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Abstract: Catecholamines, including dopamine, epinephrine, and norepinephrine, are considered
one of the most crucial subgroups of neurotransmitters in the central nervous system (CNS), in
which they act at the brain’s highest levels of mental function and play key roles in neurological
disorders. Accordingly, the analysis of such catecholamines in biological samples has shown a
great interest in clinical and pharmaceutical importance toward the early diagnosis of neurological
diseases such as Epilepsy, Parkinson, and Alzheimer diseases. As promising routes for the real-
time monitoring of catecholamine neurotransmitters, optical and electrochemical biosensors have
been widely adopted and perceived as a dramatically accelerating development in the last decade.
Therefore, this review aims to provide a comprehensive overview on the recent advances and main
challenges in catecholamines biosensors. Particular emphasis is given to electrochemical biosensors,
reviewing their sensing mechanism and the unique characteristics brought by the emergence of
nanotechnology. Based on specific biosensors’ performance metrics, multiple perspectives on the
therapeutic use of nanomaterial for catecholamines analysis and future development trends are also
summarized.

Keywords: electrochemical biosensor; nanomaterials; catecholamine neurotransmitters; dopamine;
epinephrine; norepinephrine

1. Introduction

Neurotransmission is critical for healthy brain functioning, memory, learning pro-
cesses and even supports daily life [1–3]. In the process of neurotransmission (synaptic
transmission), neurons use neurotransmitters (NTs) to afford communication between
each other and their target tissues. While depending on their molecular structure, mech-
anism activity (direct or as a neuromodulator), and physiological function (excitatory or
inhibitory), more than two hundred NTs have been identified to be implicated in synaptic
transmission [4]. These small molecules and hormones act at the brain’s highest levels of
mental function. Thus, abnormal levels of several NTs have been associated with numerous
neurological and psychiatric diseases such as Parkinson’s [5], Schizophrenia [6], prion [7],
and Alzheimer’s [8]. Whereas their autoxidation has been recognized as one of the poten-
tial trigger factors for dopaminergic neuron loss [9], making their role in specific mental
disorders an active research topic during the last decades.

Based on the chemical structure of these NTs, one specific type issued monoamine class
also belongs to tryptamines (serotonin and melatonin), and histamine (phenethylamines)
is called catecholamine. Dopamine, epinephrine (adrenaline), and norepinephrine (nora-
drenaline) whose chemical structure is summarized in Figure 1 and represents the three
main NTs of catecholamines [10]. These neurotransmitters are composed of benzene rings,
two hydroxyl groups, and an amine in their side chains. Catecholamine neurotransmitters
perform a fundamental role in various processes, such as learning, emotion, memory, motor
control, and regulation of the endocrine system. Similarly, noradrenaline and adrenaline
play key roles in the stress response [11]. Additionally, current research revealed that
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catecholamines control significant functions in the physiological regulation of the immuno-
logical, respiratory, cardiovascular, and metabolic systems in the most severely affected
COVID-19 patients [12]. Hence, minimizing the COVID-19 severity-related epinephrine
effect was previously discussed [13].

Biosensors 2023, 13, x FOR PEER REVIEW 2 of 38 
 

Catecholamine neurotransmitters perform a fundamental role in various processes, such 

as learning, emotion, memory, motor control, and regulation of the endocrine system. 

Similarly, noradrenaline and adrenaline play key roles in the stress response [11]. 

Additionally, current research revealed that catecholamines control significant functions 

in the physiological regulation of the immunological, respiratory, cardiovascular, and 

metabolic systems in the most severely affected COVID-19 patients [12]. Hence, 

minimizing the COVID-19 severity-related epinephrine effect was previously discussed 

[13]. 

 

Figure 1. Biosynthetic pathway and distribution of catecholamine neurotransmitters in the human 

brain (Produced using BioRender). 

Therefore, real-time monitoring of the catecholamine NTs in human body fluids, 

like serum, plasma, and saliva, will advance the research development in the field of 

neurological disease treatment, making it a promising avenue for early disease 

diagnosis. When it comes to neurotransmitters-based brain microdialysis measurement 

[14], high-pressure liquid chromatography [15], mass spectroscopy [16], and capillary 

electrophoresis [17] are mostly performed. While there is high sensitivity and specificity 

of these detection techniques, they still exhibit a heavy, expensive, and complicated 

setup to be generalized to the entire population. Therefore, a constant update of the 

current detection platform to meet the growing challenges of disease diagnosis, where 

Figure 1. Biosynthetic pathway and distribution of catecholamine neurotransmitters in the human
brain (Produced using BioRender).

Therefore, real-time monitoring of the catecholamine NTs in human body fluids, like
serum, plasma, and saliva, will advance the research development in the field of neurolog-
ical disease treatment, making it a promising avenue for early disease diagnosis. When
it comes to neurotransmitters-based brain microdialysis measurement [14], high-pressure
liquid chromatography [15], mass spectroscopy [16], and capillary electrophoresis [17]
are mostly performed. While there is high sensitivity and specificity of these detection
techniques, they still exhibit a heavy, expensive, and complicated setup to be generalized
to the entire population. Therefore, a constant update of the current detection platform to
meet the growing challenges of disease diagnosis, where the research and development
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of novel detection platforms with high sensitivity, low limit of detection, rapid, flexible,
inexpensive, and easy to implement without any interference and toxicity of the sensing
platform for early diagnosis is still an urgent need. To date, electrochemical analytical
techniques, with their appealing limit of detection down to femtomolar, a fast response
time of sub milliseconds, the ability to maintain cell viability during cell implantation, and
the advantage of being a powerful tool for intracellular detection, have renewed increasing
attention to biosensing design [18]. However, simultaneous detection of catecholamines is
a particular challenge because of their similar molecular structures and physicochemical
properties, making it difficult to differentiate between them. Given the significance of
real-time NTs monitoring, to date, a couple of potential reviews have been reported. For
instance, Lakard et al. highlighted the electrochemical biosensing approach of dopamine
monitoring [19]. Another comprehensive summary of recent advances analytical tools
based on optical and electrochemical techniques for dopamine detection was discussed
and reviewed by Lakshmanakumar et al. [20]. In addition, update to in vivo real-time
sensing techniques of neurotransmitters was recently reviewed by our group [21]. Other
authors summarized technical challenges and obstacles in the development of NTs moni-
toring devices [22]. The reviews, which is limited to one catecholamine neurotransmitter
(dopamine), updates to biosensors for epinephrine and norepinephrine and the associated
challenges toward multi-detection were lacking. Moreover, emphasizing the advanced nan-
otechnology covering most trending electrochemical biosensors applications still needed to
be offered.

Our goal in this review is to provide an overview of recent developments in electrodes
modified with nanomaterials, which are efficient for the highly sensitive and selective elec-
trochemical detection of catecholamines. Among the numerous available nanomaterials,
we concentrated on the following four main groups: Carbon nanomaterials, particularly
graphene oxide, and carbon, metal and metal oxide nanomaterials, and conductive poly-
mers, all of which can enhance the electrocatalytic activity of catecholamines. Additionally,
different types of catecholamine biosensors, including enzymes and aptamer-based bio-
platforms, are described. In addition, some developed optical strategies are reviewed and
compared with electrochemical biosensors.

2. Catecholamines Significance in Biological System

Commonly, the three NTs (Dopamine, Epinephrine, and Norepinephrine) are se-
quentially synthesized by enzymatic reactions in the biological system. Where the cat-
echolamines synthesis begins with the amino acid tyrosine. The process of the DOPA
decarboxylase converts DOPA into the amino acid dopamine, which is then converted into
the hormone norepinephrine by the dopamine β-hydroxylase. Eventually, norepinephrine
is converted into epinephrine through the action of the enzyme phenylethylethanolamine
N-methyltransferase (PNMT). Figure 1 illustrates the synthesis process that takes place and
how catecholamine neurotransmitters are distributed in the brain [23].

Dopamine, also known as 3-hydroxytryptamine, is accumulated within synapses
and released by synaptic vesicles [24]. Carlsson and colleagues discovered its function
as a neurotransmitter in 1958 at the Swedish National Cardiological Council Laboratory.
This group received the Nobel prize in physiology and medicine since he has demon-
strated that dopamine is not only a precursor of norepinephrine and epinephrine but
also a neurotransmitter [25,26]. After the discovery of DA, it has been well studied how
it works in the central nervous system, kidneys, cardiovascular system, and hormonal
system [27–29]. It also supports emotional stability and hormonal balance, while low DA
levels can lead to stress and depression [30]. It has also been found that dopamine is
associated with the reward system, the brain’s circuit responsible for stimulus-seeking
behavior, and emotions related to satisfaction and satiation. The clinical concentration of
DA is generally very low, for instance, DA levels in urine, plasma, and a single adrenal chro-
maffin cell are in the order of µM, nM, and fM, respectively [31]. Norepinephrine (NE), also
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known as noradrenaline, is the primary neurotransmitter of the parasympathetic nervous
system (PNS), influencing the immune system, most visceral organs, and glands [32].

NE is also an important CNS neurotransmitter. Previous research has reported that
NE contributes to physiological and behavioral responses to stress [33].

