0.290 µM [87]

a Not reported.

4.2. Organic Fluorescent Dyes-Functionalized MIPs

MIPs with organic fluorescent dyes are usually developed by copolymerization of
alkene-substituted dyes in the preparation of MIPs, as exemplified in Figure 3a. Apart
from copolymerization, the functionalization of MIPs with organic fluorescent dyes has
also been reported [88]. Selected examples of organic fluorescent dye-functionalized MIPs
are summarized in Table 3. The conjugation of ATTO 647N fluorescent dye in the post-
imprinting modification of porcine serum albumin (PAS)-imprinted MIP nanogel is re-
ported by Takeuchi and coworkers [89]. The fluorescent PSA-MIP can serve as a sensor for
monitoring and quantifying porcine serum albumin in pork contamination with very high
sensitivity, a linear quantification range of 0.25–5 nM, and a limit of detection of 40 pM
(Figure 8a). Although fine-tuning the fluorescent properties of each class of fluorescent dyes
is challenging, the availability of many different classes of organic fluorescent dyes with
different emission characteristics, such as coumarin, thiazole, thioflavin, fluorescein, rho-
damine B, bromothymol blue, quinine, luminol and their derivatives (Figure 8b) [57,90,91]
have made them popular in designing luminescent MIPs. However, the performance of
their chemosensory application may be affected by background fluorescence because the
emission lifetimes of these dyes are indistinguishable from the background fluorescence.
Moreover, fine-tuning of their emission properties cannot be easily achieved. The poor
photostability due to photobleaching of the organic fluorescent dyes is another limitation
for prolonged applications [92].
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Table 3. Selected examples of organic fluorescent dye-functionalized luminescent MIP chemosensors.

Fluorescent Dye Sensing Target λem/nm Detection Range Limit of Detection Ref.

FITC λ-Cyhalothrin 531 0–60 nM 9.17 nM [72]
ATTO 647N Porcine serum albumin 668 0.25–5 nM 40 pM [89]

FITC Lysozyme 520 0.1–0.7 µM –a [57]
Nitrobenzoxadiazole Sialic acid 509 –a –a [90]

Rhodamine Hyaluronan –a –a –a [93]
Luminol Chrysoidine –a 0.1–10 µM 0.032 µM [94]

Coumarin Tamoxifen 521 –a 10 mM [95]
ATTO 647N Human serum albumin 664 12–192 nM 13 nM [96]
Coumarin 4-Nitrophenol 461 0.001–7.5 µM 0.5 nM [97]

Thioflavin T Guanosine 488 –a 5 µM [98]
Nitrobenzoxadiazole 2,4-Dichlorophenoxyacetic acid 528 0.56–80 µM 90 nM [99]
Nitrobenzoxadiazole Phospholipids 512 18–60 µM 5.6 µM [100]

FITC Trypsin 515 –a 50 pM [101]
FITC 17β-Estradiol –a 0.10–70 µM 0.03 µM [102]
FITC Doxycycline 520 0.2–6 µM 117 nM [103]

Methyl red Dimethoate 450 0.6–34 nM 18.3 pM [104]
Rhodamine 4-Nitrophenol 582 0.01–10 µM 3.0 nM [105]

a Not reported.
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4.3. MIPs Encapsulated on Luminescent Nanomaterials

