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Abstract: Food safety is a key issue in promoting human health and sustaining life. Food analysis
is essential to prevent food components or contaminants causing foodborne-related illnesses to
consumers. Electrochemical sensors have become a desirable method for food safety analysis due to
their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical
sensors working in complex food sample matrices can be overcome by coupling them with covalent
organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light
elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress
in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of
COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry
performance of COFs. There follows a summary of the recently developed COF-based electrochemical
sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides,
heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this
field are discussed.

Keywords: covalent organic frameworks; electrochemical sensors; food safety; antibiotics; pesticides;
heavy metal ions

1. Introduction

Food safety is one of the issues of most global concern because safe food is essential
for promoting human health and sustaining life [1,2]. The World Health Organization has
listed food safety as one of its top 11 priorities [3]. However, with population growth, food
industrialization and trade globalization, the types and quantities of food components or
contaminants may increase at each stage of food production, such as crop cultivation, food
production, processing, packaging, transport and storage. With the frequent occurrence of
food pollution incidents around the world, food analysis, as a predominant step in food
quality and safety control, has received unprecedented attention [4]. However, food analysis
has faced significant challenges due to the complexity of the food sample matrix, the variety
of potential interferents and the uncertainty of contaminants [5,6]. Therefore, food analysis
techniques should be continuously improved to meet the needs of food testing.

In recent years, analytical techniques such as high-performance liquid chromatog-
raphy [7], gas chromatography coupled with mass spectrometry [8], microfluidics [9],
enzyme-linked immunosorbent assay [10], fluorescence spectroscopy [11] and nuclear
magnetic resonance [12] have been performed for food quality and safety analysis. These
techniques are often sensitive, accurate and selective. However, there are some drawbacks,
including long analysis times, expensive or complex instrumentations and the need for
skilled operators [13,14]. In addition, the food industry is more inclined to use efficient
technologies to monitor food safety and quality levels. Hence, there is an urgent need to
develop an accurate, simple, cost-effective, portable and fast response technique for food
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safety analysis. In order to meet these requirements, an electrochemical sensor has been
proposed by researchers [15].

An electrochemical sensor is an electronic instrument that can conduct quantitative
detection of analytes through a redox process. The electrochemical sensor is usually
composed of three electrodes: working, reference and counter electrodes [16]. These three
electrodes are placed in a cell containing an electrolytic solution and an analyte, and the
analyte will undergo a redox reaction on the working electrode surface and generate an
electrical signal proportional to the concentration of the analyte [17]. Therefore, components
or contaminants in food can be immediately recognized by the electrochemical sensors.
It should be mentioned that the traditional bare electrode is usually limited in terms of
sensitivity and selectivity [18]. Thus, various materials have been synthesized and used
as a working electrode material to improve the selectivity, sensitivity and speed of the
electrochemical sensor [19,20]. Among those materials, porous materials have attracted
great attention due to properties such as large surface area, many active sites, good chemical
stability and fast electron transfer ability [21].

Covalent organic frameworks (COFs), as a new kind of organic porous polymer, are
connected to light elements (C, H, N, B) via covalent bonds [22,23]. COFs have attracted
more and more attention due to their low density, good chemical stability, permanent
porosity and specific surface area [24]. Recently, COFs have been widely used in elec-
trochemical sensing because they can improve the selectivity, sensitivity and speed of
electrochemical sensors [25]. For example, COFs can prevent the agglomeration of elec-
troactive molecules owing to their highly ordered pore structure and adjustable functional
groups [26]; Moreover, they can improve the stability and reliability of the constructed
electrochemical sensor [27]. However, there are still some problems that urgently need to
be solved in the application of COFs to electrochemical sensing.

This review aims to present the recent advances of COF-based electrochemical sensors
which have been reported regarding their application to food safety analysis (Figure 1).
The current synthesis methods of COFs and the strategies to improve their conductivity
are discussed below in detail. Then, the sensors used for food contaminant determination,
including the linear range, limit of detection (LOD) and real samples, are summarized and
compared. Finally, the challenges and future prospects of these electrochemical sensors in
food analysis are discussed.
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2. Preparation of COFs and Improvement to Their Electrochemistry Performance

COFs have received extensive attention due to their wide application. Thus, it is criti-
cally important to develop new synthesis technologies to improve their application range.
Recently, COFs have become an attractive material in electrochemical sensing because they
can improve the selectivity, sensitivity and speed of electrochemical sensors [28]. Never-



Biosensors 2023, 13, 291 3 of 18

theless, the poor intrinsic conductivity and weak electrocatalysis of most COFs obviously
limit their application [29]. Therefore, the combination of COFs and materials with good
conductivity is an ideal method to improve the electrochemical performance of COFs.