Furthermore, it provides several effects on the body, the most important being asso-
ciated with the “fight or flight” response to perceived danger [34]. A strong correlation
between depression and NE concentration has been demonstrated in previous research.
Depression has become the world’s leading cause of illness and results in high morbidity,
mortality, and disability [35]. Epinephrine (EP) is a hormone and neurotransmitter in the
mammalian central nervous system essential for the normal functioning of the CNS, renal,
hormonal and cardiovascular systems [36]. The normal concentration of EP present in
the plasma or blood fluids is approximately between 0.09 and 0.69 ng mL−1, and in some
cases, during certain diseases, its level red a peak of 10 to 50 times higher than normal [37].
Any imbalance in EP concentrations has been linked to various diseases, including chronic
active hepatitis, adrenal hyperplasia, and hypoglycemia. Additionally, stress and thyroid
hormone deficiency are associated with high epinephrine levels [38]. In contrast, the de-
creases of EP concentration in the body are diagnostic criteria for mental disorders such as
Parkinson’s [39], anxiety syndrome [40], panic attacks [41], and post-traumatic stress [42].
For all these reasons, the sensitive determination of epinephrine has received great attention
in the last two decades.

3. Nanomaterials Enhancing Electrochemical Biosensors for Catecholamines Detection

In this section, we review the recent advances in electrochemical sensors for cate-
cholamine sensing over the last five years, with a special emphasis on the highly innovative
features introduced by advanced nanomaterials. We classify and summarize electrochem-
ical sensors according to their substrate surface modifications. Further, we discuss elec-
trochemical catecholamine sensors’ current and future states in terms of analytical device
performance and emerging applications. Figure 2 shows a summarized schematic of this
section of the proposed review. Over the last two decades, biomedical research has focused
on the development of a miniaturized electrochemical platform to diagnose several brain
diseases by rapidly detecting neurotransmitters and biomolecules related to the nervous
system. The application of nanotechnology, based on advanced nanomaterials, in combina-
tion with electrochemical techniques, plays a key role for in vivo and in vitro monitoring
of neurotransmitters in the earlier stages of brain diseases.

3.1. Carbon Nanomaterials Based Electrochemical Sensors

Based on carbonaceous nanomaterials’ attractive physicochemical and biological
properties and their several derivatives, these nanomaterials have been used widely for
neurotransmitter analysis [43]. Accordingly, they are suited for biosensor transducers to
improve signal acquisition due to their unique properties, including their large surface-to-
volume ratio, excellent chemical stability, high electrical conductivity, robust mechanical
strength, ease of functionalization, biocompatibility, and biodegradability.

Due to these important properties, utilizing carbon-based nanomaterials as a catalysis
probe has resulted in better sensitivity, wide linear detection range, low detection limit,
and reusable sensors compared to conventional sensing techniques [44].

Recent studies have highlighted the unique physicochemical properties of carbon
nanomaterials, including graphene, graphene oxide and carbon nanotubes (CNTs) for the
development of a new generation of regulated, and improved electrochemical sensors for
the detection of dopamine, epinephrine, and norepinephrine. A very low detection limit
was achieved in the range of nanomolar in biological fluid, as reported in Table 1. These
nanomaterials have been widely used as signal enhancements in different approaches to
providing an effective platform for sensitivity improvement. One of the main achievements
in developing selective electrochemical sensors has been using carbon nanotubes coated
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with a conductive polymer. Different strategies for ultrasensitive detection catecholamines
established on carbon nanotubes coated with polymer matrix have been developed [45,46].
In this context, a multiwalled carbon nanotubes mixed with Nafion polymer composite
modified carbon electrodes for selective DA detection in the presence of uric and ascor-
bic acid was demonstrated [47]. Indeed, members of Numan’s group have fabricated a
nanocomposite based on multiwalled carbon nanotubes and cobalt oxide nanocubes as
highly responsive platform for amperometric determination of DA with detection limit of
about 0.176 nM [48]. A cost-effective point-of-care (POC) device based on three-dimensional
graphene(3DG) and CNT modified screen-printed gold electrode surface was introduced
as a novel electrochemical sensor. To monitor the response of the developed sensor, a
portable potentiostat based on microcontroller was fabricated. The developed portable
approach was able to detect ascorbic acid, dopamine, and uric acid with LOD about 2.5, 0.4,
0.6 µM respectively [49]. Next, an electrochemical sensor for epinephrine detection was
developed using a modified glassy carbon electrode with mesoporous carbon and nickel
oxide (OMC-NiO) [50]. Electrochemical techniques, such as impedance spectroscopy, cyclic
voltammetry and differential pulse voltammetry were used to explore the electrochemical
behavior of the chemically modified sensor. The resultant peak current of the developed
structure of OMC-NiO/GCE was significantly higher than those of OMC/GCE and bare
GCE, suggesting a better electrocatalytic and detection activity of OMC-NiO/GCE. Further,
the Nyquist plot also confirmed the improvement of the catalytic properties of OMC after
the NiO nanocrystals incorporation. Whereas the DPV was finally performed for the detec-
tion of EP at a linear range of concentration from 0.8 µM to 50 µM, leading to a LOD down
to 85 pM and a LOQ 0.37 µM.

Besides the carbon nanotube, the discovery of graphene in 2004 has led to considerable
interest in this nanomaterial for its wide range of applications in biotechnology, including
the development of high-performance electrochemical devices. Both graphene and reduced
graphene oxide have been widely used as probe materials for catecholamine monitoring.
Some of the related publications are listed in Table 1. Due to its high surface area, biocom-
patibility, and abundance of oxygen-containing functions, graphene oxide is frequently
used in various applications. Members of Kiranmai’s group have proven that incorporat-
ing inorganic particles and rGO sheets appears to have the potential to improve sensing
performance. A simple electrospinning method followed by a hydrothermal technique was
established to create a TiO2-rGO nanocomposite for the detection of epinephrine [51].

The constructed ultrasensitive sensor achieved a low detection limit of about 8.11 nM,
and sensitivity calculated to 0.126 µA µM−1. Due to overlapping oxidation potentials and
electrode contamination, simultaneous detection of EP and serotonin (5-HT) cannot be
performed on a carbon paste electrode (CPE). To overcome these weaknesses, a layer of rGO
was deposed to the surface of the electrode, and good separation was demonstrated [52].
The modified structure achieved a lower LOD of about 0.33 and 3.99 nM for EP and 5HT,
respectively. Moreover, the rGO-CPE structure showed good sensitivity to real sample
analysis, high repeatability, and great stability.

To increase the device sensitivity, Kshipra et al. [53] recommended the use of a glassy
carbon electrode (GCE) modified graphene oxide sheets and chemically bonded melamine
(MGO) for the quantification of epinephrine. It has been shown that the electron transfer
sites of MGO can be predicted by functional density theory. The authors confirmed that
the electron-rich π-electron cloud as well as their electron-deficient regions were useful
in supporting the redox reaction during the electrochemical reduction and oxidation pro-
cesses. Furthermore, the terminal amino group groups contributed to the anchoring of
the EP on the electrode surface. After modification, the electrode demonstrated satisfac-
tory sensitivity in the range of concentrations from 100 µM to 600 µM with an LOD of
0.13 µM. Suriyaprakash et al. [54] fabricated for the first time a POC flexible device for
EP monitoring based on rGO. In their work, epinephrine was detected in real samples at
20 pM as a low detection limit with a fast readout (2.2 s). The developed biosensor provided
a 60-days lifetime with 95% stability over 25 cycles. To this end, it was determined that
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several different carbon/organic nanocomposites have been investigated by exploiting
their π-electron mobility to increase the sensitivity of the device. However, improved sensor
stability is still needed. All the previously mentioned work has confirmed that the design
of electrochemical sensors based on carbon nanomaterials can provide an improved ability
to evaluate NTs, even at low concentrations with a fast response compared with traditional
techniques. Multidetection platforms of similar NT structures require more complex immo-
bilization chemistry, which necessitates the immobilization of multiple probes on a single
electrode surface. In this context, Thondaiman et al. [55] have foxed on the development of
the amperometric approach for the simultaneous quantification of DA and EP.
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Utilizing basic chemical oxidation and electrodeposition methods, a surface-modified
copper mesh electrode was created using a heteroatom-doped GQD-assisted conductive
polymer (PEDOT). The so-called multidetection system has been performed with two
separate working electrodes. Additionally, in this work, the LOD was calculated to be ap-
proximately 0.27 µM and 0.084 µM for DA and EP, respectively, which are considered high
compared with individual detection. Subsequently, another research group has overcome
the previous drawback by proposing a two-in-one approach for detecting epinephrine and
norepinephrine using an electrochemically activated pencil graphite electrode. A mixture
of analytes showed that EP and NE peak currents increased with concentrations between
2.5 µM and 250 µM. In human plasma samples, levels of 0.83 µM were determined for
NE and 0.99 µM for EP [56]. Most work published so far has focused on the individual
detection of a single catecholamine neurotransmitter species. We took the example of
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two different approaches proposed recently for the detection of DA based on reduced
graphene oxide and p-aminophenol (Figure 3a) [57] and boron-doped nanowalls with an
electropolymerized polydopamine/polyzwitterion (Figure 3b) [58].

Table 1. Comparison of electrochemical catecholamines sensor-based carbon nanomaterials and
its derivatives.