Through encapsulation, as exemplified in Figure 6, luminescent nanomaterials can
also be used as binding event reporters for non-luminescent MIPs. The rapid growth
of the research works on luminescent nanomaterials in the past decades have led to the
development of different types of luminescent nanomaterials, including inorganic semi-
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conductor quantum dots (QDs), noble-metal nanoclusters, organic QDs (carbon dots and
graphene QDs) and their doped or coated derivatives [106–108]. Inorganic QDs, espe-
cially Cd- and Zn-based QDs, are well-recognized as promising nanomaterials due to
their three-dimensional quantum confinement, which increases optical nonlinearity [109].
Compared to fluorescent organic dyes, QDs possess more stable and stronger photolumi-
nescent properties with a wide range of excitation and sharp emission bands. Moreover,
their emission characteristics can be readily modified by their size [109,110]. Based on
QDs-MIP core-shell design, different types of fluorescent MIP chemosensors have been
reported [45,46,111–130]. For instance, Zhang and coworkers [112] reported a dual emis-
sive MIP microsphere, composed of a red CdTe QD core and an imprinted MIP shell with
the surface-functionalized green fluorescent dye, 4-nitrobenzo-oxadiazole and imprinted
cavities for 2,4-dichlorophenoxy acetic acid. After grafting the microparticles with poly(N-
isopropylacrylamide) brushes, the MIP can serve as a ratiometric fluorescent sensor for
2,4-dichlorophenoxy acetic acid with a detection limit of 0.13 µM in milk samples because
the green fluorescence of 4-nitrobenzo-oxadiazole would be enhanced when the cavities
bind with 2,4-dichlorophenoxy acetic acid (Figure 9a).
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ricated a fluorescent MIP sensor based on Mn-ZnS QDs for the detection of cocaine and 

its metabolites in urine samples to monitor drug abuse. To develop the sensor for cocaine, 

the Mn-ZnS quantum dots was firstly surface modified by polyethylene glycol and then 

coated with a MIP by surface imprinting polymerization. With the fluorescence quench-

ing of the Mn-ZnS QDs associated with the binding of the cocaine, it can quantify the 

cocaine content in clinical samples with a detection limit of 0.076 mg L−1. A similar design 

strategy with surface imprinting polymerization could also apply to luminescent metal 

nanoclusters such as gold nanoclusters and silver nanoclusters to render “turn off” lumi-

nescent chemosensors. This is exemplified in the gold nanocluster-based MIP sensor for 

bisphenol A [114]. The use of luminescent noble metal nanoclusters may offer advantages, 

including ultra-small particle sizes <5 nm along with lower cytotoxicity, improved bio-

compatibility, and photostability. 

In recent years, carbon-based QDs, including carbon and graphene QDs, have been 

explored as superior alternatives to metal-based QDs [115]. Compared with traditional 

semiconductor QDs, carbon-based QDs have higher water solubility, improved chemical 

stability, and resistance to photobleaching, as well as readily tunable photoluminescent 

properties through facile modification [116]. By surface functionalization of MIP nanopar-

ticles, prepared by emulsion polymerization, with graphene QDs, Merkoçi, and cowork-

ers have developed “turn-off” luminescent MIP chemosensors for tributyltin [117]. By de-

positing graphene QDs-immobilized MIP on the nitrocellulose membrane, a highly sensi-

tive paper-based sensing platform for tributyltin with a detection limit of 0.23 ppt can be 

Figure 9. Schematic illustration for (a) the preparation of fluorescent MIP-coated CdTe QDs for
2,4-dichlorophenoxy acetic acid detection. Adapted with permission [112]. Copyright 2020, American
Chemical Society. (b) Preparation and sensing principle of the graphene QDs-immobilized MIP
nanocomposite for the detection of tributyltin. Adapted with permission [117]. Copyright 2019,
American Chemical Society.

Due to the concerns about the toxicity of Cd-based QDs, Zn-based QDs, including
Mn-ZnS and ZnO QDs, have been developed. Moreover, the luminescence properties and
thermal, chemical, and photo-stability of Zn-based QDs can be significantly improved
by doping various transition metals. For example, Moreda-Piñeiro and coworkers [113]
fabricated a fluorescent MIP sensor based on Mn-ZnS QDs for the detection of cocaine and
its metabolites in urine samples to monitor drug abuse. To develop the sensor for cocaine,
the Mn-ZnS quantum dots was firstly surface modified by polyethylene glycol and then
coated with a MIP by surface imprinting polymerization. With the fluorescence quenching
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of the Mn-ZnS QDs associated with the binding of the cocaine, it can quantify the cocaine
content in clinical samples with a detection limit of 0.076 mg L−1. A similar design strategy
with surface imprinting polymerization could also apply to luminescent metal nanoclus-
ters such as gold nanoclusters and silver nanoclusters to render “turn off” luminescent
chemosensors. This is exemplified in the gold nanocluster-based MIP sensor for bisphenol
A [114]. The use of luminescent noble metal nanoclusters may offer advantages, including
ultra-small particle sizes <5 nm along with lower cytotoxicity, improved biocompatibility,
and photostability.

