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Abstract: The fabrication of various sensing devices and the ability to harmonize materials for a
higher degree of organization is essential for effective sensing systems. Materials with hierarchically
micro- and mesopore structures can enhance the sensitivity of sensors. Nanoarchitectonics allows
for atomic/molecular level manipulations that create a higher area-to-volume ratio in nanoscale
hierarchical structures for use in ideal sensing applications. Nanoarchitectonics also provides ample
opportunities to fabricate materials by tuning pore size, increasing surface area, trapping molecules
via host–guest interactions, and other mechanisms. Material characteristics and shape significantly
enhance sensing capabilities via intramolecular interactions, molecular recognition, and localized sur-
face plasmon resonance (LSPR). This review highlights the latest advancements in nanoarchitectonics
approaches to tailor materials for various sensing applications, including biological micro/macro
molecules, volatile organic compounds (VOC), microscopic recognition, and the selective discrimi-
nation of microparticles. Furthermore, different sensing devices that utilize the nanoarchitectonics
concept to achieve atomic-molecular level discrimination are also discussed.

Keywords: nanoarchitectonics; VOCs; atomic/molecular manipulation

1. Introduction

Fabricating materials through atomic/molecular manipulation, chemical harmoniza-
tion, tuning to recognize certain functional groups, and spatial design confinements to
trap specific molecules based on chemical heterogeneity are techniques that are used to
delineate sensors via nanoarchitectonics [1,2]. Interaction of materials at the nanoscale
level depends on atomic/molecular level changes that are observed as fluctuations at the
quantum level, and vary with interactions at solid, liquid, or air–water interfaces [3,4]. Var-
ious non-covalent interactions through supramolecular chemistry, including van der Waals
interactions, self-assembly, the Langmuir–Blodgett technique, layer-by-layer assembly, and
electrostatic interactions, are used to create unique physical and chemical properties that
are suitable for sensing a specific molecule [5,6]. Self-assembled structures for perfect
order, such as stimuli responsiveness, hierarchic structures, cross-linking, and degree of
porosity, can be useful for such applications [7,8]. Porous materials that are designed via
nanoarchitectonics can enable the free flow of ions through a narrow channel, creating a
diffusion path and place for confined molecules to interact (i.e., diffusion of solvent/gas
molecules) [9,10]. Nanoscale modifications depend on the molecule’s energy and state,
including internal dynamics, rotational, vibrational, electronic, and spin states [11,12]. The
growth of nanoscale materials at interfaces by weakly interacting layer-by-layer (LbL)
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assemblies can offer tremendous control over structures, making them suitable for sens-
ing applications through molecular recognition [13,14]. Materials that are structurally
transformed via nanoarchitectonics can enhance atomic/molecular level discrimination
of solvent vapors, biomolecules, and diagnostic applications [15,16]. Intramolecular vi-
brations and spatial confinement can make nanoporous/mesoporous platforms effective
sensing systems for cooperative adsorption [17,18].

Soft nanoarchitectonics involve delicate processes that can produce highly ordered
structures with extraordinary properties [19]. The ability to discriminate specific molecules
by manipulating the shape of nanostructures is critical for developing efficient sensing
platforms [20,21]. A sensing material’s hallmark is recognizing solvent vapors with similar
molecular weights and different properties. Several sensing platforms have been developed,
including tunable nanoresonators consisting of free-standing 3D nanoarchitectures for an
enhanced Young’s modulus, have been developed [22,23]. Hierarchical nanostructured
materials incorporated into nanomechanical sensors can elicit analyte-induced stimuli
with nanometer precision [24,25]. Nanoporous materials create prolonged diffusion of
guest molecules, which interact with the active sites via host–guest interactions to in-
crease reliability [26,27]. One of the promising methods for detecting biomolecules is the
covalent attachment of fluorophores with oligodeoxynucleotide, through fluorescence reso-
nance energy transfer (FRET)-based detection [28,29]. Metal nanomaterials-based sensing
platforms reflect changes via spatial proximity, resulting from a mismatch between the
size of target molecules, and the decay length of localized surface plasmon resonance
(LSPR) signals [30,31]. Sensing platforms that utilize the LSPR capability are used to
detect biomolecules in clinical practice. In particular, noble metal nanomaterials with
unique shapes and tips can generate hotspots for sensing biomolecules [32,33]. Electro-
magnetic enhancement, combined with plasmon excitation in metal nanomaterials, serves
as a surface-enhanced Raman scattering (SERS) substrate for the detection of molecules
that transfer electrons and form a metal–biomolecule interaction [34,35]. Fullerene-based
sensing systems are generally regarded as highly selective to aromatic vapors through
various mechanisms, such as strong π−π interactions, van der Waals interactions, bonding
interplay, and so on [36,37]. Post-modification of fullerene assemblies can have a significant
role in improving the sensitivity towards solvent vapor sensing. Chemical etching and ami-
nation reactions can be used to create numerous reactive sites (i.e., pores/nanostructures)
for sensing applications [38,39]. This review focuses on recently developed sensor systems
that apply the nanoarchitectonics concept, including devices and sensor materials. From the
viewpoint of nanoarchitectonics, (a) tuning/manipulating shapes for creating hierarchical
structures and (b) atomic/molecular fabrications for improving the effectiveness of sensing
platforms will be discussed.