NTs Sample Catalyst/Transducer Technique
Used

Linear Range
(µM)

Detection
Limit (nM) Ref.

DA Human serum MWCNTs-ZnO/GCE CV, DPV 0.01–30 3.2 [59]

DA,
5-HT PBS Curcumin oxidized

carbon nanotubes/GCE LSV 0–170
10–130

0.010
0.011 [60]

EP Real water MWCNTs-molybdenum
disulphide/GCE CV 9.9–137.9 0.003 [61]

DA, EP Synthetic urine Oxidized capsaicin-
MWCNTs/GCE

CV
Amperometry

5–75
5–115

0.0072
0.0015 [62]

EP
Urine and

pharmaceutical
sample

Chitosan-functionalized
carbon nanotubes/GCE CV, DPV 0.05–10 30 [63]

DA Human blood
serum CaCO3-PANi-rGO/GCE DPV 0.1–14 100 [64]

DA, UA PBS buffer Thermally rGO/GCE CV, DPV 5–42 120
150 [65]

DA Human urine rGO-tungsten trioxide/
GCE

CV,
Amperometry 0.3–1245 306 [66]

EP PBS buffer rGO-MoS2-Fe3O4/GCE CV, DPV 0–11 137 [67]

EP Human serum 2D nickel
oxide-rGO/GCE CV, DPV 50–500 1000 [68]

EP Urine rGO-Ti3C2Tx
MXene/Indium tin oxide DPV 1–60 3.5 [69]

DA PBS GO-CuAlO2/GCE LSV 0.92–10 15 [70]

EP Human serum Au-Pd-rGO/GCE CV, DPV 0.001–1000 12 [71]

However, few groups have succeeded in the fabrication of sensors for the detection of
the three catecholamine NTs (DA, EP and NE) caused to their similar chemical structures.
Recently, members of the Luhana’s group [72] have developed an approach based on a
covalent conjugate aminated graphene quantum dots (IPA−AmGQD) and carboxylic acid
cobalt phthalocyanines (CoTCPhOPc) attached onto gold electrode (Figure 3c). From the
cyclic voltammetry diagrams of the three catecholamines, almost similar oxidation and
reduction potentials are observed, with a slight shift. In terms of intensity, dopamine
shows the largest current peak, most likely due to its greater adsorption at the surface
of electrode/electrolyte. Finally, carbonous nanomaterials have shown a good capability
for generating very different structures with properties allowing for individual and multi-
detection of catecholamines in a variety of biological environments. Besides, the integration
of carbon nanostructures into other nonmaterials such as organic polymers or hydrogels
or coupling them to metal or oxide nanoparticles is a promising approach to increase the
sensing ability of sensors or to improve their performance.
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Figure 3. Examples of biosensors: (a) rGOPAP based sensor for the specific detection of DA.
Reproduced with permission from [57]. Copyright 2021, ACS. (b) Electrochemical sensor based
on copolymer electropolymerized at carbon nanowalls for sensitive recognition of DA. Repro-
duced with permission from [58]. Copyright 2021, ACS, and (c) preparation processes of the
Au−IPA−AmGQD−CoTCPhOPc structure for catecholamine monitoring with varying concen-
trations from 10 µM to 60 µM for DA, EP, and NE in sera samples. Reproduced with permission
from [72]. Copyright 2023, Elsevier.

In addition, carbon nanostructures can be integrated into nano/micro-scale devices,
such as microfluidic chips or microelectronic devices, which are particularly promising for
the fabrication of multiple analyte sensing devices and miniaturized sensors. Later, these
advances in biosensor research open interesting prospects for the development of promising
platforms for real-time monitoring of multi-neurotransmitters in biological samples. More
critically, this electrochemical sensor-based carbon nanomaterial was performed to monitor
in real-time the DA released by living PC12 cells with very high efficiency [73]. Also, carbon
nanotube coated with conducting polymers based integrated nanobiosensors was used
for detecting epinephrine in ex vivo rat tissue [74]. Additionally, Verde et al. [75] reported
an Organ-on-screen-printed approach to monitor dopamine release in mice’s brain based
on a flexible screen-printed platform (Figure 4c). After optimization of the experimental
condition in both in buffer and PC-12 cell culture media, the printed strip provided an LOD
of about 1 µM and a linear range up to 160 µM.
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Figure 4. Ex vivo electrochemical biosensors based SPE: (a) Monitoring of DA secreted from PC 12
cells using Pt nanoparticle decorated CNTs. Reproduced with permission from [73]. Copyright 2023,
Elsevier, (b) Schematic illustration of NE quantification in rat tissue samples based on Co−Polymer
and SWCNTs. Reproduced with permission from [74]. Copyright 2023. Elsevier, and (c) experimental
setup of DA detection released in mice brain using unmodified SPE and its corresponding chronoam-
perometric measurements with different configurations for striatum cerebellum brain slices before
and after 0.1 M KCl stimulation. Reproduced with permission from [75].

As demonstrated, the three-approach presented in Figure 4 recommended the use
of the screen-printed electrode (SPE), while SPEs are disposable, inexpensive, and repro-
ducible devices that can be easily manufactured in bulk without any preprocessing steps,
allowing for real-time, in-situ detection. Therefore, these three electrodes printed on a
single chip are considered promising alternatives to develop a non-invasive, portable, cost-
effective detection system with high sensitivity and specificity required for POC diagnosis.
In this context, multiple reviews have been published recently summarizing the benefits of
using SPEs for engineering electrochemical biosensors [76–78].

Recently, a specific subclass of SPE called laser-induced graphene (LIG) electrode
through polyimide sheets (PI) conversation to graphene using directed induced laser
is becoming increasingly popular. LIG method is known for being mask-free and easy
to use, offering a cost-effective and efficient means of producing diagnostic kits for on-
site testing compared to most graphene manufacturing techniques [79]. LIG structure is
typically created following a photothermal pyrolysis process. Consequently, the obtained
structure is usually displaying defects with intricate porosity patterns. These defects were
found to be beneficial for immobilizing probes and increasing sensitivity [80]. Accordingly,
Xu et al. [81] used the laser-scribed graphene grass structure, manufactured onto a simple
plastic-polyimide (PI) film via laser irradiation for the simultaneous detection of DA, EP,
and NE within a low LOD of 0.43 µM, 1.1 µM, and 1.3 µM, respectively. Interestingly, the
suggested disposable biosensor still maintains high sensitivity and selectivity in human
serum and in the presence of UA and AA as potential interferants. However, a lower LOD
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of 7 nM was reported by Berni et al. [82], in which they demonstrated the DA monitoring by
coupling the unique properties of LGE with the excellent cation exchange characteristics of
the polypyrrole film. The detection strategy provides outstanding selectivity and sensitivity,
even in the presence of a high excess of AA.

3.2. Metal Nanoparticles-Based Sensors

To date, noble metals such as gold, silver, copper, and metal oxide NPs have attracted
considerable attention in electrochemistry due to their ability to detect and amplify var-
ious signals. Thereby, several reported works have recommended the immobilization
of AuNPs on the electrode’s surfaces to enhance the electrical signals of catecholamines
electrochemical detection because of their simple preparation, high surface-to-volume ratio,
electrocatalytic ability, and chemical stability [83,84]. The electrocatalytic redox activity of
dopamine was improved using gold nanoparticles systematically decorated with Fe3O4
magnetic nanocomposites to obtain detection limit of 2.7 nM [85]. Later Lim’s research
group confirmed mixing AuNPs, and the multilayer of carbon nanomaterials (CNT) pro-
vided excellent biostability and high-performance electrochemical sensing capability [86].

Recently, Zhan et al. [87] used gold nanoparticles and polydopamine to modify a
free-standing acupuncture needle microelectrode for detecting EP. The authors suggested
using the acupuncture needle microelectrode, which is receiving increasing interest because
of its convenience, easy fabrication process, reasonable price, high conductivity, and small
volume of analyte during measurement. The developed probe has been successfully
used to analyze EP in real human serum and provide real-time detection of adrenaline
secreted by PC12 cells. Table 2 summarizes the main recent works in which metal and
metal oxide nanoparticles modified electrodes surface have been applied to quantifying of
catecholamines neurotransmitters. Since the limit of detection is very important due to the
relatively low concentration in the patient sample, more attention was focused on testing
sensitivity within a lower concentration range.

Additionally, typical two-dimensional materials, such as molybdenum disulfide
(MoS2), have received much attention based on their unique structure as well it phys-
ical, chemical, and electronic properties [88]. According to Wu et al. [89], a nanocomposite
that incorporates manganese ferrite nanoparticles and MoS2 could be used for the electro-
chemical multi-detection of three NTs.

Experimental studies using DPV technique have shown that the developed nanocom-
posite can detect AA, DA, and UA individually, simultaneously, and in a relatively wide
linear range.

Table 2. Comparison of electrochemical catecholamines sensor based on metal and metal oxide NPs.

NTs Transducer Probe Detection
Method

Linear Range
(µM)

LOD
(µM) Ref.