2.1. Preparation of COFs

Up to now, researchers have reported many synthesis approaches for COFs; five typical
synthesis approaches—solvothermal synthesis, mechanochemical synthesis, solvent-free
synthesis, microwave-assisted synthesis and sonochemical synthesis—are summarized
(Table 1) and further discussed below.

Table 1. The synthetic approaches of COFs.

Synthesis
Methods Energy Time

(min)
Temperature

(◦C) Solvents Advantages Disadvantages Refs.

Solvothermal
synthesis Oven heater 2–9 d 80–200

1,4-dioxane; acetic acid;
TFA; Toluene; DMSO;

o-DCB; EtOH; m-cresol;
NMP; isoquinoline

The most commonly used
synthesis method; High

crystallinity

Long reaction time;
require organic solvents [30–36]

Mechanochemical
synthesis Mechanical force 5–300 RT -

Simple, time-saving,
solvent-free and operable

at room temperature

Low surface areas and
inferior crystallinity [37–40]

Solvent-free
synthesis Oven heater 3–5 d 120–200 - Environmental protection;

High crystallinity

Requires solid state
catalytics, high

temperature and
pressure

[41–46]

Microwave-
assisted

synthesis

Microwave
radiation 30–360 80–110

TfOH; DMSO;
Mesitylene; 1,4-dioxane;

acetic acid

Less reaction time, higher
yields, environmental
protection and lower
energy consumption

Low crystallinity [47–52]

Sonochemical
synthesis

Ultrasonic
radiation 60–120 RT Mesitylene; 1,4-dioxane;

acetic acid

Fast synthesis rate and
significantly reduced
energy consumption;

High crystallinity

Require high
temperature [53–55]

TfOH: trifluoromethanesulfonic acid; TFA: trifluoroacetic acid; DMSO: dimethylsulphoxide; o-DCB: 1,2-
dichlorobenzene; EtOH: ethanol; NMP: N-Methylpyrrolidone; RT: room temperature; -: no needed.

2.1.1. Solvothermal Synthesis

According to the reports, most of the prepared COFs are synthesized by the solvother-
mal synthesis method. In this method, monomers and solvents are added together in a
Pyrex tube. After a freeze–pump–thaw cycle, the Pyrex tube is sealed and placed in an oven.
The reaction often requires several days (2–9 d) under a controlled temperature (80–200 ◦C).
After cooling to room temperature, COF is obtained through filtration, washing and drying.
It should be pointed out that the solvent combinations and ratios and the reaction time
have a great impact on the crystallinity and porosity of COFs in this method [56]. Since
Omar M. Yaghi et al. [30] first reported the solvothermal synthesis of boronate ester-linked
COF1 and COF5 in 2005, researchers synthesized more bonding types of COFs through this
method, including imine- [31], olefin- [32], aminal- [33], thiazole- [34], sp2-carbon- [35] and
polyimide -linked COFs [36]. Although the quality of COFs synthesized by the solvother-
mal method is often satisfactory, they also have limitations such as a long reaction time and
organic solvents, which makes it difficult to expand them to industrial applications.

2.1.2. Mechanochemical Synthesis

Mechanochemical synthesis has become an alternative synthesis method for preparing
COFs due to its being simple, timesaving, solvent-free and operable at room tempera-
ture. Rahul Banerjee et al. [37] developed this method to produce a COF, named TpPa-1.
Monomers 1, 3, 5-triformylphloroglucinol and p-phenylenediamine were placed in a mortar
and ground for 5 min at room temperature, and then a COF with a light yellow color was
obtained. Subsequently, several COFs such as TP-COP [38], TpMA [39] and TpMaCON [40]
were also synthesized by using this method. Although these examples demonstrate the
feasibility of COFs using the mechanochemical synthesis method, the generalization of this
method is still a challenge because of the limitations in building monomers. In addition,
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COFs obtained by this method usually display low surface areas and inferior crystallinity
compared with those prepared by the solvothermal synthesis method.