2. Sensing Biomolecules via Nanoarchitectonics

The detection of small biomolecules in in vivo systems can be significant for deter-
mining the severity of acute diseases, which are often less efficient in medical tests [40,41].
Functional nucleic acid-based sensors gain interest in detecting biomolecules and changes
in the chemical and biological environment. Particularly, DNA aptamers, which consist of
single-stranded DNA with specific base pairs, are often crucial in detecting metabolites,
therapeutic molecules, and so on [42,43]. Aptamer-based sensors are widely used to detect
circulating tumor cells via fluorophore labeling, pH responsiveness, and so on [44,45]. In
some cases, nucleic acids were employed for the detection of biomolecules through DNA
nanoarchitectonics [46,47]. In particular, DNA walkers, made of DNA origami for detecting
single-nucleotide polymorphisms, interactions with other biomolecules, mutations, and
structural alterations, are considered to be prospective biosensors [48,49]. Nucleic acids
are promising materials, with unique electron transfer capacities and chemical hetero-
geneity [50,51]. Fluorescent dye is usually tagged to the oligodeoxynucleotide to enhance
the SERS signal, which alters the conformation of the nucleic acid with respect to pH
changes [52,53]. Very recently, our group has developed DNA-based solid thin films for
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the detection of solvent vapors, using DNA from salmon sperm. The laser molecular
beam deposition technique was used to fabricate a flat sensing system that can effectively
detect methanol from other solvent vapors [54]. Sun and co-workers have developed
an aptamer-based sensing system conjugated with a gold surface to form a nanotetrahe-
dron scaffold to specifically recognize human hepatocellular carcinoma tumor cells [55].
Microcystin-leucine arginine is a toxin that is produced by cyanobacteria, and is present in
water for human consumption [56]. The detection of microcystin-leucine arginine is often
challenging, as it is present in trace quantities. A recent study found that single-walled car-
bon nanohorn-based electrochemical immunosensors showed enhanced detection abilities.
The presence of carboxylic groups around the tips of carbon nanohorns, and their interac-
tions with the amino group of microcystin-leucine arginine, are critical for the efficiency
of the sensing system [57]. Likewise, Pang and collaborators developed an enzyme-free
electrochemical immunosensor system for detecting microcystin-leucine arginine, using
molybdenum disulfide nanosheet/bovine serum albumin-stabilized gold nanocluster com-
posite and gold-core platinum-shell nanoparticles [58]. Cucurbit[n]urils are a class of novel
compounds, which derive their name from pumpkin’s “Cucurbitaceae”, and are known
for their unique properties, such as hydrophobic inner cavities and fringed carbonyl por-
tals. Molecules such as thiamine can be detected accurately using cucurbit[7]uril-based
sensors via host–guest chemistry from oxidized thiamine (thiochrome) [59,60]. Likewise,
cucurbit[6]uril-based hierarchic assemblies are used to detect nitroaromatic compounds
in explosives. They make structural changes upon interacting with the nitroaromatic
compounds, and produce a fluorescence-quenching effect that is used for detection [61].
Noncovalent interactions between atoms/bonds can be beneficial for the recognition of
specific molecules, ranging from biomolecules to VOCs. Guanine-rich sensors utilize non-
covalent π-stacking interactions that involve nucleobases for strong sensing of nucleic
acid inhibitors [62]. Chen and collaborators developed an α-hemolysin-based nanopore
stochastic sensing platform to recognize anions, cations, and hydrophobic molecules [63].
Similarly, Xiang and co-workers developed carbon nanotube/polyurethane-based flexible
piezoresistive strain sensors. They used 1-pyrenecarboxylic acid to enhance the interface
between carbon nanotubes and polyurethane, via non-covalent interactions [64].