DA PGE Citrate-stabilized gold nanoparticles
@polydopamine) SWV 0.5–7.0 0.53 [90]

DA GCE Copper nanoparticles CV, DPV 0.05–5.0 0.04 [91]

DA GCE Carbon quantum dots and
copper oxide SWV 1–180 25.4 [92]

DA Diamond
anoporous AuNPs and Nafion SWV 3–100 0.068 [93]

DA GCE Gold-decorated porous
silicon-poly(3-hexylthiophene) Amperometry 1–460 0.63 [94]

DA, UA CPE Cu-based metal-organic frameworks DVP 0.05–500 0.03
0.07 [95]

DA GCE
Copper organic

framework@halloysite
nanotubes-rGO

DPV 0.1–130 0.015 [96]
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Table 2. Cont.

NTs Transducer Probe Detection
Method

Linear Range
(µM)

LOD
(µM) Ref.

DA GCE Carbon-titanium nitride
nanoparticles DPV 0.1–250 0.03 [97]

DA GCE
Palladium nanoparticles decorated

nickel-based metal–organic
framework

CV, DPV 0.001–100 0.01 [98]

DA GCE Nitrogen-doped titanium
dioxide-AgNPs-GQD CV, DPV 0.003–300 0.001 [99]

DA FTO Nanoplatelets of zinc oxide
embedded polyvinyl alcohol EIS 0.020–3000 0.005 [100]

DA GCE
Cobalt

phthalocyanine-nitrogen-doped
GQD

Amperometry 100–1000 0.12 [101]

DA Carbon spheres Sodium tungsten bronzes
nanoparticles DPV 0.004–106.4 0.001 [102]

EP, NE CPE Cu quantum dot@ SH-nanoparticles
immobilized on CuMOF DPV 0.2–34,285 1.6

0.5 [103]

NE GCE Graphene quantum dots decorated
AuNPs DPV 0.5–7.5 0.15 [104]

DA, EP CPE Nickel telluride SWV 4–31 0.15
0.35 [105]

MOF and COF-Based Sensor

Metal-organic frameworks (MOFs) are considered a subset of coordination poly-
mers made of metal ions or clusters and organic ligands. A variety of techniques were
adapted for MOFs preparation, including hydro-/solvothermal methods, mechanochemi-
cal, microwave-assisted, sonochemical, and electrochemical [106]. Such nanocomposites
feature the potential of adjustable porosity structure that hangs on the synthetic conditions,
organic and metal sources, and post-synthetic modification; hence, a great diversity of
MOFs might be issued [107]. Not to mention their outstanding ordered structures, high
surface area, and exceptionally adaptable functionalities that suit various fields, such as
contaminant sorption, gas storage and separation, drug delivery, environment, and biologi-
cal sensing [108,109]. To date, there has been an increasing interest in MOFs as promising
electrode materials for electrochemical sensing applications due to their porous structure
that increases the surface area, hence improving the transport and adsorption of the analyte.
Additionally, the variable-sized and shaped pores within the MOFs lead to better selec-
tivity for certain analytes. Lastly, the abundance of functional sites, such as metal centers,
linkers, and active guests, enhance the analyte adsorption, activation, and direct electron
transfer. When it comes to the electrochemical quantification of NTS, MOFs supported
with conductive nanomaterials have been widely performed [110]. Giving the example of
Liu’s group [111] work, in which authors prepared for the first time the MOF-235 using
a single-step hydrothermal method for the simultaneous detection of dopamine and uric
acid within a low LOD of 3.34 µM and 3.46 µM, respectively. To fabricate the sensing
platform, the synthesized MOF was drop-cast on the surface of a glassy carbon electrode.
Further, the MOF-235 was endowed with distinct functional groups resulting in efficient
heterogeneous electron transfer, which facilitates the highly selective determination of
analytes with well-separation packs. Such a hierarchical 3D structure (MOF-235) was found
to be advantageous in enlarging the surface area, thus uplifting its potential application
in the electrochemical monitoring of small molecules related to the medical field. Newly,
Fallah et al. [103] have benefited from the advantageous characteristics of the metal-organic
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framework. They recently reported an electrochemical sensor for the detection of multi-
neurotransmitters (NE, EP, and piroxicam) based on CeMOFs functionalized with Cu
quantum dots (Cu QD) and SH-SiO2 nanoparticles. This new method of sensing was
successfully applied to the detection of catecholamines in urine and plasma as biological
samples with satisfactory results and a detection limit of less than 0.05 µM of piroxicam.
Additionally, to confirm its reliability, the results obtained by the proposed sensor were
validated using conventional high-performance liquid chromatography showing a good
concordance between both techniques.

While the outstanding performances compared with other complicated methods,
where several steps for surface modification still need to be performed, using MOFs have
certainly expanded the electrochemical applications based on nanocomposites by provid-
ing a new sensing direction. However, covalent organic frameworks (COFs) have drawn
much attraction because of their structural diversity and versatility, and unique stability.
Combining the COF nanostructure and MWCNTs as a sensing interface, Guo et al. [112]
suggested the development of a new detection platform for the simultaneous detection
of dopamine and uric acid. The electrochemical sensor exhibits a strong current response
to both DA and UA in phosphate buffer. Such a high sensing efficiency was referred to
the synergistic effects of COFs and MWCNTs. Hence, the developed sensor could detect
DA and UA in a wide linear range between 0.6 and 250 µM with low detection limits
of 73 nM and 63 nM, respectively. Whereas Wang et al. [113] reported the usage of mag-
netic COF nanosphere [Fe3O4@COF@2-FPBA] based boronate affinity adsorbents for the
detection of DA down to 0.31 ng mL−1 within a linear detection ranged between 2 to
200 ng mL−1. Additionally, using [Fe3O4@COF@2-FPBA] nanoparticles as adsorbents at
neutral pH, the authors successfully extracted five monoamine neurotransmitters. While
using these nanoparticles, a new analytical method was also reported through the combina-
tion of fluorescence detection with HPLC (HPLC-FLD) for monoamine neurotransmitters
detection in urine.

3.3. Polymer Film Based Electrochemical Sensors

The physico-chemical properties of polymers have attracted considerable interest in
the current design of electrochemical biosensors, especially for neurotransmitters mon-
itoring [114]. Since the use of polymer structure for sensors development improved its
performances by increasing the conductivity and the specific surface of the electrode. Ta-
ble 3 shows some of the recent work in which conductive and non-conductive polymer
modified electrodes surface have been applied to the quantification of catecholamines
neurotransmitters. The most used procedure for the deposition of polymer films is the
electropolymerization under galvanostatic, potentiostatic, or, more commonly, potentiody-
namic conditions. The advantage of this technique is to create uniform films with precise
thicknesses controllable onto the electrode surfaces. Furthermore, the high level of physical
and chemical stability provided by the strong adhesion between the films and the active
surfaces of the electrodes makes polymers a very efficient support for the immobilization
of biomaterials [115,116].

Based on all the aforementioned features, Banu et al. [117] modified carbon paste
electrode surface with a polymerized film of Victoria blue B monomer for the multi detection
of epinephrine and serotonin in the presence of guanine and adenine using differential
pulse voltammetry. The peaks are well separated, making it possible to analyze complex
samples simultaneously with both analytes. The utilization of electropolymerised film
for the analysis of catecholamines is based on the diffusion of the analyte at the electrode
surface and several studies have demonstrated the ability of polymeric organic acid films
for the determination of catecholamine NTs.

Fatma et al. demonstrated a new approach for the multi-detection of epinephrine
and dopamine using one nonomer acryloylated graphene oxide-carbon black nanocom-
posite polymer [118]. To determinate the sensor’s performance, the voltametric responses
were tested in buffer solution, urine, pharmaceutical samples and human blood. Under
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optimized experimental conditions, the developed sensor exhibits high sensitivity with
detection limit of about 0.028 ng mL−1 for DA and 0.018 ng mL−1 for EP. It is important to
note that a great number of molecularly imprinted polymer materials (MIPs) are used for
electrode modification based the catecholamines electrochemical biosensor [119].

Table 3. Comparison of electrochemical catecholamines sensor using electrodes modified
with polymers.

Catecho-
Lamine Transducer Catalyst Technique

Used
Linear Range

(µM)
Detection

Limit (nM) Ref.

DA GCE Poly paraphenylene diamine DPV 0.038–4.76 0.094 [120]

DA,
UA GCE polypyrrole matrix supported iron CV 10–900 321

348 [121]

DA GCE polyaniline-WO3 CV, DPV 20–300 139 [122]

DA CPE Polymelamine-AuNPs CV, DPV 0.2–11 67 [123]

DA LSGE Overoxidized polypyrrole (PPyox) CV, DPV 0.010–10 7 [82]

EP,
5-HT CPE Poly Victoria blue B DPV 1–80 330

980 [117]

DA GCE Poly-tryptophan DPV 0.2–100 60 [124]

DA,
UA,
AA

GCE
Copper

monoamino-phthalocyanine-acrylate
polymer

DPV 0.01–10
0.7
2.5
5

[125]

However, MIPs enabled the development of a novel flexible biosensor platform that
has potential for application in the pharmaceutical field due to its simplicity, low cost, and
portability [126]. They are synthesized directly onto the working electrode or attached
to a solid support before being cast onto the electrode. Given the example of Zhang
et al. [127], a nanocomposite based on molecularly imprinted polymers synthesis using
poly(3-aminophenylboronic acid coted via electrochemical polymerization on MWCNTs
was fabricated for the detection of epinephrine. Additionally, a poly(9-carbazoleacetic acid)
based MIP was prepared for detecting EP and DA simultaneously in plasma samples [128].
Similarly, certain materials have been successfully used as supporting materials or as
components of composites containing MIPs for the fabrication of electrochemical sensors
for catecholamines. Among them, quantum dots can improve electrode sensitivity through
their conductivity, while MIPs enhance electrode selectivity. When QDs were incorporated
into an electrode modified with MIPs, very good sensitivity and detection limits were
achieved [129,130].