2.1.3. Solvent-Free Synthesis

The solvent-free synthesis method has emerged as a viable method to prepare COFs
owing to its environmental protection, simple operation, low cost-effectiveness and large-scale
preparation [57]. Zhenjie Zhang et al. [41] first reported the solvent-free synthesis of olefin-linked
COF (NKCOF-10). Under solvent-free conditions, NKCOF-10 was obtained through a benzoic-
anhydride-catalyzed aldol reaction of 2, 5-dimethylpyrazine and 1, 3, 5-triformylbenzene.
Subsequently, Zhenjie Zhang’s group used a similar method to synthesize various types of
COFs, such as vinylene-linked COF [42], isomeric benzobisoxazole-vinylene-linked COF [43],
olefin-linked COF [44,45] and C=N-linked COF [46]. Compared to the solvothermal synthesis
method, this method usually requires the addition of solid-state catalytics (benzoic anhydride,
benzoic acid, et al.) to improve the crystallinity and yield of COFs. The COFs obtained by
this method have the advantages of high crystallinity and porosity, but it also requires high
temperature and pressure, which limits its industrial application.

2.1.4. Microwave-Assisted Synthesis

The microwave-assisted synthesis method has received more attention due to its
advantages of shorter reaction times, higher yields, environmental protection and lower
energy consumption [58]. Andrew I. Cooper et al. first prepared boronate ester-linked
COF5 using microwave as the heat source in 20 min [47]. More interestingly, COF5 obtained
using the microwave method had larger Brunauer–Emmett–Teller surface area (2019 m2/g)
than that prepared by the conventional solvothermal method. In addition to boronate
ester-linked COFs, covalent triazine-based framework [48], melamine-based COF [49],
enamine-linked COF [50], cationic COF [51] and imine-linked COF [52] have also been
synthesized by this microwave-assisted method. Now, microwave-assisted synthesis has
become a potential method for the industrial synthesis of COFs because it can achieve
faster and cleaner synthesis.

2.1.5. Sonochemical Synthesis

The sonochemical method is capable of facilitating the homogeneity of COFs and
accelerating the crystallization rate due to its use of ultrasonic wave, which can produce
strikingly high pressure and local temperature, as a heat source [59]. However, the COFs
prepared by the sonochemical synthesis method are still in a nascent stage. COF5 was
first obtained in a sonicator unit under an adjustable power output [53]. More interest-
ingly, COF5 processed significantly smaller crystals (50–250 nm) than that obtained by
the solvothermal method. In addition, several other COFs have been synthesized using
the sonochemical method, for instance, seven previously reported COFs (COF-1-COF-7)
and two new COFs (SonoCOF-8, SonoCOF-9) [54,55]. The crystallinity and porosity of
these COFs are comparable to or better than those of the same materials made by the
solvothermal method. Sonochemical synthesis has become a potential method for the
large-scale preparation of COFs owing to its super-fast synthesis rate and significantly
reduced energy consumption.

The methods discussed above are used to prepare COFs. Nevertheless, the pure COFs
usually have poor electrical conductivity, which limits their applications in the field of
electrochemistry. Thus, new strategies that can improve the conductivity of COFs are
urgently needed for their further electrochemical sensing applications.

2.2. Strategies to Improve Electrochemistry Performance of COFs

Combining COFs with some materials with specific conductivity, such as carbon materials,
metal nanoparticles, metallic oxides and conducting polymers, can be considered an effective
strategy to improve the electrochemistry performance of the COFs. Some of the strategies to
enhance the COF electrical conductivity are described below (Figure 2 and Table 2):
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Table 2. Methods to improve the electrochemistry performance of COFs and their advantages and
disadvantages.

Methods Advantages Disadvantages Refs.

COF/Carbon Materials Large surface areas, abundant active sites and
excellent conductivity The binding mechanism remains unclear [60–65]

COF/Metal Nanoparticles
Many kinds of metal nanoparticles; Faster

electron transfer rate and excellent electrical
conductivity

High cost of metal nanoparticles [66,67]

COF/Metallic Oxides Excellent conductivity and functionality; Large
surface areas Tedious preparation process [68–71]

COF/Conducting Polymers Simple preparation; Remarkable
electrocatalytic performance Few types of conductive materials [72,73]