Collective oscillation of free electrons resulting in LSPR, and its biomolecular inter-
actions, cause a change in the refractive index of the sensing surface. Tunable plasmonic
nanostructures are ideal for sensing biologicals such as antigens, antibodies, and other
sensitive molecules [65,66]. Often, these nanosystems use plasmonic materials such as
gold, silver nanomaterials, and so on [67,68]. Luo and co-workers recently developed
a cauliflower-like noble metal nanoparticle-based sensing system that utilized the LSPR
effect. The developed system was tested for its sensing capability to detect interleukin-6
by measuring changes in the refractive index. The system showed a shift in the plasmon
band in the thin film instead of bulk gold, indicating its sensitivity in detecting small
biomolecules. The authors believed that the sensing mechanism could be due to the genera-
tion of hotspots by dense nanostructures with concavo-convex structures, which improves
sensitivity through the enhancement of localized electromagnetic fields [69] (Figure 1).

Chang and collaborators fabricated a metal-insulator-metal nanodisk, in combina-
tion with polydimethylsiloxane, for the detection of cancer cells [70]. In another study,
human angiotensin-converting enzyme 2 protein functionalized silver nanoparticles sys-
tem showed rapid detection of severe acute respiratory syndrome coronavirus 2 through
a plasmonic effect of the silver nanoparticles [71]. Qiu and co-workers developed gold
nanoislands functionalized with poly(m-phenylenediamine-co-aniline-2-sulfonic acid) for
the detection of lead cations in drinking water [72]. The researchers developed a boron-
affinity magnetic immune SERS sensor for the detection of alpha-fetoprotein [73]. The
4-mercaptophenylboronic acid-modified metal nanoparticles were grafted and used as a
detection probe. They used alpha-fetoprotein antibodies for successful tagging onto boric
acid-functionalized magnetic silica particles, and used them as a magnetic immunocap-
ture probe [74]. The developed system showed excellent sensitivity in detecting alpha-
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fetoprotein in both serum and clinical samples. The authors believed that the synergistic
effect between “hotspots” caused by magnetic induction and the Raman peak intensity of
each “hotspot” could be the reason for the sensitivity [75,76]. The sensing system showed
enhanced specificity between antibodies of human liver carboxylesterase-1, Immunoglob-
ulin G, bovine serum albumin, human serum albumin, and lipoprotein lipase [73,77].
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Figure 1. Tip-of-metal nanostructures generate strong LSPR for intramolecular interaction
with biomolecules.

The molybdenum disulfide nanosheet/bovine serum albumin-stabilized gold nan-
ocluster composite showed greater surface area for reactivity and excellent biocompatibility.
Researchers used gold-core platinum-shell nanoparticles as an enzymatic reporter to rec-
ognize microcystin-leucine arginine antibodies [58]. Silicon nanowire-based field effect
transistor sensors with a permeable polymer layer were developed for the detection of
biomolecules, which overcame the limitation of the Debye screening effect [78]. The authors
constructed a permeable polymer layer by adsorption of pyrene butyric acid via π–π stack-
ing, followed by covalent coupling of amine-terminated polyethylene glycol [79]. Curry and
co-workers developed poly-L-lactide-based biodegradable piezoelectric force sensors to
detect diaphragmatic contraction pressure. The device was fabricated by sandwiching poly-
L-lactide layers between molybdenum electrodes and encapsulating them with polylactic
acid (Figure 2). The authors found that the efficiency of the piezoelectric sensor depended
on the crystallinity and degree of orientation of the polymer chains [80]. For sensitive
detection of microRNAs, Salahuddin and co-workers [81] developed a κ-carrageenan-
based mesoporous gold sensing system by dip coating κ-carrageenan hydrogel on the
gold electrode for enhanced adsorption of microRNAs [82]. The authors found that the
κ-carrageenan hydrogel network provides a 3D network for the binding of microRNAs,
determined via chronocoulometry [81].
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3. Quartz Crystal Microbalance (QCM)-Based Sensing Techniques

