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Abstract: Heart failure (HF) is a cardiovascular disease defined by several symptoms that occur
when the heart cannot supply the blood needed by the tissues. HF, which affects approximately
64 million people worldwide and whose incidence and prevalence are increasing, has an important
place in terms of public health and healthcare costs. Therefore, developing and enhancing diagnostic
and prognostic sensors is an urgent need. Using various biomarkers for this purpose is a significant
breakthrough. It is possible to classify the biomarkers used in HF: associated with myocardial and
vascular stretch (B-type natriuretic peptide (BNP), N-terminal proBNP and troponin), related to neuro-
hormonal pathways (aldosterone and plasma renin activity), and associated with myocardial fibrosis
and hypertrophy (soluble suppression of tumorigenicity 2 and galactin 3). There is an increasing
demand for the design of fast, portable, and low-cost biosensing devices for the biomarkers related
to HF. Biosensors play a significant role in early diagnosis as an alternative to time-consuming and
expensive laboratory analysis. In this review, the most influential and novel biosensor applications
for acute and chronic HF will be discussed in detail. These studies will be evaluated in terms of
advantages, disadvantages, sensitivity, applicability, user-friendliness, etc.
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1. Introduction

Cardiovascular diseases (CVDs) is a broad term covering heart and circulatory diseases
and is listed in the literature as the leading cause of death worldwide. Management of
CVDs, such as heart failure, hypertension, stroke, coronary heart disease, etc., is a huge
economic burden for societies due to high incidence and mortality rates. Although the risk
factors and underlying mechanisms for CVDs differ, advancing age, life and dietary habits,
and genetic factors are the mainly evaluated parameters [1–3]. Among these diseases, heart
failure (HF) has a significant place as a disease with increasing prevalence and is not easy to
identify [4,5]. In its broadest definition, HF is the inability of the heart to adequately pump
the blood necessary for the body [6]. Fatigue and exertional dyspnea are the most common
symptoms of HF, and it is a complex clinical phenomenon that may be caused by functional
or structural problems of the heart [7,8]. Although its symptoms and definition may seem
simple, identifying and managing the presence and causes of HF can be challenging [7]. It is
also possible to classify HF as acute and chronic. Acute HF is characterized by the onset of
severe symptoms that require immediate treatment, while stable and persistent symptoms
characterize chronic HF. Appropriate treatment approaches are offered for both [7].

Identification, prediction, and diagnosis of HF is a compelling process; therefore, it is
important to evaluate the clinical characteristics in terms of diagnosis and prognosis [4,8].
Biomarkers are analytes that can be detected in the blood as indicators that give an idea
about the processes in the body [5,9]. Therefore, when it was evaluated from the point of
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biomarkers, HF management by enlightening biological pathways related to HF patho-
genesis can be very useful [4,8]. Acute/chronic heart failure biomarkers (Figure 1) can be
defined according to the mechanisms with which they are associated. The main groups are
as follows: inflammation (tumor necrosis factor α [TNFα], growth differentiation factor
15 [GDF 15], ST2, etc.), neurohormonal therapy (renin, copeptin, endothelin-1, etc.), extra-
cellular matrix remodelling (galectin-3 [GAL-3], interleukin-6 [IL-6], etc.), oxidative stress
(myeloperoxidase [MPO], oxidized LDL, urinary biopyrrins, etc.), myocyte stretch (GDF-15,
soluble ST2 [sST2], B-type natriuretic peptide [BNP], etc.), myocardial injury (troponin T
and I, heart type FA binding protein [hFABP], and myosin light-chain kinase, etc.) [10].
Additionally, it is possible to classify biomarkers in terms of HF disease management.
For example, some of them can be useful for diagnosis (BNP, miRNA, sST2), monitoring
prognosis (troponin, BNP, GAL-3, IL-6, TNFα), or evaluating the severity of the disease
(copeptin, sST2, CRP, hFABP) [4,8,11–13].
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Selective, rapid, and sensitive determination of biomarkers that can be beneficial at
every stage of HF management is also very critical. For this purpose, that the aim is for
the biosensors to help with early-stage diagnosis and effective monitoring of the disease
prognosis for HF by targeting the most suitable biomarkers [2,14]. The most significant
advantages of biosensors are that they are rapid, reliable, and portable, and offer real-time
analysis, high selectivity, and sensitivity compared to other available methods in the lit-
erature [15]. Studies in the field of biosensors are both very popular and extensive. In
addition, they continue to evolve. When the literature is examined, there are publications
that compile biosensor studies for the determination of biomarkers associated with cardio-
vascular diseases such as HF [5]. For example, Ouyang et al. [2] reviewed point-of-care
biosensors for cardiovascular blood biomarkers. Pourali et al. [16] evaluated the voltam-
metric biosensors for cardiac troponins. On the other hand, Azzouz et al. [17] examined
nanomaterial-based aptasensors for cardiovascular diagnostic applications in their study.