2.2.1. COF/Carbon Materials

Carbon-based materials have good conductivity, high specific surface area, excellent
mechanical strength and cost effectiveness [74]. Thus, combining COFs with carbon materi-
als has become a suitable solution to enhance the electron transfer of the COFs to meet the
requirements of electrochemical sensing. Up to now, the conductive carbon materials used
most widely include graphene [60,61], carbon nanotubes [62], fullerenes [63], macroporous
carbon [64] and graphene aerogel [65]. All of these COF/carbon materials display more
excellent electrochemical performance than COFs, carbon materials or glassy carbon elec-
trode (GCE) alone. For example, Zhixiang Xu et al. [60] prepared a graphene oxide@COF
composite modified by glassy carbon electrode (GO@COF/GCE). Electrochemical char-
acteristics showed that the GO@COF/GCE had a larger peak current and electroactive
surface area than the bare GCE due to the high surface area and good electrical conductivity
of the GO@COF. A similar strategy was adopted by Dawei Pan et al. [61]. They synthesized
a COF with a hydrogen sulfonic functional group. After the COF was combined with
graphene, the composites showed excellent electrochemical performance. These studies
confirmed that the use of COFs/carbon materials is an effective method in the construction
of excellent electrochemical sensors. However, the binding mechanism of COFs and carbon
materials remains unclear. Therefore, a large amount of work is still necessary to analyze
these problems.

2.2.2. COF/Metal Nanoparticles

The integration of metal nanoparticles (NPs) into a COF framework is another in-
novative method to improve COFs’ electrochemical performance. Not only can COFs
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provide multiple functional active sites and a large surface area for metal nanoparticles to
integrate, but they can also prevent metal nanoparticle aggregation to obtain satisfactory
dispersion. In addition, metal nanoparticles can improve the conductivity of COFs. Thus,
the COF/metal nanoparticle composites have attracted more and more attention in the
electrochemical field [75]. One example was reported by P. Arul et al. [66]. A COF was
prepared with p-Phenylenediamine and terephthalaldehyde, and then Ag nanoparticles were
embedded into the COF. Finally, the Ag NPs-COF/GCE was obtained after the composite
was deposited on the GCE surface. Due to the synergistic effect of the COF and AgNPs, the
AgNPs-COF/GCE showed 1.7 and 1.5 times higher electrical conductivity than the bare GCE,
COF/GCE, and AgNPs/GCE alone. A similar approach, described by Wu Yang et al. [67],
consisted of using Pt nanoparticles together with COFs as the electrode materials. In this
example, the obtained electrode showed excellent electrocatalytic properties compared with
those modified by individual materials. These studies confirm that the prepared COF/metal
nanoparticle material is an effective strategy to obtain efficient electrochemical sensors, but
the high cost of metal nanoparticles limits their large-scale application.

2.2.3. COF/Metallic Oxides

It is also an attractive approach to combine COFs with metal oxide nanomaterials to ob-
tain hybrid materials for the development of electrochemical sensors. Until now, Fe3O4 [68],
CuO [69], ZnO/ZnNi2O4 [70] and La2O3 [71] have been combined with COFs to finally
construct electrochemical sensors. For example, Yang Wang et al. [68] prepared a core-
shell structured magnetic COF (Fe3O4@TAPB-DMTP-COFs) by a step-by-step assembly
method under facile conditions. The biggest peak current of luteolin on the TAPB-DMTP-
COFs/GCE was observed on the Fe3O4@TAPB-DMTP-COFs/GCE (Figure 3), due to the
synergistic effects of the high surface area of the TAPB-DMTP-COFs and the excellent cat-
alytic activity of Fe3O4. Another example of the synthesis of COF/metal oxide composites
was reported by Yang Wang et al. [69]. They prepared a CuO@TAPB-DMTP-COF compos-
ite with a core-shell structure by incorporating CuO nanorods into the TAPB-DMTP-COF
framework. The electrochemical parameters showed that the electrical analytical perfor-
mance of the TAPB-DMTP-COF/GCE was improved significantly owing to the synergistic
effects of TAPB-DMTP-COF and CuO. These examples demonstrate that COF/metallic
oxides are good candidates for preparing electrochemical sensors in various applications.
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2.2.4. COF/Conducting Polymers

Another effective approach to improve the conductivity of COFs is to integrate the COFs
and a conducting polymer. In the example described by William R. Dichtel et al. [72], in order
to enhance the conductivity of a COF film, they encapsulated 3,4-ethylenedioxythiophene
into COF pores by a facile electropolymerization method. The composite possessed signifi-
cant improvement in involumetric energy and power densities relative to COF film alone.
Moreover, the composite also had excellent cyclic stability. Another example for the prepa-
ration of a COF/conducting polymer composite was reported by Yi Wang et al. [73]. In
that work, a core-shell structured COF/conducting polymer composite (TAPB-DMTP-
COF@PANI) was synthesized using a simple polymerization approach. The electro-
chemical responses experiments showed that the TAPB-DMTP-COF@PANI/GCE dis-
played a stronger electrochemical signal compared to bare GCE, PANI/GCE, TAPB-DMTP-
COF/GCE alone (Figure 4). Although only a few studies have been reported, it is still
proved that COF/conducting polymer composites are promising functional materials to
fabricate electrochemical sensors. Thus, more studies are necessary to expand the variety
of these composites and further validate these findings.
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Although the above strategies to improve the electrochemical properties of COFs
have excellent performance, the types of conductive materials are relatively few. In the
future, a variety of conductive composite materials need to be developed to meet the broad
application of COF in the electrochemical field.