The detection of carcinogens, such as aromatic amines via noninvasive techniques, can
be seen as a bright prospect in disease diagnostics [83,84]. A mesoporous carbon nanocage-
based sensing system was developed to sense aromatic amines effectively. Mesoporous
carbon nanocages with a larger surface area and pore volume were prepared using the
cage-type mesoporous silica template technique [85]. The sensing system was developed
by solvent-casting N, N-dimethylformamide, and poly (methyl methacrylate) films in
combination with mesoporous carbon nanocages on a quartz crystal microbalance (QCM).
The electrospun nanofibrous film containing carbon nanocages showed a larger surface
area and porous membrane structure. Using a gas flow unit, the sensor was evaluated
for its sensing capacity against aniline, benzene, toluene, ethanol, acetone, acetic acid,
ammonia, and cyclohexane. The results showed that the developed carbon nanocage-based
sensing system was more effective against aniline than benzene and toluene. We believe
that hydrogen bonding with the amino group of aniline and active sites involving π−π
forces could be the key to selective sensitivity [86,87]. Further investigation using density
functional theory (DFT) also suggests that hydrogen bonding between the amine group
in aniline and carbonyl group in carbon nanocage is necessary for high selectivity [88]
(Figure 3).

Naturally derived carbon-based materials are being explored for their potential use
in alcohol discrimination. We prepared a porous carbon material from naturally available
grass and bamboo via chemical inactivation by phosphoric acid at 400 ◦C and tested
its sensing capabilities. The prepared amorphous carbon materials were found to have
hierarchical micro- and mesoporous structures with various oxygen-containing functional
groups. We found that the porosity and surface area of the prepared carbon material can
be controlled by regulating the impregnation ratio of phosphoric acid and bamboo. X-ray
photoelectron spectroscopic (XPS) analysis revealed that hetero-carbon components with
oxygen-containing functional groups are essential for sensing applications. The nanoporous
bamboo carbon’s sensing capacity for volatile organic solvents was tested against various
solvent vapors (methanol, ethanol, benzene, toluene, and acetic acid). The nanoporous
carbon showed a higher sensitivity for non-aromatic solvent vapors (acetic acid, methanol,
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and ethanol) than aromatic solvent vapors (benzene and toluene). It was believed that the
interaction between alcohol vapors and oxygen-containing surface functional groups such
as –OH, C=O, and COOH on the nanoporous carbon, could be the reason for the sensitivity.
The developed system also showed a significant sensitivity difference between methanol
and ethanol for discriminating between C1 and C2 alcohols [89]. Hierarchical nanoporous
fullerene structures are expected to display greater sensing capacity, owing to their unique π-
conjugated structure, bonding interplay, and strong van der Waals reactions [90]. Fullerene
and its derivatives have enhanced electronic, redox, and photonic properties, which can
be used in sensing applications [91]. They show enhanced redox activity through their
strong electron-accepting capacity. In this regard, Bitter melon-shaped nanoporous fullerene
crystals were prepared and investigated for their vapor-sensing capacity. Powder diffraction
analysis indicated both fcc and hcp phases, and after washing with isopropyl alcohol, the
hcp phase disappeared. Raman scattering spectra indicated two Ag and six Hg bands.
Particularly, the Ag(2) band (pentagonal pinch mode) of the fullerene assembly is considered
as the analytical probe, which showed that the free molecular rotation of the fullerene
molecules is preserved in the self-assembled form. The prepared bitter melon-shaped
fullerene crystals were subjected to vapors of water, methanol, hexane, benzene, toluene,
and aniline. The system was able to sense aromatic solvent vapors such as benzene, toluene,
and aniline, as evidenced from the significant frequency shift in QCM. These results suggest
that the bitter melon-shaped fullerene crystals could serve more as a preferential host for
aromatic vapors than other solvent vapors [92].
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Continuing previous efforts, a tubular corn-husk-shaped fullerene assembly with a
crystalline pore wall suitable for sensing applications was developed [93]. Corn-husk-
shaped fullerene crystals were developed from pristine C60, using the dynamic liquid–
liquid interface precipitation (LLIP) technique under ambient conditions. The fullerene
crystals were tested for their sensing capacity against various solvent vapors, including
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methanol, ethanol, 2-propanol, formic acid, acetic acid, formaldehyde, acetone, pyridine,
toluene, aniline, hexane, and cyclohexane. The fullerene crystals showed excellent sensi-
tivity to acetic acid vapors by enhanced diffusion via mesoporous walls. The sensitivity
towards acetic acid is mainly due to the reactivity of dimeric species from acetic acid in
the vapor phase with electron-deficient fullerene molecules. Furthermore, the tubular wall
with numerous microporous structures and crystalline pore walls helps to create nano gaps
that are required for the adsorption of guest vapors. These results suggest that advanced
sensing systems can be developed using fullerene rosette for the more effective sensing
of formic acid [93]. In a recent report, Chen and coworkers prepared a micron-sized 2D
fullerene rosette by self-assembling C60 with melamine/ethylenediamine and immobilized
it onto a QCM resonator; a sensing system was developed. They found that the fullerene
rosette exhibited an amorphous structure, unlike numerous fullerene assemblies generated
by the LLIP technique. Raman scattering spectra indicated an Ag(2) band shift which
contributed to the restriction of free molecular rotation of the fullerene by strong interac-
tions/covalent linking by melamine/ethylenediamine. Attenuated Total Reflection-Fourier
Transform Infra-Red (ATR-FTIR) and XPS analysis also revealed the strong interaction of
melamine/ethylenediamine components with fullerene molecules, making them suitable
for sensing applications. The vapor-sensing property of the fullerene rosette was studied
using various solvent vapors such as ethanol, ethyl acetate, formic acid, acetic acid, pyri-
dine, acetone, hexane, aniline, benzene, toluene, and cyclohexane. The fullerene rosette
showed better sensitivity against formic acid and acetic acid than other solvent vapors,
mainly due to the available amino groups in the assembly [94].