To the best of our knowledge, no studies in the literature solely focus on biosensor
applications for acute/chronic HF biomarkers. This current review aims to be useful to
researchers by filling this gap and evaluating the HF biomarkers for diagnosis and therapy
and the biosensor applications. It will also offer perspective on future approaches, such as
wearable biosensors.

2. Heart Failure Biomarkers for Diagnosis and Therapy

Heart failure is a global pandemic that affects ~26 million people worldwide. Age,
genetic status, gender, environmental risk effects, smoking habits, hypertension, coronary
artery disease, atrial fibrillation, and diabetes trigger the formation of the disease [18].
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HF occurs when the heart cannot pump enough blood to meet metabolic needs. If the
left ventricle does not work enough, systolic HF and diastolic HF appear. The left ventricle
cannot squeeze strongly sufficient in systolic HF, and therefore becomes stiff in diastolic
HF. Right-sided HF can occur when the left ventricle is damaged due to a change in blood
flow. Too much blood can collect in one place and cause swelling in the legs or abdomen.
HF was evaluated as acute and chronic HF. Acute HF occurs very suddenly and requires
immediate intervention. Chronic HF is observed gradually over time. HF symptoms are
described as breathlessness, fast/irregular heart rhythm speed, weakness, nausea, and
pain. The left ventricular ejection fraction (LVEF) leads the way in HF. According to the
American Heart Association, LVEF levels should be within the range of 50% to 75% [19].

The development and progression of HF result from many complex interactions
of cardiovascular diseases that lead to neurohormonal activation, cardiac remodeling,
inflammation, myocardial stretch, and myocyte injury [20].

A biomarker is an indicator of the normal biological process, pathogenic processes, or
pharmacological responses to a therapeutic intervention. An ideal biomarker should be
non-invasive, low-cost, and easily reproducible, and should offer sensitivity and specificity.
Many biomarkers have been identified for the clinical diagnosis of heart failure [20]. They
have an important role in the diagnosis, evaluation of risks, assessment of prognosis, and
monitoring of the response of the therapy. Protein-based HF biomarkers were classified
into several diseases. The inflammatory disease biomarkers are mostly known as inter-
leukin (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNFα), and cancer
antigen 125 (CA-125) [21]. Troponin-I (cTnI) and -T(cTnT), myoglobin, Creatine Kinase-MB
(CK-MB), and heart-type free fatty acid binding protein (H-FABP) take place in a group of
myocyte injury biomarkers [22]. Soluble suppression of tumorigenesis-2 (sST2), galectin-3
(Gal3), growth differentiation factor 8 (GDF8), and growth differentiation factor 15 (GDF15)
biomarkers belongs to cardiac remodeling. The B-type natriuretic peptide (BNP), mid-
regional pro-atrial natriuretic peptide (MR-proANP), N-terminal pro-B-type natriuretic
peptide (NT-proBNP), norepinephrine, mid-regional pro-adrenomedullin (MR-proADM),
copeptin, endothelin, and urocortin all fall under the neurohumoral markers group. Atrial
natriuretic peptide (ANP), B-type natriuretic peptide (BNP), NT-proBNP, growth differenti-
ation factor-15 (GDF-15), Neuregulin, and sST2 were found in the myocardial stretch [23].