3. Applications in Food Safety Analysis

Based on their fascinating structures and properties, COFs have been successfully
applied in the field of electrochemical sensing [76]. Nowadays, numerous food contam-
inants have been detected by COF-based electrochemical sensors, which have excellent
selectivity, high sensitivity and quick response speed. An overview of these sensors for
the determination of food contaminants, such as bisphenols, antibiotics, pesticides, heavy
metal ions, fungal toxin and bacterium, is shown below in Table 3.
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Table 3. COF-based sensors for food safety analysis.

Working Electrode Samples Techniques Analytes Linear Range
(µmol/L)

LOD m

(µmol/L) Advantages Disadvantages Ref.

Bisphenols

COF/AgNPs/CC a waters, tea, juice,
beer DPV e Bisphenol A 0.5–100 0.15

Better reproducibility, wider
linear range and low LOD

The types of bisphenol
compounds detected

are limited

[77]Bisphenol S 0.5–100 0.15

DQTP/PGE b Acidic food DPV
Bisphenol A 0.5–30 0.15 [78]Bisphenol S 0.5–30 0.15

CtpPa-2/GCE Bottles DPV
Bisphenol A 0.1–50 0.02 [79]Bisphenol S 0.5–50 0.09

Co3O4@TAPB-DMTP-COF/GCE Edible oil DPV Tert-butyl
hydroquinone

0.05–1.0;
1.0–400 0.002 [80]

Antibiotics
Fe3O4@COFs@MIPs/SPE c Milk, Chicken DPV Tetracycline 1 × 10−10–1 × 10−4 g/mL 2.4 × 10−1 g/mL

Excellent stability, superior
anti-interference ability and can

detect different types of
antibiotics

It is difficult to realize
simultaneous detection
of multiple antibiotics

[81]
Zr-amide-Por-based 2D COF/GCE Milk ECL f Tetracycline 5 × 10−6–6 × 10−5 2.3 × 10−6 [82]

Fe-PPOF/AE d Milk EIS g Oxytetracycline 2.2 × 10−8–1.09 × 10−3 4.45 × 10−9 [83]
MoS2/NH2-MWCNT@COF/GCE Pork, chicken DPV Sulfamerazine 3.0 × 10−4–2.0 × 10−1 1.1 × 10−4 [84]

MIP/GO@COF/GCE Beef and fodder DPV Sulfadiazine 0.5–200 0.16 [61]
COF@NH2-CNT/GCE Chicken, lamb DPV Furazolidone 0.2–100 77.5 × 10−3 [85]

atp/POP/AE Milk EIS Penicillin 0.001–10 mg/L 3.2 × 10−4 mg/L [86]
Au@COF/GO-NH2/AE Milk EIS Chloramphenicol 0.155–3.09 × 10−3 4.99 × 10−8 [87]

Pesticides
AChE/COFDHNDA-BTH/GCE Lettuce juice CV h Carbaryl 0.48–35 0.16

Fast response, high sensitivity,
good selectivity and

practicability

Multiple pesticides
cannot be analyzed at

the same time

[88]
MIPs/DAFB-DCTP@CNNs/GCE Milk, fruit wine ECL Carbaryl 1 × 10−7–50 4.67 × 10−8 [89]

AChE/COFTab-Dva/GCE lettuce DPV DDVP l 0.33–30 0.11 [90]
GC/COF1/AChE/GCE cucumber CV Paraoxon 10–1000 µg/L 1.4 µg/L [91]
COF@MWCNTs/GCE Spinach DPV Malathion 1 × 10−3–10 0.5 × 10−3 [92]
COF-LZU1/3D-KSCs Schisandra chinensis DPV Trichlorfon 0.2–19 µg/L 0.067 µg/L [93]

Heavy metal ions

SNW1/GCE
Black Tea, Rice,

Pepper, Salt ASSWV i Pb2+ 0.01–0.3 0.00072 [94]
Hg2+ 0.05–0.3 0.01211 Superior wide linear responses,

low LOD; some working
electrodes can enable

simultaneous analysis of
multiple metal ions

There are few
COF-based electrode
materials for heavy
metal ions detection

Fe3O4@SNW1/GCE Red pepper powder;
black tea, rice SWASV j Pb2+ 0.003–0.3 0.95 × 10−3 [95]