Modification of electrodes with several advanced nanomaterials groups discussed
above, including carbon nanotubes, metal oxide nanoparticles, graphene oxide, and poly-
mer, has been used to detect catecholamines in the presence of various chemicals. For-
tunately, these improvements have enabled the development of platforms capable of
identifying catecholamines even in the presence of significant interferences such as AA
and UA. By separating the potentials for detecting the analyte and the interferent, it is
possible to simultaneously detect interferents and the analyte in some cases. In addition, the
current response of the modified electrodes without and with interferents was measured
to examine their resistance to interferent effects. When such interferents are present, the
change in current response is commonly negligible.

4. DNA Aptamer-Based Catecholamine Biosensors

Bioreceptor selectivity is essential for the quantification of neurotransmitters in the
complex brain environment. Alternatively, we found that discriminating catecholamine
neurotransmitters is challenging because the molecules have overlapping chemical func-
tions [131]. Electrodes functionalized with the aforementioned nanomaterials can provide
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enhanced surface area, while an affinity ligand is needed to increase selectivity. For such
purposes, electrochemical biosensors based on aptamers have been the most successful strat-
egy. Additionally, aptamers as recognition elements have renewed increasing attention in
biosensing design owing to their cost effectiveness, small size, and chemical stability [132].
Whereas aptamer technology can overcome problems of poor selectivity due to its excellent
ability to identify and bind to target molecules, this technology should also eliminate the
interference from other molecules. More importantly, aptamers exhibit remarkable flexi-
bility in their structure design, leading to novel biosensing platforms demonstrating high
selectivity and sensitivity. Thus far, many approaches based on aptamers that recognize
catecholamine neurotransmitters have been reported (Table 4).

We have considered some representative work with potential application. Zhang
et al. improved the performance of the dopamine aptasensor based on cerium metal
framework (Ce-MOF) modified GCE [133]. Figure 5a demonstrates the fabrication pro-
cess of the biosensor. First, a single-stranded nucleic acid (S1) with -NH2 terminal was
arranged to cross interact with aptamer to form a double strand. Then, S1-Aptamer was
linked to a Ce-MOF modified electrode. A second sequence S2 is attached to the signal
material by a -CO-NH- linkage to form a signal probe. Using SWV curves (Figure 5b),
the analytical performance of the aptasensor was evaluated for various concentrations
of DA. The biosensing structure demonstrated a high affinity to DA detection with an
LOD of about 6 pmol/L. In addition, several non-target interferents were selected to ex-
amine the analytical selectivity. Despite high concentrations of potential interferents, no
significant current signal is detected (Figure 5c). Thus, the proposed biosensor exhibits a
high level of specificity, providing a reliable experimental basis for the further analysis of
clinical samples.
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Figure 5. Assembly process of electrochemical aptasensor fabrication: (a) Methylene blue−integrated
Ce−MOF capturing DNA for specific DA monitoring in human serum. (b) SWV curves of dif-
ferent concentrations of dopamine up to 100 nM. (c) Specificity study of the proposed aptasensor.
Reproduced with permission from [133]. Copyright 2023, Elsevier, (d) Electrografting process of
DNA−Aptamer-based multi-probe for simultaneous detection of DA and Serotonin in ex vivo.
(e) Real-time response of dopamine and (f) serotonin with a concentration range from 10 pM to
100 µM. Reproduced with permission from [134]. Copyright 2022, ACS.
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However, the drawback of this approach is the complex architecture of the detection
platform requiring several modification phases. Most electrochemical biosensors based on
aptamers have only been evaluated in buffer solution, and their performance in realistic
biological environments remains unexplored. Such limitations represent a crucial challenge
in their application in vivo. Therefore, these platforms are currently most suitable for
studies in ex vivo, where biological samples can be treated to ensure optimal sensor perfor-
mance. In addition, potential unspecific interactions between target molecules and AuNP
surfaces are often not considered, which can lead to misinterpreted analyses. This issue was
examined by Wu et al., where they demonstrate the capability of the implantable aptamer-
graphene field-effect transistor (G-FET) probe for real time monitoring of dopamine release
in vivo in mice models [135].

The developed biosensor exhibited a high selectivity, and picomolar sensitivity, simul-
taneously. Later, the same strategy based on soft neural probe was applied to the detection
of multi-neurotransmitters via the electrografting-enabled site-selective functionalization
of aptamers on G-FETs. The electrografted of tow functional groups −COOH and −NH2
serve as linkers to functionalize two aptamers with different functional groups (−NH2 and
−COOH). Once the dopamine or serotonin binds to its specific aptamer, a conformational
change in the functionalized aptamers on the graphene occurs, which alters the doping
state of the graphene and results in a current changing on the source-drain of the GFET
probe. Figure 5d illustrates the functionalization step by electrografting of G-FETs for
multiplexed neurochemical monitoring in a single neuronal probe.

The multiplexed neural probes showed a high sensitivity for both dopamine (Figure 5e)
and serotonin (Figure 5f) in ex vivo studies using harvested mouse brain tissue.

Despite the lower detection limit and high selectivity, aptamer-based biosensors
technology still needs to be improved in terms of the modification process due to its
complex chemistry. Indeed, the majority of aptamer-based biosensor was tested in ex vivo
application. Therefore, they have great potential to be used in in vivo applications.

Table 4. Recently developed biosensors-based DNA aptamer technologies for catecholamine detection.

NTs Biosensor Structure Interferents Sample Measurement Linear Range
(nM)

LOD
(nM) Ref.

EP Aptamer based Organic
electrochemical transistors

DA, Cysteine,
AA and

tryptophan
PBS solution Amperometry 0.9–90 × 103 0.9 [136]

DA Aptamer-AuNPs-rGO/GCE AA, UA, EP
and cathechol

Human
serum DPV 1–100 47 [137]

DA Aptamer-Copper
aluminate-rGO-TEPA/SPE

UA, AA,
and glucose

Human
serum DPV 0.05–10 × 103 0.017 [138]

DA Aptamer-CeMOF/GCE AA, BSA, and
bilirubin

Clinical
serum SWV 0.5–100 0.06 [133]

DA Aptamer-GCSC-GO/GCE DOPA, AA, HVA Human
serum DPV 1–1000 0.75 [139]

DA Aptmer-Gold
nanostructure/Au electrode

AA, UA,
Catechol, EP,

and NE

Clinical
serum DPV 0.163–20 0.01 [140]

EP Aptamer-Methylene
blue/GCE

AA, UA, and
levodopa

SH-SY5Y
cells CV, DPV 200–10 × 103 67 [141]

5. Enzyme Based Catecholamine Biosensors

Enzymes are often used as a recognition element for monitoring small molecule
metabolites, as they have high catalytic efficiency and specificity and can rapidly convert
substrates into products. For the quantification of catecholamines, enzyme-based biosensors
have demonstrated good performance. The tyrosinase enzyme is the most popular enzyme
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that can function using an electrochemical or optical signaling mechanism. In this context,
Sethuraman et al. [142] incorporated AuNPs and poly (thiophene-3-boronic acid) with
tyrosinase enzyme (PPO) to monitor dopamine. Differential Pulse Voltammetry (DPV)
technique determined the biosensor’s performances. Wide linear range of detection from
50 nM to 30 µM with an LOD of about 20 nM was obtained.