BNP and NT-proBNP are referred to as gold-standard biomarkers in many published
papers because they are used in the diagnosis of HF and contribute to the standard clinical
HF diagnosis [24]. The NT-proBNP level in patients with acutely decompensated HF
(108 pg/mL) is 23 times higher than without HF (4.639 pg/mL). The cut-off values of
NT-proBNP and BNP were reported as 900 pg/mL and 100 pg/mL, respectively [18].
Norepinephrine levels increase above 393 pg/mL in the presence of HF [20]. Troponin,
especially cTnI and cTnT, can be a sensitive and specific indicator of acute myocardial
infarction [25]. Troponin protein releases into the bloodstream within 1–3 h when there is
damage to the heart muscle. The troponin level reaches 100 ng/mL and remains the same
for 10 days. cTn can be measured in saliva and urine instead of blood serum. sST2 is a
novel biomarker related to HF. However, this biomarker is not only used for the diagnosis
of HF but also in the diagnosis of lung disease [25]. The clinicians can better interpret
the mortality associated with HF when combining sST2 data with NTproBNP data. Gal-3
is a stable biomarker with no relation to age, BMI, or gender. The cut-off of the Gal-3
value is established as 10.1 ng/mL and 160 pg/mL with 77.78% of sensitivity and 95%
specificity [26]. The increase in IL6 level indicates the risk of heart failure with preserved
ejection fraction (HFpEF) over time [21]. Typical cardiac biomarkers consisting of CRP,
TNFα, CA-125, cTnI, cTnT, myoglobin, and CK-MB have an important role in diagnosing
myocardial infarction (AMI) [27]. When a heart attack occurs, the CK-MB level remains
high for the first 18–24 h and gradually returns to its normal level after a few days [28].
The elevated CRP levels may reflect the inflammatory activity of AMI. A C-reactive protein
value of >10 mg/L is considered a risk for cardiovascular prevention. The cut-off of plasma
H-FABP level is 4 ng/mL when acute coronary syndrome is suspected [20].
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Biomarkers and other investigations contribute to the diagnosis of HF. Chest X-ray and
echocardiography are generally used as traditional clinical diagnosis techniques. However,
echocardiogram testing can be difficult to perform in an emergency [29]. In addition, the
chest X-ray can create an issue regarding sensitivity and specificity. HF biomarkers can be
detected using the Enzyme-linked Immunosorbent Assay (ELISA) method. However, a
point-of-care (POC) rapid quantitative analysis has come to the fore in recent years because
clinicians profit from this useful method to monitor the prognosis of patients with HF [30].

Molecular recognition mechanisms are based on the lock and key model, with the sub-
strate and the receptor showing specific interactions without being ignored by complemen-
tary geometric shapes that fit into one another [31]. The enzyme-substrate, antibody-antigen
(Ab-Ag), and receptor-effector mechanisms can be integrated into many electrochemical
biosensor studies. For example, aptasensors, immunosensors, enzyme-based biosensors,
and molecularly imprinted polymer-based biosensors are widely used to determine HF
biomarkers in biological samples [32].

3. Applications of Biosensors for Acute and Chronic Heart Failure

The numerous electrochemical studies and biological detection of biomarkers often
utilized in acute and chronic HF have been extensively examined over the past five years.
When the studies in the literature were examined, primarily biosensor-based approaches
were discussed. In addition, while reviewing recently published articles on diverse as-
pects of electrochemical techniques, there is substantial research into the application of
electrochemical methods to detect acute and chronic heart failure biomarkers. In addition,
Table 1 presents detailed information on various electrode modification approaches as well
as electrochemical biosensing of acute and chronic HF biomarkers.
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Table 1. Recently developed biosensor-based methods for acute and chronic heart failure (HF).

Analyte Sensor Technique Linear Range LOD RSD (%) Real Sample Recovery Ref

TNFα
Anti-

TNFα/BSA/PAMAM/
NFs-AuE

CV
EIS 10–200 pg/mL 669 fg/mL NR Human serum

Saliva NR [33]

TNFα AuE ACV 0.1–500 nM 100 pM NR Urine
Saliva NR [34]

TNFα
TNFα/anti-TNFα-

Ab1/AuNPs/S-
MWCNTs/GCE

CV
EIS 0.01–1.0 pg/mL 2.00 fg/mL 0.61 Human plasma 100 [35]

TNFα AuHCF-
AuNPs/SPE DPV 10 pg/mL–40µg/mL 5.5 pg/mL 0.46 Human serum NR [36]

TNFα ITO Electrode EIS
CV 0.02–4 pg/mL 6 fg/mL NR Human serum 97.07–100.19 [37]

TNFα PDMS/AuE- ITO CV 0.15 pg/mL–15 ng/mL 0.07 pg/mL NR Human serum NR [38]

TNFα GPTES-ITO-PET CV
EIS 0.01–1.5 pg/mL 3.1 fg/mL 0.87 Human Serum 96.51–100.90 [39]

TNFα
α

AuE
(microelectrodes)

CV
EIS NR 1–15 pg/mL NR Human Saliva NR [40]

IL6
TGFβ1 AuNP-SPE DPV 102−108 fM

50−105 fM
47.9 fM
16.6 fM NR Human DNA NR [41]

Uric acid GCE DPV
CV 10–1000 µmol/L 107 nmol/L 0.3–8.5 Human serum 95.8–104 [42]

Gal-3 MIPs/SPE CV
EIS 0.5−5000 ng/mL NR NR Human Serum NR [43]

Gal-3 N-GNRs-Fe-
MOFs@AuNPs/GCE DPV 100 fg/mL−50 ng/mL 33.33 fg/mL 2.75 Human plasma 98.91–104.84 [44]

NT-proBNP Au@PdPtRTNs/GCE
Amperometry

CV
EIS

0.1 pg/mL–100 ng/mL 0.046 pg/mL 3–5.4 Human Serum 98.7–101.3 [45]

NT-proBNP SPE, Pt counter
electrode EIS 0.02–1 pg/mL 0.02 pg/mL NR Saliva 99 ± 8 [46]

ST2 GP Electrode EIS
CV 0.1 fg/mL−100 fg/mL 0.124 fg/mL 1.16–15.59 Human Serum 100–113.46 [47]
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Table 1. Cont.