It is well known that the molecular sensing of mesoporous materials can be higher,
owing to their larger surface areas [95]. However, fewer studies have reported the control
over shape morphology with adjustments in organic solvent diffusion rates [96]. Bairi
and co-workers developed a hierarchic fullerene C70 cube with mesoporous rods with
crystalline pore walls, which functioned as the sensing antenna for toxic aromatic solvent
vapors using ultrasound-assisted liquid−liquid interfacial precipitation [97]. Growth of
the nanorods was controlled in the x, y, and z directions by modifying solvent diffusion
conditions. Furthermore, the cubes with z-directed nanorods were tested for their vapor-
sensing capacity using various solvent vapors (toluene, pyridine, hexane, cyclohexane, and
benzene) via the QCM system (Figure 4).

We observed that adsorption of the aromatic solvent vapors (toluene and pyridine) was
higher than that for aliphatic hydrocarbon vapors (hexane and cyclohexane). The difference
in sensing capacity is believed to be the hallmark of grown nanorods on the surfaces of
cubes. Strong π−π interactions with sp2 carbon-rich pore walls, mesoporous architecture,
and very strong donor−acceptor charge-transfer interaction prove that fullerene-based
structures can be widely used in sensing applications [98,99]. Structural modification
is key to enhancing the vapor-sensing performance of fullerene assemblies. Modifying
structures in a controlled manner requires several processes, including chemical etching,
amination, electrochemical means, and so on [100,101]. Some researchers even increased the
hydrophilicity of fullerenes to enhance the application of fullerene assemblies in various
fields [102,103]. Surface modification strategies, including covalent and non-covalent
adsorption with a range of polymerization techniques, are used to create active LbL films
for sensing applications. These strategies offer control over the architecture for enhanced
adsorption/recognition of the target molecules. We developed an LbL-based mesoporous
carbon platform for the selective sensing of tea compounds. The mesoporous carbon
surface was oxidized with the help of ammonium persulfate, and the LbL assembly was
performed on a QCM surface using poly(diallyldimethyl chloride). The developed system
effectively detected tannic acid via cooperative adsorption on the available nanoporous
space [104].
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Our group successfully developed a strategy to efficiently control the morphology with
face-selective etching on fullerene assemblies via chemical etching. Fullerene assemblies
(1D—nanorods, 2D—nanosheets, and 3D—nanocubes) were prepared using the ultrasonic
LLIP technique. By adding ethylene diamine (EDA) under gentle sonication, etching was
performed to yield hollow tubular structures on the fullerene assemblies. After etching, all
fullerene assemblies showed a broad N-H stretching vibration in infra-red spectra, indicat-
ing the presence of EDA-containing species. It was observed that the chemical etching did
not affect the size and shape of the fullerene assemblies. The chemically etched fullerene
nanostructures were tested for their sensing capabilities using various solvent vapors,
including formic acid, acetic acid, benzene, and toluene. The hollow, porous nanostructures
helped the aminated fullerene assemblies show excellent sensitivity for acid vapors (formic
acid or acetic acid) over aromatic vapors (benzene or toluene) [105]. Possessing the sensi-
tivity to differentiate one solvent from another is regarded as an excellent sensing material.
A highly nanoporous novel material, fullerphene, was developed for its use in molecular
discrimination at the atomic level. Nitrogen-doped fullerphene films were prepared using
bottom-up fabrication with micro- and mesoporous structures. XPS analysis revealed that
nitrogen exists as nitrogen pyrrolic-N and quaternary-N. It was found that nitrogen doping
allows the fullerphene films to selectively absorb the low molecular-weight carboxylic acid
vapors through noncovalent interactions. Enhanced surface area and porosity play an effi-
cient role in the transport and diffusion of formic acid vapor over acetic acid (Figure 5). The
spatially confined formic acid in the films experienced enhanced intermolecular interaction,
resulting in atomic-level molecular discrimination [106].
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4. Membrane-Type Surface Stress (MSS)-Based Sensing Platforms