In recent years, carbon-based QDs, including carbon and graphene QDs, have been
explored as superior alternatives to metal-based QDs [115]. Compared with traditional
semiconductor QDs, carbon-based QDs have higher water solubility, improved chemical
stability, and resistance to photobleaching, as well as readily tunable photoluminescent
properties through facile modification [116]. By surface functionalization of MIP nanoparti-
cles, prepared by emulsion polymerization, with graphene QDs, Merkoçi, and coworkers
have developed “turn-off” luminescent MIP chemosensors for tributyltin [117]. By deposit-
ing graphene QDs-immobilized MIP on the nitrocellulose membrane, a highly sensitive
paper-based sensing platform for tributyltin with a detection limit of 0.23 ppt can be
developed (Figure 9b). Selected luminescent chemosensors by MIP-hybrid luminescent
nanomaterials are summarized in Table 4.

Table 4. Selected examples of typical luminescent nanomaterials-based MIP chemical sensors.

Luminescent Nanomaterials Sensing Target λem/nm Detection Range Limit of Detection Ref.

CdTe QDs 2,4-Dichlorophenoxy acetic acid 528 0–15 µM 0.28 µM [112]
Mn-ZnS QDs Cocaine 590 0–3.296 µM 0.250 µM [113]

AuNCs Bisphenol A –a 0–13.1 µM 0.10 µM [114]
Carbon QDs Promethazine hydrochloride 431 2.0–250 µM 0.5 µM [116]

Graphene QDs Tributyltin 440 0.687 pM–0.687 nM 0.79 pM [117]
ZnO QDs Dimethoate 536 0.087–13.92 µM 0.026 µM [118]
AuNCs Erythromycin 585 0.1 µM–11.9 µM 12 nM [119]

Carbon QDs Ofloxacin 614 1–50 nM 0.25 nM [120]
Nitrogen CDs 2,4,6-Trinitrophenol 408 0.5–2.5 nM 0.15 nM [121]

CdTe QDs Tetracycline –a 0.5–15 µM 0.14 µM [122]
ZnO QDs Methylene blue 554 0–100 µM 1.27 µM [123]

CsPbBr3 QDs Omethoate 510 0.23–1.88 pM 0.09 pM [124]
Graphene QDs Methamphetamine 420 5–50 µM 0.011 µM [125]

Carbon QDs N-Acyl homoserine lactones –a 2.66–127 nM 0.033 nM [126]
Carbon QDs Tannic acid 440 1–200 nM 0.6 nM [127]
Mn-ZnS QDs Bilirubin 590 10.99–63.84 µM 1.8 µM [128]

Cu-Mn-ZnS QDs Folic acid 490, 595 0.01–5 µM 6 nM [129]
a Not reported.

5. Applications of Luminescent MIP-Based Chemosensors

As discussed above, a wide variety of luminescent MIP-based sensors developed from
different design strategies, luminophores, and sensing mechanisms have been reported.
Based on the changes in the emission properties, such as enhancement or quenching of
emission intensity, dual emissive signals for ratiometric detection, or shifting of emission
color, qualitative and quantitative analysis of the specific target analytes can be achieved.
Importantly, chemical sensors for different types of target analytes, from simple metal ions,
cations, anions, and small organic molecules to macromolecules, can be developed from
these luminescent MIP-based chemosensors. On the other hand, most of these sensors work
under different conditions, including aqueous and even biological media. As a result, they
have found important applications in the field of environmental monitoring, biotechnology,
biomedical sciences, clinical diagnosis, and the food industry, as exemplified below.