Analyte Sensor Technique Linear Range LOD RSD (%) Real Sample Recovery Ref

Cholesterol ChOx- CSPPy-g-
C3N4H+/GCE CV 0.02–5.0 Mm 8.0 µM 1.8–2.7 Human Serum 97–101 [48]

CRP SPCE
CV
EIS

DPV
800,000−0.008 µM 0.92 nM NR Leaf 106.11–107.05 [49]

CRP GCE CV
DPV 10 pg/mL–10 µg/mL 0.44 pg/mL 5.93–12.02 Human Serum NR [50]

CRP BSA/ZnO/MPC/IL/anti-
CRP/CPE

EIS
DPV 0.01–1000 ng/mL 0.005 ng/mL <6 Human Serum 94.5–107.0 [51]

CRP PMPC-
SH/SAM/AuNPs/SPCE DPV 5–5000 ng/mL 1.6 ng/mL <1.34 Human Serum NR [52]

CRP PEI-Fc
/anti-CRP/GCE

DPV
EIS 10–50,000 ng/mL 0.5 ng/mL 8.5 Blood sample NR [53]

CRP MB-NH2-SWCNT-
AuNPs/SPE

CV
DPV
EIS

5 pg/mL–1 µg/mL 5 pg/mL >13.38 Blood sample 80 [54]

CRP Fc-
ECG/MEL/AuNPs/SPE

CV
EIS

DPV
0.001–1000 µg/mL 0.30 µg/mL 6.59 Human Serum 98.69–102.43 [55]

CRP anti-CRP
rGO/Ni/PtN/SPCE Amperometry 2–100 µg/mL 0.80 µg/mL 8.0 Human Serum NR [56]

CRP MWCNTs/AuE EIS
CV 0.084–0.84 nM 4\0 pM 3.15 Human Serum NR [57]

CRP ERGO/PTyr/ DPV
EIS 1.09–100 µg/L 0.375 µg/L NR Human Serum NR [58]

CRP BSA/anti-
CRP/MPA/Au

CV
SWV 5–220 fg/mL 2.25 fg/mL 3.12 Human Serum NR [59]

PCT PCT-Ab-AgNp-
SLG/ITO

CV
EIS 2–25 ng /mL 0.55 ng/mL NR Human serum NR [60]

PCT MoO3-Au-rGO-
Ab2/GCE CV 0.01 pg/mL−10 ng/mL 0.002 pg/mL 2.30 BSA NR [61]

PCT
g-C3N4-NiCo2S4-

CNTs-AgNPs
/GCE

DPV 0.05–50 ng/mL 16.70 pg/mL 3–5 Human serum 98.40–102.74 [62]
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Table 1. Cont.

Analyte Sensor Technique Linear Range LOD RSD (%) Real Sample Recovery Ref

NT-proBNP Paper Electrode LASV
SWASV 53–590 pM 300.0 pM NR Human Serum NR [63]

BNP AuNPs-S-
Phe/SPCE

EIS
CV 0.014–15 ng/mL 4 pg/Ml 6.4 Human Serum NR [64]

BNP PPIX/N–ZnO
NP/ITO EIS 1 pg/mL–0.1 µg/ mL 0.14 pg/mL 2.6–5.9 Human Serum 90.0–102 [65]