COF/MWCNTs/CLS/Nafion/GCE Mushroom SWASV
Cu2+ 0.6–63.5 µg/L 0.2 µg/L

[96]Pb2+ 2.1–207.2 µg/L 0.7 µg/L
Cd2+ 1.1–112.4 µg/L 0.4 µg/L

Fungal toxin, bacterium
TpBD-GCE Milk samples DPV Aflatoxin M1 0.5–80 µg/L 0.15 µg/L High selectivity and sensitivity;

good accuracy and speed
Limited useful

electrode materials
[97]

m-COF@IgY/SPE Milk, beef, shrimp SWV k E. coli 10–108 CFU/mL 3 CFU/mL [98]

a: carbon cloth; b: pencil graphite electrode; c: screen-printed electrode; d: Au electrodes; e: differential pulse voltammetry; f: electrochemiluminescence; g: Electrochemical impedance
spectroscopy; h: Cyclic voltammetry; i: anodic stripping square wave voltammetry; j: Square wave anodic stripping voltammetry; k: Square wave voltammetry; l: O,O-dime-thyl-O-2,2-
dichlorovinylphosphate; m: limit of detection.
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3.1. Bisphenols

Bisphenol compounds widely exist in plastic food packaging materials, and they have
various adverse health effects on organisms, which will lead to serious diseases [99]. Therefore,
it is necessary to develop a simple and sensitive method for bisphenol compound determination.

JinYu Qiao et al. [77] proposed a ratiometric electrochemical sensor for the simultane-
ous determination of BPA and BPS. The ratiometric sensor was prepared based on COF-
LZU1 and silver nanoparticles modified with carbon cloth electrode (COF/AgNPs/CC).
This electrode displayed excellent electrocatalytic activity on BPA and BPS due to its
high electrocatalytic surface area and good conductivity. The LODs (S/N = 3) of the
determination for BPA and BPS were both 0.15 µmol/L. Moreover, other electrochemi-
cal sensors based on COF (DQTP) modified with pencil graphite electrode (DQTP/PGE)
(Figure 5) [78] and COF (CTpPa-2)-modified GCE [79] have also been established, and they
have been successfully applied to BPA and BPS determination. Tert-butylhydroquinone
(TBHQ) as one of a strong phenolic antioxidant is widely used in food products due to
its excellent chemical stability and anti-lipid peroxidation property [80]. However, health
studies indicated that excess intake of TBHQ would induce serious health issues towards
humans. Recently, Yi Wang et al. [80] developed an electrochemical sensor based on core-
shell Co3O4@TAPB-DMTP-COF composite for the sensitive and selective determination
of TBHQ. The Co3O4@TAPB-DMTP-COF was synthesized using a monomer-mediated in
situ growth strategy. In the electrochemical sensor, the COFs acted as a protective layer to
accelerate current mobilization and the Co3O4 nanoparticles as the electrocatalytic active
center. The LOD for the TBHQ determination was 0.002 µmol/L (S/N = 3).
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The above studies prove that a COF-based electrochemical sensor can achieve the
determination of bisphenol compounds. However, the current reports mainly involve
bisphenol A and bisphenol S determination. Hence, it is necessary to design a novel
electrochemical sensor based on COFs to determine more kinds of bisphenol compounds.

3.2. Antibiotics

Antibiotics, as a class of pharmaceuticals that can inhibit or kill pathogens, are widely
used to prevent and treat infectious diseases caused by bacteria, fungi, molds and other
microorganisms [100]. However, the excessive consumption of antibiotics can result in
many health problems including blood dyscrasias, liver toxicity and allergic reactions [101].