Lately, tyrosinase enzyme have been immobilized on the AuNPs and La2O3 nanos-
tructured modified indium-tin-oxide electrode surface [143]. Compared with the previous
approach, long-term stability and reproducibility were achieved as well as fast response
time under 30 s. Unlikely, the calculated detection limit was in the micromolar level
(0.258 µM). Similarly, an innovative approach fabricated by Wu et al. [144] benefited from
the advantage of the biocatalytic activity of laccase enzyme and the excellent conductivity
of carbon quantum dots to develop a promising biosensor for DA detection. The detection
mechanism involved dopamine adsorption on carbon dots via electrostatic interaction with
the amine functional group. The developed enzymatic biosensor exhibits a low detection
limit of about 80 nM and a wide linear range from 0.25 µM to 76.81 µM. Xie’s group [145]
investigated the catalytic activity of a single-atom ruthenium-based biomimetic enzyme
for the multi detection of DA and AA. In real biological serum samples, DA and UA were
detected using the enzyme-based biomimetic biosensor with comparatively low detection
limits of 20 and 170 nM, respectively, demonstrating good reproducibility and stability.
However, enzyme biosensors face several challenges during the development process.
Hence, screening out highly active enzymes and ensuring that the sensors have sufficient
sensitivity is difficult. To achieve this, it is essential to ensure that the active enzymes are
firmly anchored on the semiconductor chip. Additionally, the base film should be as thin
as possible to reduce the response time and extend the sensor’s lifetime. Furthermore,
the biosensor-based enzyme approach needs to be improved in terms of adaptability and
stability. Recently, zwitterionic surfactants incorporated laccase enzyme was immobilized
through physical adsorption on the surface of hylloysite nanotubes (HNTs) as shown in
Figure 6a [146]. The obtained recognition probe modified carbon paste electrode provides
enhanced catalytic activities and stability for dopamine biosensor (Figure 6b). It was known
that HNTs are tubular nanomaterials with a large specific surface area and a high level
of biocompatibility. Nonetheless, its use as a scaffolding to obtain a sensitive film with a
higher specific surface area and more adsorption sites were well investigated. Hence, the
combination of laccase and halloysite nanotube is a perfect approach for high sensitivity.
Using this structure, a linear calibration plot between the DA concentrations and the peaks
current was obtained (Figure 6c) with LOD calculated at 0.252 µM. Based on these achieved
results, the proposed biosensor can be used in clinical applications as an effective new
approach. Thereafter, a biosensor based on the physical adsorption of MWCNTs on the
surface of the electrode followed by immobilization of tyrosinase enzyme was also reported
(Figure 6d) [147]. Within this framework, authors focused on the study of the electro-
chemical redox mechanism of epinephrine. During the reduction process, two reduction
peaks were noted at 0.181 V and −0.229 V. The effect of concentration on the voltammetric
behavior of EP has been studied. Figure 6e illustrates EP’s DPV at different concentrations,
with reduction currents increasing with increasing EP concentration. Based on Figure 6f, a
good linear relationship was found between peak currents and EP concentrations. Besides
the good stability and selectivity of the proposed approach, acceptable LOD was estimated
to be 0.51 µM. In general, the immobilization process can directly impact all the enzyme
biosensor performances like sensitivity, selectivity, and stability. Enzyme biomodification
methods can be classified as follows: physical adsorption, covalent bonding, incorporation
into a polymer matrix, and cross-linking [148].

In addition, the biocatalytic activity of enzymes depends critically on the sample
solution’s applied potential, temperature, and pH. At the optimal condition, (pH, tem-
perature, etc.) the highest reproducibility and sensitivity can be achieved [149]. Despite
all the successful achievements and significant breakthroughs in the development and
improvement of enzyme-based biosensors, there are still plenty of serious obstacles that
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need to be overcome. For example, the use of these biosensors in real-world monitoring
applications is limited by their lack of high sensitivity, low stability and/or selectivity. For
the rapid and automatic examination of real samples, highly selective and stable enzyme
biosensors are expected in the future.
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laccase−halloysite nanotubes combined with imidazolium zwitterionic surfactants for dopamine
detection. (b) EIS spectra in 5 mM [Fe(CN)6]3−/4− prepared in KCl for different functionalization
steps. (c) SWV curves obtained after incubation of different DA concentrations. Reproduced with
permission from [146]. Copyright 2023, Elsevier. (d) Biosensing platform for epinephrine monitoring
based on multi walled carbon nano tubes mediated tyrosinase enzyme. (e) DPV curves obtained at
Ty/MWCNTs/GCE for different EP concentrations ranging from 3 µM to 200 µM. (f) Calibration
curve of the obtained biosensor showing good sensitivity and reproducibility. Reproduced with
permission from [147]. Copyright 2023, Elsevier.

6. Nano/Microelectrode-Based Catecholamine Monitoring

Monitoring the neurotransmitter molecules released in brain and cell cultures is crucial
to building a comprehensive and quick understanding of how, when, and where chemical
transmission is taking place. In doing so, microelectrodes have been widely adopted in
basic neuroscience and clinical medicine research. When it comes to electrochemical quan-
tification of biomolecules, several nanoelectrodes of various shapes have been developed
for in situ measurements. Such nanoscale electrodes were particularly implemented in
biology, where multiple biochemical processes require the working electrode to be inte-
grated in vivo, and occasionally in single cells for real-time monitoring [150]. Moreover,
an implantable nanoelectrode will ideally serve for the patient’s entire lifetime as in vivo
device. Therefore, these miniaturized electrodes at micro-/nanoscale have shown to be
favorable for interstitial fluid, and exocytosis events and vesicles monitoring through their
implantation in living brain, and inside isolated cells, respectively [151].

The use of carbon fiber microelectrodes (CFME) provides a common means of in vivo
detection for a wide range of neurotransmitters, particularly catecholamines, at the molecu-
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lar level [152]. Deng et al. [153] used the gelatin- and MWCNTs-modified CFME for in vivo
monitoring of neurotransmitters with a high level of stability, selectivity, and sensitivity.
Furthermore, the use of CFME array for simultaneous and in vivo detection of dopamine
and serotonin was also investigated. The suggested method proposes the CFME to be
functionalized with diazonium salt, leading to outstanding electrochemical properties,
making it possible to quantify the DA and 5-HT levels for different groups of mice [154].
Interestingly, the authors demonstrated that the use of CFME array is more expedient and
provides a higher current compared with a single carbon fiber microelectrode.

As an alternative to CFME, the carbon–nanopipette electrode also displays impressive
electrochemical properties. By placing a nanopipette electrode slightly above the cellular
release site, Hu et al. [155] demonstrated the possibility of quantifying the catecholamines
released from individual vesicles as 0.23–1.1 M. Whereas Yang et al. [156] reported the de-
velopment of cavity carbon-nanopipette electrodes (CNPEs) based biosensor for dopamine
quantification in mouse-brain slice. What is more, the nanometers size of CNPEs facilitates
their integration into specific narrowed locations for biomolecules quantification such as
the level of synapses, and in living cells. Another category of nanoelectrode based on
the 3D-printing approach was successfully fabricated using the atomic layer deposition
of Al2O3. The fabricated nanoelectrodes have shown an interesting sensitivity toward
dopamine stimulation in the adult fly brain via rapid scan cyclic voltammetry. Carbon
nanodiamonds was also used for the detection of dopamine released from living cell [157].
It was demonstrated that these nanostructure electrodes are able to be applied for in vivo
and in vitro analysis. At the end, the commercialization of microelectrode technology faces
many challenges, including problems related to materials, preparation processes, electronic
circuit designs, and implantation procedures.

7. Advantages and Challenges of Electrochemical Catecholamines Detection

Multiple electrochemical sensing methods based on surface modification with anti-
bodies, enzymes, and nanomaterials have been developed, displaying a rapid, selective
and ultralow sensitive detection of biocomponents. Whereas, different techniques was
literally performed for porous layer modified sensing electrode, including linear sweep
voltammetry, cyclic voltammetry and differential pulse voltammetry, square wave voltam-
metry taking into account the alteration in kinetics and modification diffusion regime of
the sensing electrode [158]. In general, electrochemical biosensors offer a high level of inte-
gration, simple instrumental system, and an instantaneous response toward individual and
multi-detection with excellent sensitivity and reproducibility [159]. The electrode surface
morphology could significantly affect the detection performance, especially when adopting
nanostructured surface. Despite their high surface-to-volume ratio, the reproducibility of
nanostructured biosensors is impaired due to the uncontrollable material defect.

Nanoelectrodes-based carbon fibers have contributed significantly to neuroscience
by allowing for the detection of electroactive neurotransmitters under very restricted
biological conditions [160]. In some cases, several steps are required to synthesize the
nanomaterials and nanocomposites to create chemically modified interfaces. To achieve
a stable electrode surface, it is essential to maintain the optimal experimental conditions
for biosensing events during bio-detection. Any changes in the reaction parameters used
in the materials synthesis will be reflected in the electrochemical measurement. However,
label-free biosensors offer additional cost-effectiveness because they are easier to develop.
In addition to reducing time and steps, label-free detection methods facilitate real-time
detection by eliminating expensive labeling protocols [161]. The further development
of on-chip electrochemical biosensors is a crucial step toward creating feasible detection
strategies suitable for resource-constrained environments. Figure 7a illustrates a simple
design for a chip-based epinephrine biosensor. Figure 7b shows the amperometric responses
between 1 nM and 150 nM for adrenaline, dobutamine, dopamine, and norepinephrine.
The developed approach shows long-term stability and cross-selectivity towards different
catecholamines (Figure 7c) [162]. Thus, optimizing the biosensor chip is important for
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real time monitoring. Additionally, a well-designed microfluid device is necessary for
in vitro detection. The miniaturization of the microfluidic chamber and electrode sizes,
as well as the decrease in the distance between the three electrodes, allowed the device
to achieve a lower detection limit and increased sensitivity (Figure 7d) [163]. Using the
chronoamperometry technique with DA concentrations ranging from 0.1 nM to 1 µM
prepared in PBS buffer, a linear calibration was achieved. As DA is naturally present in
CSF from a mouse model, the electrochemical oxidation of DA in CSF was also investigated
(Figure 7e). The current response of the biosensor to DA is linear up to 1000 nM with
a detection limit of about 0.1 nM in PBS and CSF. Additionally, good selectivity was
demonstrated in Figure 7f.
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Figure 7. Portable on−chip based NTs biosensor: (a) Detection strategy based on bioelectrocatalytical
amplification for selective adrenaline detection in human blood plasma. (b) Amperometric i−t curves
of the biosensor measured in PBS with a variation of catecholamines in the concentration range
of 1 nM to 150 nM. (c) calibration plots of the biosensor. Reproduced with permission from [162].
Copyright 2023, Elsevier. (d) Microfluidic channel based electrochemical detection of dopamine in
mouse cerebrospinal fluid and blood. (e) Calibration graph performed in PBS or aSCF with an inset
showing DA concentration up to 1 nM. (f) Selectivity studies of the DA biosensor in the presence of
interferants, including glucose, lactate, uric acid, and ascorbic acid. Reproduced with permission
from [163]. Copyright 2022, ACS.