BNP ZnCo2O4/N-
CNTs-Ab/GCE

Amperometry
DPV
CV

0.01 pg/mL−1 ng/mL 3.34 fg/mL 2.9–3.5 Human Serum 97.0–102.1 [66]

cTnI N, Zn-GQDs/GCE DPV 10–106 pg/mL 4.59 pg/L 9.09–11.1 Human Serum 92–97.1 [67]

cTnI COOH-
ZnONPs/GCE

EIS
DPV 0.50 pM–3.3 × 105 pM 1.04 pM 3.06–4.5 Human Serum 93.40−114.28 [68]

cTnI CSA/MCH/Fc-
COFNs-MBA/Au

CV
DPV 10 fg/mL–10 ng/mL 2.6 fg/Ml 4.2 Human Serum 97.2–102.9 [69]

cTnI PCN-
AuNPs/LSGE

CV
SWV 0.0001–1000 ng/mL 0.01 pg/mL 2.25 Human Serum NR [70]

cTnI

pCTAB/DES/Au-
SPE and

pCTAB/DES/Ab2/Au-
SPE

DPV
CV 0.04 ng/mL−50 ng/mL 0.0009 ng/Ml 0.37–1.94 Human Serum NR [71]

cTnI
N-

prGO/COOH/PEG-
aptamer/GCE

DPV 0.001–100 pg/L 1 pg/mL 4.3 Human Seum 98.2–101.7 [72]

cTnI Fc-COOH-CIL-
HCNTs/GCE DPV 0.01–60 ng/mL 0.006 ng/mL 4.3–6.0 Human serum 96.4–103.3 [73]

cTnI Ti
disc/AuNPs/Apt DPV 1–1100 pM 0.18 pM 3.28 Human serum 100.2–101.8 [74]

cTnI DNA
3WJ/MB/Apt CV 0 pM−100 nM 1.0 pM NR Human serum NR [75]

cTnI MIP/BNQDs/GCE DPV 0.01–5.0 ng/mL 0.0005 ng/mL 0.17–0.47 Human Plasma NR [76]
cTnT N-MIP/SPCE DPV 0.02–0.09 ng/mL 0.008 ng/mL NR Human Serum NR [77]

cTnT

cTnT-
PANI/PMB/f-

MWCNTs/
SPCE

DPV
CV 0.10–8.0 pg/mL 0.040 pg/mL 1.3 Human Blood

Plasma 91–112 [78]
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Table 1. Cont.

Analyte Sensor Technique Linear Range LOD RSD (%) Real Sample Recovery Ref

NSE AuNPs@MoS2/rGO/GCE SWV
EIS 0.01–1.0 pg/mL 3.00 fg/Ml 0.48 Human Serum 99.80–100.52 [79]

NSE

Ab2-
Au/Fc@CuxO

SPs/
HCNs-GR/GCE

Amperometry 500 fg/mL−100 ng/mL 25.7 fg/mL 4.6–7.6 Human Serum 87.8–95.4 [80]

NSE Au–
MoS2/MOF/GCE

SWV
CV
EIS

1.00 pg/mL−100.0 ng/mL 0.37 pg/mL 0.57–3.95 Human Serum 99–105.2 [81]

NSE Ab/AuNPs/MES CV
DPV 1.0–750 ng/mL 0.34 ng/mL 3.1 Human Serum

Saliva NR [82]

GDF15 MoS2/AuPtPd-
Ab2/GCE

CV
EIS 1.5 pg/mL−1.5 µg/mL 0.9 pg/mL 4.5 BSA 94.0–110.0 [83]

Ox-LDL
Mg–

Fe3O4/PB/Ab/BSA
MGCE

Chronoamperometry 10−2 µg/mL −10 µg/mL 9.80 × 10−4

µg/mL
2.10–4.95 BSA NR [84]

Gal-3 Ab2/AuNPs/MB/MSN/
GCE

DPV
ASV 50 fg/mL−500 ng/mL 2.0 fg/mL −2.8–4.6 Human Serum 95.2–107 [85]