Research on sensing alcohols has been studied using colorimetric discrimination and
Raman-based techniques, among others. Membrane-Type Surface Stress sensors (MSS) dis-
play greater efficiency in sensing molecules in the gaseous phase and trace quantities [96].
Moreover, they are far more sensitive than the traditionally used piezoresistive cantilever
sensors [107]. Several nanomechanical sensor systems with various ligands and functional
groups have been attempted for the selective sensing of alcohols [108,109]. Recently, we
developed a novel MSS-based sensor system coated with the copper complex, namely Cu
(1,10-phenanthroline) ((±)-2,2′-bis(diphenylphosphino)-1,1′-binaphth-yl) hexafluorophos-
phate. The highly luminescent Cu (1,10-phenanthroline) ((±)-2,2′-bis(diphenylphosphino)-
1,1′-binaphth-yl) hexafluorophosphate complex was prepared, and its chemical stability
was analyzed using various spectroscopic studies. The MSS-based sensing system was
prepared using direct inkjet spotting of the prepared complex over the membrane. The
developed system showed excellent selectivity towards methanol vapor over a wide range
of volatile organic compounds [110]. Hydrogen atoms from the aromatic C-H bonds
and fluorine atoms from the hexafluorophosphate anions make weak interactions for
the effective discrimination of methanol and related molecules [111]. Furthermore, the
steric hindrance of the ligands forms a densely packed bulk layer that offers minimal
intermolecular space for enhanced sensitivity of small molecules. The developed system
exhibited clearer discrimination of methanol in n-hexane and gasoline than in ethanol
mixtures [112]. We developed a novel hybrid inorganic-organic MSS system by conjugating
silica flake−shell capsules with a tetraphenyl porphyrin derivative and its metal complex
via covalent bonding. Silica flake−shell capsules were prepared using a self-template
dissolution–regrowth mechanism to obtain a larger surface area and large silanol functional
groups available for functionalization. Silica flake−shell capsules were functionalized with
5-[4-(N-(3-triethoxysilylpropylbenzamido))]-10,15,20-triphenylporphyrin and their metal
complexes, including cobalt, nickel, copper, and zinc. Porphyrin derivatives are known
for their excellent binding affinity towards inorganic molecules via various mechanisms,
including van der Waals forces, π−π interactions, and coordination chemistry [113,114].
Porphyrins are a class of heterocyclic macrocycles that comprise four conjugated pyrrole
rings arranged in a circle. Various hybrid assemblies were obtained, and their sensing
properties were studied using MSS on model analytes such as acetone and nitric oxide.
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We found that the sensitivity of hybrid assemblies greatly relies on their interactions with
acetone and nitric oxide via weak intermolecular forces (Figure 6).
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The MSS-based hybrid inorganic-organic system exhibited excellent acetone sensing
at ambient temperature conditions. The developed hybrid system showed a significant
increase in the MSS response toward acetone vapors, due to the large surface area and
available active sites. This can be seen as an excellent prospect in pharmaceutical industries
that often rely on the production process where acetone is used under inert conditions [115].
In another study, we attempted to evaluate the sensing properties of gold nanocages
deposited in MSS to detect volatile molecules. Gold nanocages were prepared using a
galvanic replacement reaction with silver nanocubes as sacrificial templates after alloying
and dealloying. Electron microscopic analysis revealed the presence of a hollow nanosized
cubic structure with larger pores. The gold nanocages were deposited onto MSS via an
inkjet-spotting technique to form a uniform layer and paired with a gas-sensing system.
Furthermore, we evaluated the sensing capacity of gold nanocage MSS-based sensors
against a wide range of solvents. During the adsorption of solvents, the measured signals
reversibly returned to baseline, indicating that analytes briefly reacted with the gold
nanocages via weak interactions, as evidenced during adsorption/desorption processes
and DFT calculations [116,117]. The gold nanocage MSS-based sensing system showed
maximum sensitivity to molecules with oxygen atoms in its structure. Hence, we believe the
sensitivity could be due to intermolecular forces between O−Au (electron donor−acceptor
bonding). DFT calculations also indicated the possibility of interactions between hydrogen
atoms of the methyl group and gold [118,119]. The binding energy of the solvent vapor
with the surface, edge, and corner of the gold nanocage was evaluated. It was shown that
the energy is higher for solvent vapors, except for heptane, at the corner tip adsorption site
(Figure 7). These results suggest that sp2/sp3-hybridized carbon creates electronic repulsion,
which significantly influences the binding energy [120]. These nanostructures ultimately
are used in the fabrication of sensing systems with effective functions. Some of the novel
sensing platforms developed in recent years have been highlighted in Table 1.
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Table 1. List of recently developed sensors using nanoarchitectonics.