Tetracycline (TC) is a typical antibiotic that can cause resistance and other side effects such
as allergic reactions, nephrotoxicity and liver impairment. At present, some electrochemical
sensors based on COFs have been used for tetracycline antibiotic detection. For example,
Yukun Yang et al. [81] proposed a portable and on-site electrochemical sensor based on surface
molecularly imprinted polymer (MIP)-modified magnetic COF (Fe3O4@COFs@MIPs) for the
sensitive and rapid determination of TC. The Fe3O4@COFs@MIPs was synthesized according
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to a layer-by-layer modification method, which showed outstanding adsorption properties
and good magnetism. The liner range of the electrochemical sensor for TC determination was
1 × 10−10–1 × 10−4 g/mL and the LOD was 2.4 × 10−11 g/mL (S/N = 3). The prepared sensor
has also been successfully applied to milk and chicken samples. Xionghui Ma et al. [82] con-
structed an MIP electrochemiluminescence sensor based on a novel Zr- amide porphyrin-based
2D COF for TC determination in milk samples (Figure 6). The COF was obtained by a facile
liquid–liquid interface method and showed remarkable electrocatalytic performance due to its
inherently-ordered structure and abundant Zr catalytic active center. The LOD of the sensor
for TC determination was 2.3 × 10−6 µmol/L. In another example, Hongming He et al. [83]
synthesized a ferriporphyrin-based COF (Fe-PPOF) by a sonogashira coupling reaction. Then,
an electrochemical aptasensor was constructed using aptamer-immobilized Fe-PPOF for oxyte-
tracycline determination with an LOD of 2.05 fg/mL. Moreover, the electrochemical aptasensor
has also been applied to the analysis of oxytetracycline in milk samples. Apart from TC, some
other electrochemical sensors based on COFs have been reported for the determination of sul-
famerazine [84], sulfadiazine [61], furazolidone [85], penicillin [86] and chloramphenicol [87].
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3.3. Pesticides

Pesticide residues in food samples have become a great threat to human life. Thus,
it is urgent to detect pesticide residues in a sensitive, selective, simple and rapid man-
ner. Carbaryl is a carbamate pesticide that can cause damage to the nervous system and
brain [102]. Lili Chen et al. [88] proposed a N, O-rich COF paper constructed-based elec-
trochemical biosensor with repeatability, selectivity and stability for carbaryl detection.
The COF was prepared through an aminealdehyde condensation reaction, which had
abundant C=O, NH and OH groups. Then, the COF was fixed on a paper electrode to load
acetylcholinesterase, which could greatly enhance the bioactivity of acetylcholinesterase.
The COF was able to capture thiocholine by hydrogen bonding. The linear range of the
biosensor was 0.39–35 µmol/L with an LOD of 0.13 µmol/L. The electrochemical biosensor
has also been used for the determination of carbaryl in lettuce juice samples. In a similar
example, Shuo Wang et al. [89] designed an MIP electrochemiluminescence sensor, based



Biosensors 2023, 13, 291 11 of 18

on COF and carbon nitride nanosheets, which can detect carbaryl sensitively and accurately.
Organophosphorus pesticides are organic compound pesticides containing the phosphorus
element; they are widely used in agricultural production, resulting in various degrees of
residues in crops [103]. Guangran Ma et al. [90] reported a ratiometric electrochemical
biosensor based on a COFTab-Dva nanofiber with excellent electroactivity for O, O-dimethyl-
O-2, 2-dichlorovinylphosphate (DDVP) determination (Figure 7). COFTab-Dva nanofibers
can effectively immobilize acetylcholine and enrich thiocholine due to their large surface
area and abundant vinyl. The LOD of the electrochemical biosensors was 0.11 µmol/L.
More interestingly, the ratiometric electrochemical biosensor was successfully used to
detect the DDVP residual in lettuce juice samples. Xianbo Lu et al. [91] also synthesized a
COF with abundant carbonyl groups and used the same to construct an electrochemical
sensor for paraoxon determination in cucumber samples. In addition, Xue Wang [92] and
Yonggui Song [93] have constructed COF-based electrochemical sensors for the detection
of malathion and trichlorfon, respectively.
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Although there are few reports on the application of COF-based electrochemical
sensors in pesticide residue determination, they still prove that this sensor is a promising
tool for pesticide determination. Therefore, more research is urgently needed to expand the
variety of COF composites and pesticides to validate these findings.

3.4. Heavy Metal Ions

Heavy metals, such as Pb2+, Hg2+, Cu2+, and Cd2+, can accumulate in the food chain at
different stages. These heavy metals have serious effects on human health even at ultra-trace
levels [104]. Therefore, it is very important to detect heavy metals in food samples.

Tayyebeh Madrakian et al. [94] developed a novel simple, sensitive and rapid elec-
trochemical sensor based on melamine-COF-modified glassy carbon electrode for the
simultaneous measurement of Pb2+ and Hg2+. The linear range of the sensor was 0.01–0.3
and 0.05–0.3 µmol/L for Pb2+ and Hg2+, respectively, with LODs of 0.72 × 10−3 and
1.2 × 10−2 µmol/L. Moreover, the electrochemical sensor was also used to detect Pb2+