5.1. Biosensors

For practical applications, biosensors on solid support materials are fabricated [130].
Different methods, including chemical immobilization of MIP-based sensors on solid sup-
port and deposition of MIP-based sensors on solid support by adsorption, have been
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reported to prepare solid-supported luminescent MIP-based sensors. For solid glass sup-
ports, luminescent MIP-based sensors can be fabricated by chemical immobilization on the
glass surface by surface polymerization or drop-casting on glass slides [131]. For example,
Takeuchi and coworkers used the fluorescent functional monomer dansyl ethylenediamine-
conjugated O-acryloyl L-hydroxyproline to synthesize human serum albumin-imprinted
polymer on glass substrates by radical polymerization to serve as a protein biosensor [132].
This work represents a promising sensing platform for detecting specific species of protein
applied in biotechnology and life sciences.

The visual test strips are commonly made by loading luminescent MIP sensors on filter
paper. As shown by Pan and coworkers [133], a dual emissive fluorescent nanoparticle-
based MIP dopamine sensor can be loaded on filter paper to give a testing strip for the
neurotransmitter dopamine. As the MIP displays a constant blue emission from the carbon
QDs and a dopamine-dependent red emission from CdTe QDs, the emission color of the
testing strip loaded with the MIPs changes in accordance with the variation of fluorescence
of the CdTe QD component upon dopamine binding event. Thus, it can be used for portable
visual monitoring of the neurotransmitter dopamine with a detection limit of 100–150 nM.
By dropping a biological sample on the test strip, the dopamine levels can be detected
within 3 min (Figure 10).
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Wiley-VCH.

5.2. Bio-Imaging

MIPs have been widely used as antibody mimics due to easy fabrication, well-behaved
biocompatibility, high sensitivity, and specificity, as well as little immunogenic response
in cells [134]. Luminescent MIPs targeting membrane proteins, including EGFR, HER2,
human fibroblast growth factor-inducible 14 (Fn14), P32 receptor, and folate receptor alpha
(FRα), representing as disease markers on cell surfaces have been developed [135]. In
view of these features, a large number of luminescent MIPs with different biomedical
applications are prepared for in vitro and in vivo tracking of the cancer biomarkers and
studying the morphologies of the tumor cells [136]. During the therapeutic process, these
luminescent MIPs can serve as the antibody substitute to recognize the cancer cells to direct
the liberation of drugs [137–139].
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For example, Zhang and coworkers have designed and constructed a fluorescent MIP
(MIP@DOX) with different functional molecules for simultaneous fluorescence imaging-
guided target recognition and chemo-photodynamic therapy [140]. The MIP is designed
based on a core-shell structure with the core encapsulating the emissive gadolinium-doped
silicon quantum dots (SiGdQDs) and photosensitizer chlorin e6, and surface imprinted
polymer with an anticancer drug doxorubicin (DOX) and the epitope peptide of CD59
protein as the templates. With this multifunctional core-shell MIP, the epitope peptides lead
to precisely reaching the cancer cells; the emission and magnetic properties of SiGdQDs
in the core facilitate the fluorescence and magnetic resonance imaging dual modality; the
photosensitizer chlorin e6 can function as a photodynamic therapeutic reagent to generate
toxic 1O2 upon irradiation; and DOX is released to kill the cancer cells (Figure 11).
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Figure 11. Schematic illustration for the preparation of luminescent MIP@DOX and its targeted
chemo-photodynamic synergistic cancer therapy. Adapted with permission [140]. Copyright 2020,
American Chemical Society.

5.3. Food Contaminants and Spoilage Detection

The detection of food contaminants and spoilage are important food safety issues. Lu-
minescent MIP-based sensors allow for real-time monitoring of food spoilage. For example,
the spoilage of seafood can be monitored by volatile amines, particularly trimethylamine
(TMA) vapor. Through surface chemical immobilization of phosphorescent cyclometalated
Ir(III) complex on TMA-imprinted polymer (PTMA-Ir), Ko and coworkers have developed
luminescent MIP for the quantification of TMA vapor. The surface chemical immobilization
strategy was inspired by the method reported by the same research group for the prepara-
tion of iridium-based polymer-supported photocatalysts [141]. After the binding of TMA in
the imprinted cavities of PTMA-Ir, it results in the quenching of MLCT phosphorescence of
the immobilized iridium complexes in close proximity. Since the phosphorescence response
of PTMA-Ir toward TMA in the solution state is rapid and sensitive, a testing strip as a
visual indicator for seafood spoilage can be made by loading PTMA-Ir on filter paper. As
the testing strip shows rapid emission quenching responses within 5 s upon exposure to
TMA vapor, it can be used for real-time monitoring of seafood spoilage (Figure 12a).
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Figure 12. Schematic illustration of (a) the luminescent MIP sensor PTMA-Ir for selective detection of
TMA released in spoiled seafood. (b) Preparation and fluorescence spectral changes of MIP grafted
on carbon QDs for selective detection of trace tetracycline in milk. Adapted with permission. [142]
Copyright 2016, Elsevier.