S. No Sensing Platform Detection Sample Reference

1 Nanometer-flat DNA thin film QCM Methanol [54]

2 DNA nanotetrahedron Electrochemical Liver cancer cells [55]

3 Carbon nanohorn Electrochemical Microcystin-leucine arginine [57]

4 Cucurbit[6]uril-based
hierarchic assembly Fluorescence Nitroaromatic compounds [61]

5
Human angiotensin-converting
enzyme 2 protein functionalized
silver nanotriangle array sensor

Immobilization Coronavirus [71]

6 Boronate-Affinity Magnetic
Immunity SERS Sensor SERS Alpha-Fetoprotein [73]

7 Poly(methyl methacrylate)
containing carbon nanocage sensor QCM Aniline [88]

8 Bamboo-derived nanoporous carbon QCM VOCs [89]

9 Bitter melon-shaped nanoporous
C60 fullerene crystals QCM VOCs [92]

10 Corn-Husk-Shaped C60
fullerene crystals QCM VOCs [93]

11 C60 fullerene Rosette QCM VOCs [94]

12 Hierarchical C70 fullerene Cube QCM VOCs [97]

13 Fullerphene nanosheets QCM VOCs [106]

14

Cu (1,10-phenanthroline)
((±)-2,2′-bis(diphenylphosphino)-

1,1′-binaphth-yl)
hexafluorophosphate

MSS VOCs [112]

15

Silica flake−shell capsules
functionalized with 5-[4-(N-(3-

triethoxysilylpropylbenzamido))]-
10,15,20-triphenylporphyrin

MSS VOCs [115]
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Table 1. Cont.

S. No Sensing Platform Detection Sample Reference

16 Au Nanocages MSS VOCs [120]

17 C70 fullerene “Hole-in-Cube” Particle Carbon/resin particles [121]

18 Fullerene microhorns Particle Silica, polystyrene and
C70 particles [122]

5. Particle Systems

Manipulation of microscale structures is challenging, especially at the atomic and
molecular level, for sensing applications [123]. Our group has applied several such strate-
gies with fullerene self-assemblies to offer specific morphology and characteristics [124,125].
Continuing our previous efforts, we developed C70 fullerene cubes with a single open hole
on each side, using the dynamic LLIP technique. We found that the growth of the cube
follows a two-step process, as a solid core is formed immediately after adding C70 solution
into tert-butyl alcohol, which functions as the nucleus for the crystal’s growth in the cubes.
Powder diffraction analysis indicated the simple cubic structure of the prepared cubes as
that of pristine C70, which possesses a hexagonal close-packed structure. The cubes had a
solid core in the interior that can be controlled, as excess addition of C70 closes the hole,
and a local electron beam irradiation ion beam can open the hole (Figure 8) [121].
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Figure 8. (a–d) SEM images showing different loading capacities of the OH-cubes toward carbon and
polymer particles (0.05 mg/mL). (e) Plots of number of holes containing particle(s)/total number
of holes vs. particle concentration. Reproduced from [121] with permission from the American
Chemical Society, copyright 2017.