and Hg2+ in edible samples. Madrakian et al. [95] also proposed a glass carbon electrode
modified by an electroplated bismuth film and a nanocomposite of melamine-COF and
Fe3O4 nanoparticles. The glass carbon electrode successfully realized the selective detec-
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tion of Pb2+ with a LOD of 0.95 nnmol/L. In order to achieve the simultaneous detection
of multiple heavy metal ions, Yanyan Zhang et al. [96] reported a COF with calcium
lignosulfonate-modified multiwalled CNTs and nafion (COF/MWCNTs/CLS) was used as
an electrocatalytic material to modify GCE. The modified electrode has been used for the
simultaneous detection of Cu2+, Pb2+ and Cd2+ due to the high enrichment capacity of the
COF and the good conductivity of the MWCNTs. The LODs of the electrochemical sensor
for Cu2+, Pb2+ and Cd2+ determination were 0.2, 0.7 and 0.4 µg/L, respectively.

3.5. Fungal Toxin and Bacterium

Aflatoxin is a metabolite of aspergillus flavus, aspergillus parasiticus and aspergillus
norvegicus, which mainly exists in moldy peanuts, cereals and other foods [105]. Due to
the high toxicity and carcinogenicity of aflatoxin, it is necessary to determine it in food.
Recently, Yuehong Pang et al. [97] prepared a COF (TpBD) -modified GCE by a reliable
in situ growth method. Then, the modified GCE was used as a working electrode for
the electrochemical analysis of aflatoxin M1 in milk samples with magnetic separation
technology. The proposed electrochemical sensor had a lower LOD of 0.15 ng/mL (S/N = 3)
due to the large surface area of the COF. Bacterial contamination has attracted increasing
attention because it can cause foodborne diseases. Thus, it is important for human health
to use simple and rapid methods to monitor bacterial contamination. Ning Gan et al. [98]
developed an electrochemical biosensor based on egg yolk antibody-labeled magnetic
COF for the determination of Escherichia coli in milk, beef and shrimp samples (Figure 8).
Magnetic COF, due to its large surface area and abundant holes, was used to label egg yolk
antibodies so as to achieve the efficient enrichment and detection of E. coli. The linear range
of the electrochemical biosensor was 10–108 CFU/mL with the LOD of 3 CFU/mL.
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Although only a few COF-based electrochemical sensors have been designed and applied
to fungal toxin and bacterium analysis, it has still been proven that the COFs are a propagable
material to construct an electrochemical sensor for fungal toxin and bacterium determination.

4. Conclusions

Food safety is one of the critically important issues for human health with the con-
tinuous growth of food consumption and more reports of food contamination incidents.
To ensure food safety, electrochemical sensors have been employed for food quality and
safety testing due to their accurate, simple, cost-effective and fast response. Herein, we
have reviewed the reported COF-based electrochemical sensors in the context of food safety
analysis. Specifically, the design and synthesis methods of COFs, namely solvothermal syn-
thesis, mechanochemical synthesis, solvent-free synthesis, microwave-assisted synthesis
and sonochemical synthesis, have been summarized. Moreover, these reports have been dis-
cussed in terms of the strategies to improve the performance of COF based electrochemical
sensors as well as their use in the determination of food contaminants, including bisphenols,
antibiotics, pesticides, heavy metal ions, fungal toxins and bacterium. Thus, COFs provide
an emerging platform for researchers to develop electrochemical sensors for food safety
applications. Although COF-based electrochemical sensors have demonstrated excellent
performance and promising prospects, there are still some challenges, such as the need to
strengthen the stability and repeatability of the sensors and to realize the miniaturization
and field operation of the sensors. Although challenges still exist, the exciting promise
of these sensors in the electrical analysis of food will encourage researchers to conduct
further research, combining new COFs with advanced electrochemical techniques to give
electrochemical sensors perfect analytical performance.

In general, the application of COF-based electrochemical sensors in the field of food
analysis is still at an early stage, and there is still much room for research in this in-
novative field. Taking a future outlook, the rational design and controlled synthesis of
multifunctional electrode materials based on COFs, while enhancing their selectivity to
food contaminants, are very desirable for expanding their applications in the field of food
analysis. In addition, the poor biocompatibility of COFs limits their potential application in
contaminant detection in biological foods. In the future, the feasibility study of biocompati-
bility of electrochemical sensors based on COFs should be strengthened. The synthesis of
new compatible/biocompatible COFs is very important for the analysis of contaminants in
biological food. Furthermore, when detecting targets in complex systems, one of the main
challenges faced by electrochemical sensors is the fouling of the electrode surface, which
leads to the limited life of the sensors. This problem should be solved by designing and
synthesizing COF electrode materials with antifouling performance.
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