Luminescent MIPs have also been developed for the detection of food contaminants.
This is exemplified in the luminescent MIP-based tetracycline sensor, which is designed by
doping luminescent carbon-QD-containing monomer in the preparation of the tetracycline-
imprinted polymer [142]. The luminescent responses of the MIP are highly selective and
sensitive toward tetracycline. With a detection limit of 5.45 nM, the MIP can be used
for the detection of tetracycline in milk due to the administration of antibiotics in cattle
(Figure 12b).

5.4. Clinical Diagnosis

In recent years, the development of luminescent MIPs has provided a promising sens-
ing platform for point-of-care diagnostic applications. The fast, sensitive, high specificity,
and simple sampling requirement of luminescent MIP-based sensors have overcome several
drawbacks of traditional diagnostic methods, including time-consuming sample prepara-
tion and the use of sophisticated instrumentation. Based on the biomarker identified for
disease diagnosis, luminescent MIPs for biomarker detection with optical readout signals
for simple detection is of great significance for clinical screening [143,144]. For example,
Lee and coworkers [145] demonstrated the successful application of an enzyme-free and
biocompatible fluorescent MIP-based conjugated polythiophenes for the selective detection
of the liver cancer biomarkers, α-fetoprotein, and carcinoembryonic antigen, in blood
serum samples, which are hard to detect without complicated sample preparation and
precise analytical instrumentation. The emission properties of the polythiophenes can be
modified by changing the polythiophene backbone. These MIPs can be printed on filter
paper by inkjet printing to produce a point-of-care paper assay kit for cancer detection
(Figure 13).
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MIP sensors for α-fetoprotein detection. Adapted with permission [145]. Copyright 2020, Elsevier.

6. Conclusions

In this review, the recent design strategies, development, and representative applica-
tions of luminescent MIP-based chemosensors over the past ten years have been described
and emphasized. Based on the well-developed methodologies, the progress of synthetic
MIPs with cavities capable of serving as the synthetic receptors for wide varieties of tar-
geted molecules/ions ranging from metal ions and simple molecules to macromolecules
have been discussed. Using various design strategies, different types of luminophores,
including organic fluorescent dyes, transition metal complexes, lanthanide complexes, and
nanomaterials, can be incorporated onto the surface or backbone of the MIPs to serve as
the emissive reporters for the binding events of the cavities in the MIPs. Based on the
emissive responses towards the target analyte, these luminescent MIPs can serve as the
chemosensors to detect and quantify the analyte. With the robustness and compatibility of
the luminescent MIPs to different conditions, they have found promising applications in
different areas, including environmental monitoring, biotechnology, biomedical sciences,
clinical diagnosis, and the food industry. It is expected that parallel to the growing de-
mands of analytical tools for different analytes. Extensive research works to develop new
luminescent MIPs for novel applications will be reported.

Despite outstanding performance and potential applications, the limitations of each
strategy in designing luminescent MIPs for chemosensors should be noted for the successful
development of luminescent MIP-based sensors with drastic optical responses. In addition
to the performance, biocompatibility, and toxicity must be considered when designing
MIP-based chemosensors, in particular those aimed at biotechnological and biomedical
applications. On the other hand, the long-term chemical inertness of these luminescent
MIPs might become an environmental threat when these MIPs are commercialized and
widely used. This issue can be tackled by developing biodegradable MIPs, which have re-
ceived growing attention in recent years. However, biodegradable MIP-based luminescent
chemosensors are almost unexplored.
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