NR: Not reported, RSD: Relative standard deviation, DPV: Differential Pulse Voltammetry, TNFα: Tumor Necrosis Factor Alpha, EIS: Electrochemical Impedance Spectroscopy CV: Cyclic
Voltammetry, AuNPs: Gold Nanoparticles, MWCNTs: Multi-walled Carbon Nanotubes, IL-CS: Ionic Liquid (1-buthyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide), ACV: Alternating
Current Voltammetry, GCE: Glassy carbon electrode, IL6: Interleukin-6, TGFβ1: Transforming growth factor β1, AuNPs: Gold nanoparticles, SPCE: Screen-Printed Carbon Electrodes,
NFs: Nanofibers, PAMAM: Polyamidoamine, AuE: Gold Electrode, ASPE: Poly-anthranilic acid, SPE: Graphite screen-printed electrode, ASPE: Poly-anthranilic acid, AuHCF: Layers of gold
hexacyanoferrate, GPTES: 3-glycidoxypropyltriethoxysilane ITO: İndium tin oxide, PET: polyethylene terephthalate, Gal-3: Galectin-3, MIPs: Molecularly-imprinted polymers, TiO2NPs: Titanium-
dioxide nano particles, N-GNRs-Fe-MOFs@AuNPs: N-doped graphene nanoribbons immobilized fe-based-Metal-organic frameworks deposited with Au nanoparticles, NT-proBNP: N-terminal
B-type natriuretic peptid precursor, RTNs: Rough-surfaced trimetallic, cTnI: cardiac troponin I, Zn-GQDs: Zn co-doped graphene quantum dots, NT-proBNP: N-terminal pro-brain natriuretic
peptide, ST2: Suppression of Tumorigenicity 2, GP: graphite paper, ChOx: Cholesterol oxidase, CSPPy-g-C3N4H+: Cylindrical spongy shaped polypyrrole, CRP: C-Reactive protein,
ZnO/MPC/IL/anti-CRP/CPE: Porous carbon matrix/ionic liquid/C-reactive protein antibody/carbon paste electrode, PMPC-SH/SAM: Thiol-terminated poly (2-methacryloyloxyethyl
phosphorylcholine)/self-assembled monolayer PEI-Fc: Fe (III) phthalocyanine, MB: Methylene blue, NH2-SWCNT: Aminoated single-walled carbon nanotubes, PCT: Procalcitonin SLG: Single-
layer graphene, AgNp: Silver nanoparticle, BNP: Brain natriuretic peptide, NT-proBNP: N-terminal B-type natriuretic peptide precursor SWV: Square-wave voltammetry, LASV: Linear sweep
anodic stripping voltammetry, SWASV: Square-wave anodic stripping voltammetry, N–ZnO NP: N-doped ZnO nanopolyhedra, PPIX: Protoporphyrin, IX N-CNTs: N-doped carbon nanotubes,
Ab: Antibody-BNP, COOH-ZnONPs: Carboxylated ZnO nanoparticles (COOH-ZnONPs), Fc-COFNs: Ferrocene-based covalent organic framework nanosheets, CSA: cTnI specific aptamer,
MCH: 6-mercapto-1-hexanol, PCN: Graphitic carbon nitride, LSGE: Laser-induced graphene electrodes, pCTAB: Cetyltrimethylammonium bromide, DES: Deep eutectic solvent, Ab2: Anti-CTnI
polyclonal antibody, MoS2/rGO: Modified molybdenum disulfide and reduced graphene oxide, NSE: Neuron-specific enolase, Au/Fc@CuxO SPs: Rocene-functionalized cuprous oxide
superparticles, HCNs-GR: Graphene supported by hollow carbon balls, MOF: The metal-organic framework MES: Microelectrode system, GDF15: Growth differentiation factor, cTnT: Cardiac
troponin T, N-MIP: nano-molecularly imprinted polymer, N-prGO: Nitrogen-doped reduced graphene oxide, PEG: Polyethylene glycol, Apt: Aptamer, BNQDs: Boron nitride quantum dots,
PANI: Polyaniline, PMB: Polymethylene blue, Ox-LDL: Oxidized low-density lipoprotein, MGCE: Magnetic glassy carbon electrode, BSA: Bovine Serum Albumin, ASV: Anodic Stripping
Voltammetry, MSN: Mesoporous silica nanoparticles, LSV: Linear Sweep Voltammetry, Fc-ECG: A ferrocene derivative, MEL: Melamine, GE: Graphite electrodes, ERGO: Electrodes modified with
electrochemically reduced graphene oxide, PTyr: polytyraminesolution, MPA: 3-mercaptoproponic acid, and PDMS: Polydimethylsiloxane.
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Among the papers in Table 1, some of the studies that stand out with different methods
and materials are discussed here. Kim et al. [38] developed a brand new ITO platform
for detecting inflammatory biomarkers using multifunctional DNA constructs. The MF-
Aptamer exhibited properties such as recognizing TNF-α, being immobilized on a substrate,
and providing an electrochemical peak (Figure 2). Furthermore, the MF-Aptamer could
be assembled simply by annealing at 80 ◦C for 5 min. With TBM PAGE, it was shown
that the desired structure was formed without losing the functional ability of the DNA
fragment. Ag+ was used as a redox species in the proposed MF-Aptamer in this study. The
limit of detection (LOD) of the suggested biosensor was established as 0.07 pg/mL, and
TNF-α could be obtained in human serum samples across a dynamic range of 0.15 pg/mL
to 15 ng/mL. Commercially available TNF-α detection kits usually have a detection limit
of 1.7 pg/mL. However, since the LOD obtained with this developed sensor is 0.14 pg/mL,
it is very sensitive compared to TNF-α detection kits available in the market. In addition,
having a wide linear working range is an important advantage of the modified sensor.
Consequently, the electrochemical determination technique utilizing the MF-Aptamer
described in this paper offers a new platform for identifying particular biomarkers in
human serum.
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Figure 2. Schematic representation of fabricated tumor necrosis factor-α (TNF-α) sensing biosensor.
CV was carried out for 10 cycles within the potential range of −0.4 V to 0.4 V with a scan rate of
0.1 V/s. Reprinted from Ref. [38] with permission from Elsevier.