Recognition of nano/microparticles such as graphitic and resin particles was at-
tempted to check the preferential recognition properties. Scanning electron micrographs
revealed that the holes in cubes were packed with graphitic particles compared to the resin
particles of similar dimensions. The interaction of graphitic molecules with the cubes by
strong π−π interaction between 3D sp2 carbon-rich open holes denote supramolecular
interactions. Tang and coworkers have demonstrated the structural transformation of the
fullerene microtube to the novel fullerene microhorn structure, which showed unusual
microscopic particle recognition properties. Fullerene microtubes with a solid core at the
center were produced by rapidly adding tert-butyl alcohol into a mixture of C60 and C70
solutions in mesitylene. The fullerene microtube, when treated with a solvent mixture of
mesitylene and tert-butyl alcohol (3:1), resulted in the formation of novel fullerene micro-
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horns. Electron microscopic analysis confirmed the presence of open hollow ends on the
tubelike structures of fullerene microtubes. In contrast, fullerene microhorns were found to
have a conical shape with a sharp solid tip and hollow tubular end. We found that structural
transformation does not affect crystallinity. Polarized optical microscopic analysis suggests
that fullerene microtubes break at the center to yield microhorns after applying a solvent
mixture. Six Hg modes and two Ag modes Raman scattering spectra indicate the persistence
of the free rotation of fullerene molecules in the microhorns. We performed the selective
discrimination of the microparticles such as silica, polystyrene carboxylate, polystyrene
hydroxylate, polystyrene latex, and C70 particles. Among them, the recognition of silica
particles and their loading was higher than other particles, including C70 particles, which is
anticipated to be more recognized considering its supramolecular π−π interactions. Owing
to the net positive charge, preferential recognition was observed between microhorns and
silica particles through strong electrostatic interactions [122] (Figure 9).
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Similarly, Takashima and co-workers developed a 1,4,5,8-naphthalenediimide-based
porous coordination polymer system, which can structurally transform to discriminate
VOCs with exceptional sensitivity. They observed that the system could read aromatic
molecules and signal them as photoluminescence in the visible light region via charge
transfer or the heavy atom effect [126]. Some of the sensing platforms which utilize nanoar-
chitectonics have been developed as products, such as Breath Biopsy® from Owlstone
Medical (Cambridge, UK), exogenous VOC (EVOC®) probes from Owlstone Medical (Cam-
bridge, UK), Cyranose® 320 from Sensigent (Irwindale, CA, USA), etc., are available in the
market. These examples indicate the necessity to integrate the nanoarchitectonics concept
to achieve high sensitivity and selectivity in sensing industries ranging from chemical,
biomedical, clinical, and other industrial settings.

6. Conclusions and Future Prospects

Advances in nanoscale-sensing systems concerning precision and efficacy continue to
improve, thanks to advanced research in nanosensors. This review showcases the recent
advancements of nanoarchitectonics-based sensing systems, where nanoscale architectures
play an essential role in various medical, industrial, and chemical fields. Utilizing enhanced
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properties of nanoscale materials via nanoarchitectonics, including shape and size, will
help better recognize target molecules. Nanoarchitectonics could be essential for fabricating
well-defined nanostructures, including self-assembly, supramolecular chemistry, interfa-
cial chemistry, chemical etching, and structural post-modifications, with a certain degree
of control for precise discrimination of molecules. We understand that solvent vapors’
atomic/molecular level discrimination via sensing material depends on various chemical
reactions/interactions such as electrostatic, host–guest, van der Waals forces, π−π inter-
actions, and so on. Therefore, the ability to detect specific molecules with high sensitivity
and spatial resolution via functionalization techniques involving covalent/non-covalent
chemistries to achieve high-level selectivity is vital. This creates a desire to focus future re-
search on tuning nanoscale structures for molecular recognition, and ultimately for sensing
performance. Some promising materials, including fullerenes, gold nanostructures, DNA
aptamers, and porphyrin-based composites, are bright prospects for developing novel yet
effective sensing systems. Additionally, utilizing the interaction of light with metal nanos-
tructures for developing nanoplasmonic sensing platforms are some of the novel concepts
that are applying the idea of nanoarchitectonics. This understanding greatly improves
the need to develop nanoscale sensors with atomic/molecular level discrimination, with
advancements that forecast the potential of nanoarchitectonics in nanodevices for in vivo
subjects with real-life monitoring of biological, industrial, and domestic environments.
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