Some wearable devices are intended to reduce the time between disease diagnosis and
effective treatment. This achievement is coupled with the adoption of new technologies like
3D printing of devices microfluidic chips. Taking the example a neurovascular organoid
engineering with 3D-printed microfluidic chips was developed by Salmon et al. [164]. More
sustained effort is needed to develop flexible electronic materials that can integrate chip
technology, IoT, Big Data and artificial intelligence for fully autonomous, self-adaptive,
and self-learning AI biosensor systems [165]. In particular, wearable cognitive platforms
require flexible neuromorphic devices capable of data processing and arithmetic [166].
Therefore, more technological and research efforts should be directed to the detection of
specific low-level neurotransmitters in biofluids and on system integration.
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8. Other Strategies for Catecholamines Monitoring
8.1. Colorimetry and Spectrophotometry

Colorimetric biosensors detect a specific analyte through color changes easily rec-
ognized by the naked eye or by simple hand-held optical detectors for quantitative
analysis. Various nanostructured materials, including metal nanoparticles [167–170],
metal oxides [171–173], carbon and graphene quantum dot [174] metal organic
framework [175–177] and many others have received much interest as nanozyme-based
colorimetric assays for neurotransmitters sensing due to their low cost, intrinsic peroxi-
dase catalytic activity and excellent stability. Recently, the development of multiplexed
colorimetric detection platforms has received considerable attention. Accordingly, Ja-
farinejad et al. [178] proposed an approach for simultaneous colorimetric monitoring of
catecholamine neurotransmitters (DA, EP, and NE) ranging from 1 to 30µg mL−1 in urine
samples. The detection methodology is based on the formation of silver nanoshells on the
surface of gold nanorods using catecholamines as active reducing agents. Experiments have
shown that the presence of DA, EP, and NE led to the aggregation of AgNPs on the surfaces
of gold nanorods. Three different colors were identified depending on the concentration of
neurotransmitters, resulting in a variation of the aspect ratio.

Another approach for a facile and sensitive colorimetric probe was developed by
Godoy et al. [179] for the detection of norepinephrine. Benzaldehyde and boronic acid-
terminated nanoparticles functionalized with spherical gold nanoparticles are used for the
sensing strategy. Synthetic urine was used to test the sensitivity of the probe to NE. In this
medium, the limit of detection was 0.09 µM, which is within the range of clinical interest.
The development of smart multifunctional bio-nanostructures is a current trend and a
future innovative challenge. In this context, a colorimetric smartphone biosensor based on
copper oxide nanoparticles detected dopamine with high sensitivity and a low LOD value
of 16.9 nM [180]. Therefore, the resulting engineered nanoplatform was determined to be a
potential solution for dual-mode colorimetric/electrochemical biosensors.

8.2. Surface-Enhanced Raman Spectroscopy (SERS)

Enhanced Surface-enhanced Raman Spectroscopy is one of the most sensitive tech-
niques available for enhancing Raman scattering of molecules through certain nanostruc-
tured materials. SERS allows for the structural fingerprinting of analytes at low levels
through the plasmonic amplification of electric or chemical fields. Moreover, this technique
has been widely applied in potential applications related to surface and biochemistry inter-
face characterization due to its high sensitivity and selectivity. What is more, this technique
has been successfully applied to diverse potential applications such as biochemistry, biol-
ogy, nanotechnology, and especially biosensing based biomedical applications [181]. Due
to their distinctive properties, SERS biosensors are attracting a lot of attention. Thus, they
can detect molecules with detection limits below nanomolar concentration, high selectivity,
excellent sensitivity, and high flexibility. Accordingly, an innovative 2D SERS platform
based on the use of Au nanoparticles modified with iron-nitrilotriacetic acid has been
developed by Zhou et al. [182] toward the detection of trace levels of epinephrine in the
serum. The major achievement of this work was the synthesis of highly stable Au nanopar-
ticles, where PVP prevents the aggregation of Au nanoparticles during the self-assembly
process, and the accomplishment of a more uniform distribution of Au nanoparticles at the
cyclohexane/water interface. Thus, this approach successfully establishes an interparticle
distance, overcoming the difficulty of assembling nanostructures. Through the newly
developed SERRS platform, a wide range of EP concentrations was detected in a complex
serum medium with high repeatability, sensitivity, and selectivity.

The demonstrated strategy provided promising performance for the detection of tar-
gets in various complex domains such as contaminated water, urine, and tissue fluids.
Furthermore, Dowek et al. [183] proposed a quantitative and discriminative analysis by
surface-enhanced Raman spectroscopy with gold nanoparticles of epinephrine and nore-
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pinephrine. This approach allowed for the quantification of EP in the range of concentration
from 20 to 80 µg/mL and from 32 to 80 µg/mL for NE.

Additionally, a new liquid-phase SERS detection system was developed using in
situ surface modification of Au nanopillar electrodes by Au electrodeposition for the
simultaneous detection of DA and UA at 0.1 and 1 nM levels, respectively [184]. Further,
Shi et al. [185] used the metal–organic framework (MOF)-loaded silver nanoclusters to
develop an aptamer-based DA electrochemical biosensor, which displayed an ultra-low
limit of detection of 0.008 nmol L−1.

8.3. Fluorescence Spectrometry

Since fluorescence spectroscopy is more sensitive than UV/Visible, it was recom-
mended for the identification of tiny compounds like neurotransmitters [186]. When it
comes to NTs monitoring in real samples and complex biological environment at very low
concentrations, using fluorescence spectroscopy has also shown outstanding metrological
parameters through minimizing interferences from non-fluorescent compounds. Giving
the example of Das and coworkers [187], in which they developed a sensitive and selective
fluorescent sensor based on nitrogen doped fluorescent carbon nanoparticles (N–CNPs) for
the detection of epinephrine, nor-epinephrine and dopamine. The suggested method was
based on the usage of MnO4

− ion as an analytical signal processor for optimally quenching
the fluorescence of N-CNPs and recovering the fluorescence by including the target analytes.
The fabricated sensor offers high selectivity and sensitivity toward the above mentioned
three catecholamine. Similarly, Fafarinejad et al. [188] also simultaneously detected the
DA, EP, and NE using a fluorescent electronic tongue-based AuNPs. Due to the different
reducing power of catecholamines, different sized gold nanoparticles were generated with
varying levels of aggregation, resulting in different amounts of spectral overlap between
the fluorescent dyes and the absorption bands of plasmonic AuNPs generated in situ. In
complex biological media, the proposed array performed well at discriminating DA, EP,
and NE as shown in Figure 8.

Moreover, An et al. [189] demonstrated a multichannel method for visual monitoring
epinephrine, norepinephrine, and levodopa (L-DOPA) based on the in situ synthesis of
fluorescent nanoparticles. The detection process was simple and fast, while the reaction
of ethylene diamine (EDA) with EP, NE and L-DOPA generates fluorescence of different
colors. Additionally, a high selectivity was achieved by testing the influence of interfering
substances like serotonin (5-HT), DA, ascorbic acid (AA), and glucose on the sensor’s
response. The developed approach proved to be a useful method for introducing an
innovative concept for the development of wearable sensors. Gold nanoparticles have
proven to be a highly efficient and reliable solution for fluorescence assay in the detection
of catecholamines and a variety of biomolecules [190]. The chemical and optical proper-
ties of these nanoparticles make them a potential candidate for the highly sensitive and
accurate detection of catecholamines at ultra-low levels. Whereas the aggregation of gold
nanoparticles presents an additional benefit as it results in changes of geometry, shape, size,
and color during the assay which greatly influences the sensing efficiency [191]. Altogether,
make the assay process based on Au and Ag nanoparticles more sophisticated, accurate
and dependable. Therefore, they are widely used in in vitro and in vivo monitoring at very
low levels. Mitra et al. have controlled the size of the synthesized AuNPs through the
manipulation of 3-APTMS/3-GPTMS ratio as reducing agents for the detection of DA in
human cerebrospinal fluid. In the presence of DA, the positively charged DA molecule
with catechol group can be absorbed onto AuNPs to induce aggregation and consequently
weaken the absorption band. Low detection limit was found to be 0.63 nM with a linear
range from 5 µM to 60 µM [192]. Furthermore, the fluorescence signal was enhanced by the
incorporation of gold-silver nanoclusters using protein stabilized agent [193]. Additionally,
quantum dots are well-established as labels for fluorescent imaging due to their brightness
and resistance to photobleaching. Their biocompatibility, non-toxicity, and water solubil-
ity, offer the quantum dot unique opportunities in the field of in vivo optical monitoring.