In this study by Tang et al. [44], an effective sandwich-type electrochemical immune
sensor based on N-GNRs-Fe-MOFs@AuNPs and AuPt-MB nanocomposites was fabricated
to detect Gal-3. The substrate platform of the immunosensor, N-GNRs-Fe-MOFs@AuNPs,
has a fairly large specific surface area and many active sites that can capture primary
antibodies and accelerate electron transfer. AuPt-MB is a new redox nanoprobe that can
easily collect detecting antibodies via Pt-NH2 and Au-NH2 and generate and amplify
the electrochemical signal (Figure 3). The intended immunosensor has superior sensitiv-
ity and a larger linear range for the detection of Gal-3 when compared to the analysis
performance of existing methods. The developed immunosensor showed excellent sensitiv-
ity, reproducibility, stability, and selectivity against Gal-3, and the obtained values were
promising for possible use in clinical diagnosis. However, this sensor was disadvantageous
for point-of-care detection in clinical applications as it was time-consuming to create the
entire sensor.
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Figure 3. Schematic representation of the electrochemical immunosensor interfaces’ step-by-step
assembly process. The methods used to prepare the bioconjugates AuPt-MB-Ab2 and N-GNRs-Fe-
MOFs@AuNPs in (A) and (B), respectively. The differential pulse voltammetry (DPV) scan was
performed from −0.5 V to −0.1 V with a pulse amplitude of 50 mV, pulse width of 50 ms, and pulse
period of 100 ms. Reprinted from Ref. [44] with permission from Elsevier.

Zhang et al. [45] fabricated an NT-proBNP sandwich electrochemical immunosensor using
electroplated Au NPs as substrate material and Au@PdPt RTNs as current signal amplifiers.
Due to their high specific surface area and good conductivity, Au NPs were able to immobilize
Ab1 successfully. Au@PdPt RTNs served as effective signal probes and signal amplifiers, thanks
to their large specific surface area to load Ab2 and their outstanding catalytic capabilities for
H2O2 reduction (Figure 4). The immunosensor showed a wide detection range of 0.1 pg/mL
to 100 ng/mL and a LOD of 0.046 pg/mL, thanks to the helpful collaboration of Au NPs and
Au@PdPt RTNs. An interfering experiment and the examination of spiked samples further
confirmed the feasibility of this procedure. As a result, the proposed immunosensor might have
future use in the clinical diagnosis of NT-proBNP.
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process. By square-wave voltammetry, the prepared electrode was scanned 0.0 V−0.6 V in 10 mL PBS
(pH 7.4) involving 5 mM H2O2. Reprinted from Ref. [45] with permission from Elsevier.
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A ratiometric immunosensor with excellent sensitivity and reliability for the detection
of cTnI using N, Zn-GQDs as signal amplification with ECL and DPV signals was developed
by Liu et al. [67]. For signal amplification, GO provided a huge surface area that could be
loaded with a large number of N, Zn-GQDs. The amide bond between the N, Zn-GQDs,
and the cTnI antibody allowed for effective modification of N and Zn-GQDs on the surface
of the GCE. The specificity between antigens and antibodies allowed for the identification
of cTnI. (Figure 5). The results showed that N, Zn-GQDs are highly sensitive to and precise
for the ratiometric immunosensor. In addition, the developed sensor’s linear operating
range and LOD values were found to be 10–106 pg/L and 4.59 pg/L, respectively. The new
method was tested for the detection of cTnI in human serum, and the findings showed
good agreement with the reference values obtained by ELISA with a 9.09−11.1% RSD. It
was demonstrated that it might be used for the more sensitive and extensive detection
of cTnI in human serum samples. In addition, the ratiometric immunosensor based on
N,Zn-GQDs can also be used as an alternative application for identifying other biomarkers.
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Figure 5. Schematic of the prepared rout of N, Zn-GQDs (A) and the ratiometric biosensor for
analysis of cardiac troponin I (B). The electrochemical parameter was −0.6–0.8 mV, the scanning rate
was 0.1 V/s, the condition of electrochemiluminescence (ECL) intensity was the scanning range of
−2.0−0 V in 0.05 M K2O8S4 solution and the potential increment of 10 mV. Reprinted from Ref. [67]
with permission from Elsevier.