Biosensors 2023, 13, 211 22 of 35

Devi and his coworkers [194] have demonstrated a new methodology for the develop-
ment of an effective fluorescent probe for non-enzymatic label-free detection of DA using
tungsten disulfide.
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Figure 8. Schematic representation of the working principle and functionalization steps of fluores-
cence biosensor based AuNPs for simultaneous detection of catecholamine (DA, EP, and NE), and their
associated predicted response versus measured concentration of (a) Dopamine, (b) Norepinephrine,
and (c) Epinephrine. Reproduced with permission from [188]. Copyright 2020, ACS.

Zeng et al. [195] developed a DNA-nanoprism fluorescent probe for direct imaging
of catecholamine in a single live cell. The well-defined geometric framework enables the
self-assembled DNA nanoprism to be highly functionalized with cholesterol labels for the
screening of dopamine (Figure 9). Rapid in situ capture of the released DA dissociated the
quencher-tagged strand and rapidly produced a fluorescent signal. The DNA nanoprism
sensor can be used as a powerful and flexible single-cell imaging nanoplatform of NTs
released at the single-cell level due to its outstanding biocompatibility, remarkable cell
surface binding durability, and rapid response.

8.4. Electrochemiluminescence (ECL) Spectrometry

Electrochemiluminescence (ECL) has attracted significant focus based on its flexibility,
simplified setup, and good spatial and temporal control properties. ECL sensors have
recently been fabricated using various nanomaterials, which have been introduced due
to the rapid advancement in nanoscience and nanotechnology. Using metal organic gels
(MOGs) as porous and soft-hybrid supramolecular materials, Wang et al. [196] developed
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an electrochemiluminescence sensor for epinephrine detection. Since MOGs have unique
optical properties, they have been widely studied in a variety of fields. The ECL sensor
provides a wide linear range from 10 nM to 1.0 mM and a very low detection limit of about
0.52 nM. Additionally, sulfur quantum dots (SQDs) were used as luminophore for the
constraction of ELC sensor for dopamine sensing [197]. Nevertheless, these approaches-
based nanomaterials have shown a good sensibility and selectivity, handled and portable
ELC sensor remains challenging. For this, recently portable ECL device for POC testing
was developed for real time monitoring of dopamine. A miniaturized electrochemical
cell for the ECL reaction, an electrical circuit module for voltage stimulation, a silicon
photomultiplier module for ECL detection, and a Bluetooth-compatible smartphone for
package control comprise the system (Figure 10a). Using this system, the concentration of
dopamine was monitored in urine and in vivo rat brains as presented the calibration curve
in Figure 10b. An interferant limit of detection was achieved at about 3.5 nM with a range
of concentration from 5 nM to 20 µM [198].
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Figure 10. Handheld ELC imaging systems: (a) Schematic representation of a handheld ECL analysis
device displays the pretreatment and testing of dopamine biosamples, (b) Correlation between ECL
intensity and DA concentration. Reproduced with permission from [198]. Copyright 2023, Elsevier.
(c) Experimental setup of confined ECL imaging chip (CEIM) for sensing DA released from a single
PC12 cell, (d) Calibration curve ECL signal as a function of the DA concentrations. Reproduced with
permission from [199]. Copyright 2023, Elsevier.

Furthermore, a novel ELC imaging chip was constructed for the measurement of
dopamine levels in vivo based on aptamer embedded polymer functionalized indium
tin oxide electrode surface (Figure 10c) [199]. The handled chip has demonstrated high
repeatability with relative standard deviations (RSDs) of below 3.4% and a very low
detection limit of about 53 pM (Figure 10d). Other molecules such as AA, tyrosine, and
noradrenaline did not affect the sensor response and no significant signal was observed
with an excess of those interferents. Li et al. designed for the first time an aptasensor
ECL approach for the determination of catecholamine. A DNA-aptamer was used as a
molecular recognition element. DA has been sensitively detected in nanomolar range from
1.0 to 50 nM with LOD of 0.32 nM [200]. Another group has proposed a new strategy
based on immobilization of the luminophores on the porous ITO electrode as a new feasible
solution to overcome the aggregation of perylene diumide derivatives, which opened new
perspectives for the development of high-performance ECL sensors [201].

8.5. Surface Plasmon Resonance (SPR)

This technique is based on the properties of surface plasmons, which are propagative
surface waves located at the interface between a dielectric medium and a metal.

The detection is performed in real-time and without labeling, which is an advantage
over other techniques, such as fluorescence [202]. Recently, only a few studies have demon-
strated the use of the SPR-based platform for the detection of catecholamines. Among them,
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Pathak et al. [203] have fabricated a surface plasmon resonance based dopamine biosensor
using surface imprinted multiwalled carbon nanotubes and Polypyrrole (PPy/MWCNTs).

Then, to minimize the interference of coexisting molecules like uric acid, ascorbic
acid, and epinephrine, a Nafion membrane was dropped over the PPy/MWCNT probe.
The developed biosensor shows good sensitivity and selectivity for real time detection
in cerebrospinal fluid (CSF) with LOD calculated to be 18.9 pM, which is the lowest
reported in the literature. Each of these approaches has drawbacks such as low selectivity,
difficult instrumentation, and laborious sample preparation. Nevertheless, remarkable
progress has been made, as demonstrated by the increasing number of publications dealing
with new or improved detection set-ups. Hence, several commercialized biosensors have
been successfully applied in the food industry [204], environmental protection [205] and
medicine [206], however most of them are quite cost-intensive. The integration of the
biosensor and its associated electronics in a single chip, resulting in a robust, user-friendly,
and durable device, is a major research focus in the future [207].

9. Conclusions and Future Trends

Nanomaterials have presented a wide range of applications in electrochemical biosens-
ing, as they have become the most promising candidate materials used to modify electrodes.
Thanks to their outstanding properties, i.e., their dimensions and morphology, have made
them widely used and promoted in research areas such as immobilization of biological
molecules, electrochemical reaction catalyzation, electron transfer acceleration, and en-
hancement of sensor sensitivity. Combining nanomaterials and biotechnology is currently
cutting-edge research and a hot topic in the international biotechnology research field.
However, it would be beneficial if safer and more biocompatible nanomaterials could be
synthesized in the future to be used with biosensors. Until nowadays, several different
strategies have been developed for the quantification of catecholamine NTs. However,
simpler, more accurate, robust, and inexpensive catecholamine biosensors are still needed.
Future studies may focus on creating a fully autonomous portable device, such as an
electric chip or paper lab-on-a-chip, that can be operated by patients at their bedside. The
term “Lab on a Chip” (LOC) refers to the miniaturization of laboratory instruments into
chip-sized devices. With these platforms, chemical processes for electrochemical detection
can be miniaturized, integrated, automated, and parallelized. Additionally, miniaturized
LOC devices have the advantage of being cost-effective due to the reduced use of reagents
in modularly manufactured devices. Another key benefit of LOC devices is that parallel-
ing reaction chambers in a small footprint accelerates the monitoring process. Moreover,
LOC technologies provide the ability to further automate analytical systems and increase
throughput. Moreover, a continuous research program devoted to microfluidic processes,
microfabrication, cost-effective materials, and electronics is necessary in order to stimulate
the development of faster, smaller, and less expensive sensing devices. Furthermore, the
miniaturization of electrochemical cells and the deployment of autonomous handheld
readers are also imperatives for improving POC system efficiency, as well as ensuring
full integration, automation, large-scale miniaturization, flexibility, and cost reductions
required by large-scale production. Researchers have always focused on developing de-
vices that are user friendly, fast response, and can be operated by non-specialists, using
terms such as “point-of-need”, “point-of-care”, “lab-on-chip”, “handled biosensors”, and
“microfluidics device”. Nevertheless, producing an optimal device can be time-consuming
and expensive. Finally, it is essential to combine biosensors with the Internet of Things
(IoT) and communication technologies (ICT) to obtain population health data to predict
disease occurrence.
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Abbreviations

NTs Neurotransmitters
CNS Central nervous system
DA Dopamine
Ep Epinephrine
NE Norepinephrine
5-HT Serotonin
UA Uric Acid
AA Ascorbic acid
GCE Glassy carbon electrode
CPE Carbon paste electrode
PGE Pencil graphite electrode
ITO Indium Tin Oxide
SWV Square wave voltammetry
DPV Differential pulse voltammetry
CV Cyclic voltammetry
EIS Electrochemical impedance spectroscopy
LSV Linear sweep voltammogram.
CuNPs Copper nanoparticles
RC Renewable carbon
CNTs Carbon nanotubes
SWCNTs Single-Walled Carbon Nanotubes
CQDs Carbon quantum dots
CuO Copper oxide
PANi Polyaniline
GO Graphene oxide
rGO: Reduced graphene oxide
PBS Phosphate-buffered saline
FTO Fluorine-doped tin oxide
MoS2 Molybdenum disulfide
LSGE Laser-scribed graphene electrode
ZnO Zinc oxide
LOD Limit of detection
Ce-MOF Cerium metal-organic framework
Cu-MOF Copper metal-organic framework
GCSC Grass carp skin collagen
FET Field-effect transistor
TEPA Tetraethy lenepentamine
CuAlO2 Copper aluminate
POC Point of care
IoT Internet of Things
AI Artificial intelligence
3-APTMS 3-aminopropyltrimethoxysilane
3-GPTMS 3-glycidoxypropyltrimethoxysilane
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