A highly selective biosensing platform functionalized with ferrocene residues for
the electrochemical detection of C-reactive protein in blood samples was created by
Kowalczy et al. [53]. Although it is well known that the C-reactive protein is not elec-
trochemically active, it added ferrocene moieties to the PEI network via an unstable carbon
linker, enabling this polymeric material to be used as a redox detector. In addition, the
PEI network on the electrode surface performed the covalent binding of an antibody in
the optimal direction for antigen-antibody recognition (Figure 6). The dispersed quantum
crystal microbalance measurements were used to confirm the orientation of the antibody
molecules in the recognition layer. The electrochemical CRP immune(bio)sensor shown
was able to discriminate with its high selectivity, sensitivity, and wide linearity range of 1
to 5 × 104 ng/mL. The developed technology was effectively applied to measure the level
of CRP in real blood samples (rat model). The PEI-Fc-Ab layer-based CRP immuno(bio)
sensor is expected to offer significant potential in medical diagnostics.
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Figure 6. Schematic representation of the production of an electrochemical C-reactive protein (CRP)
immunosensor. Reprinted from Ref. [53] with permission from Elsevier.

By combining a sandwich immunoassay with an HRP-labeled detector antibody and
SPCEs transduction platforms built upon electrode modification with AuNPs, a disposable
electrochemical-based immunosensor for the measurement of the BNP was created by
Serafin et al. [64]. Figure 7 summarizes the steps involved in the preparation of the
electrodes modified by grafting of 4-aminothiophenol and further attachment of AuNPs.
Then, 1 mM NaNO2 was slowly added to the 1 mM 4-aminothiophenol solution prepared in
a cold environment using 0.5 M HCl with continuous stirring. SPCE was then immersed in
an electrochemical cell BNP determination and performed using CV between 0.6 and 1.0 V
at 100 mV s−1. The analytical performance of this AuNPs-nanostructured immunosensing
scaffold is superior to that of immunosensors made using other AuNPs modification
techniques. The LOD value obtained by the immunosensor is 100 times lower than the
clinical cut-off value determined in serum for heart failure patients. Additionally, it has
been shown that the immunosensor is suitable for precisely measuring the biomarker in
human sera with a little sample treatment (only a 10 times dilution), with results that
are in good agreement with those achieved by utilizing a traditional ELISA methodology.
This new amperometric immunosensor’s promising analytical performance, ease of use,
disposability, and the ability to use portable electrochemical transducers make it a very
appealing alternative to widely used ELISAs for the development of automated POC
systems for on-site detection of this HF disease biomarker.
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Reprinted from Ref. [64] with permission from Elsevier.

4. Future Prospects

The survival rate is still low in HF patients, demonstrating the importance of early
diagnosis with the determination of biomarkers. Regular measurement and monitoring
of significant biomarkers can assist in the care of HF for patients [12,86]. The future
of biosensor technologies in healthcare is now going towards small, digital, and mobile
devices. In this way, the aim is to make it possible to collect data from patients without them
having to apply to the hospital or clinic. Various parameters related to HF can be monitored
with wearable devices placed on clothes or used as accessories. Occurrence of atrial
fibrillation, detection of daily activity levels, or daily steps can provide beneficial outcomes
for HF management and monitoring [87]. Additionally, especially in asymptomatic patients,
by evaluating rapidly changing physiological information with the assistance of digital
biomarkers and artificial intelligence, the prediction of situations that may be encountered
in HF offers a new approach [4].

In addition to all these, the aim is to improve certain features of traditional biosen-
sor devices and make them more useful. Researchers continue to work on objectives
such as miniaturization, portability, less sample requirement, and simplification of the
measurement process.

5. Conclusions

HF is a significant type of CVD that requires a troublesome identification, prediction,
and diagnosis process. Therefore, the selection, evaluation, and detection of significant
biomarkers play a key role in disease management. In this review study, novel approaches
to electrochemical biosensors for acute and chronic HF were explained by evaluating the
most recent works in the literature. It was found that TNFα, CRP, cTnI, and miRNA
are mainly studied analytes in electrochemical biosensors. To improve the properties of
electrochemical biosensors, such as selectivity and sensitivity, hybrid systems modified
with various materials, such as nanomaterials, have been preferred. The most frequently
used electrochemical techniques are DPV and EIS. Immunosensors, on the other hand, have
been mostly used due to their many advantages. Furthermore, it is seen that the applied
samples are mostly biological samples such as human serum. In conclusion, it can be said
that the researchers aim to develop sensors that will provide advantages and superiority in
clinical and point-of-care applications.
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