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Abstract: In the present research work, the state-of-art label-free electrochemical genosensing plat-
form was developed based on the hybridization process in the presence of [Fe(CN)6]3−/4− as an
efficient redox probe for sensitive recognition of the miRNA-21 in human gastric cell lines samples.
To attain this aim, perovskite nanosheets were initially synthesized. Afterward, the obtained com-
pound was combined with the graphene oxide resulting in an effective electrochemical modifier,
which was dropped on the surface of the Au electrode. Then, AuNPs (Gold Nano Particles) have
been electrochemically-immobilized on perovskite-graphene oxide/Au-modified electrode surface
through the chronoamperometry (CA) technique. Finally, a self-assembling monolayer reaction of
ss-capture RNA ensued by the thiol group at the end of the probe with AuNPs on the modified
electrode surface. miRNA-21 has been cast on the Au electrode surface to apply the hybridization
process. To find out the effectiveness of the synthesized modifier agent, the electrochemical behavior
of the modified electrode has been analyzed through DPV (differential pulse voltammetry) and CV
(cyclic voltammetry) techniques. The prepared biomarker-detection bioassay offers high sensitivity
and specificity, good performance, and appropriate precision and accuracy for the highly-sensitive de-
termination of miRNA-21. Different characterization methods have been used, such as XRD, Raman,
EDS, and FE-SEM, for morphological characterization and investigation of particle size. Based on
optimal conditions, the limit of detection and quantification have been acquired at 2.94 fM and 8.75
fM, respectively. Furthermore, it was possible to achieve a wide linear range which is between 10−14

and 10−7 for miRNA-21. Moreover, the selectivity of the proposed biosensing assay was investigated
through its potential in the detection of one, two, and three-base mismatched sequences. Moreover, it
was possible to investigate the repeatability and reproducibility of the related bio-assay. To evaluate
the hybridization process, it is important that the planned biomarker detection bio-assay could be
directly re-used and re-generated.

Keywords: electrochemical genosensing; miRNA-21; gastric cancer; perovskite; gold nanoparticles

1. Introduction

MicroRNAs (miRNAs) are non-coding ribonucleic acids that are evolutionarily con-
served and have a length of 18–22 nucleotides [1–3]. miRNAs control gene expression
after transcription by inhibiting target mRNAs or inhibiting their translation [4–6]. miRNA
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regulates a variety of cellular processes such as cell proliferation, cell differentiation, im-
munogenesis, insulin secretion, and cell apoptosis [7–11]. As yet, it was possible to identify
an enormous variety of miRNAs in microorganisms, plants, animals, and humans (over
4000 miRNAs) (http://www.mirbase.org/. accessed on 1 October 2022), and it was cal-
culated to be more than target 30% of the human genome [12,13]. miRNAs are abundant
mainly in tissues and body fluids, including cerebrospinal fluid, breast milk, tears, pleural
fluid, peritoneal fluid, saliva, urine, and plasma [14]. By interfering with intracellular
messenger RNA (mRNA), either directly by mRNA cleavage or indirectly by translational
suppression, miRNAs regulate genes. miRNAs are now known as clinical therapies, where
aberrant expression of miRNAs is directly related to cancer, and miRNAs play a significant
role in cancer development, progression, and metastasis [15,16]. Thus, cancer antagomir
and tumor suppressor miRNAs can be applied as efficient treatments for cancer [17,18]. Due
to numerous diseases and the incidence of various cancers, and the dangers for humans
and other organisms, rapid and highly sensitive identification of miRNA-21 biomarkers is
of great importance [13,19,20].

Clinical determination of miRNAs is challenging because of the enormous apparatuses,
high expenses, difficulty of sample preparation and tedious tool performance, the necessity
for skilled operators, and the time-consuming process. Moreover, in most cases, using
clinical imaging techniques, only large tumors can be seen, and therefore, most cancers are
diagnosed at an intermediate or advanced stage, and the probability of being diagnosed
with cancer at an acceptable stage of treatment is less [21–23]. For example, the limited linear
quantification range, imperfect sensitivity for long sequence homogeneity, and the inability
to detect new miRNAs and determine the abundance of miRNAs are disadvantages of the
miRNA microarray technique. Although qRT-PCR has a very high sensitivity and dynamic
range, its main limitation is its high cost and the need for a computing infrastructure to
analyze and interpret data. Nevertheless, miRNA determination needs a greatly sensitive
method development for assessing very low levels of sample in the bloodstream and
additionally requires to be very selective and comply with multiplexing capabilities of a
diagnostic test, cost-effectiveness, and minimum sampling volume requirement [24–26].

Sensing assays have attracted much attention due to fast, selective, sensitive, and
low-cost analytical devices, including two elements of biological recognition element for
capturing target and converter miRNAs detection reaction signal into a measurable sig-
nal [27,28]. Based on the type of transducers, biosensors can be classified into several
major groups, including optical, thermal, piezoelectric, and electrochemical sensors [29,30].
Detection in optical biosensors is based on the measurement of light absorbed or emitted
as a result of a biochemical reaction between an analyte and a biological receptor. Op-
tical biosensors are based on various optical methods such as absorption, fluorescence,
luminescence and surface plasmon resonance [31,32]. Thermal sensors, as the name sug-
gests, it is the measurement of thermal changes that have occurred on the surface of the
biochemical detector. Many biochemical reactions involve a change in enthalpy that can
be measured using sensitive thermostats [29]. Piezoelectric sensors can measure mass
change and, thus, biomolecular interaction [33]. Each of these methods has its advan-
tages and disadvantages [34,35]. Compared to other methods, electrochemical methods
are low-cost, higher-sensitivity, selective, and portable decomposition techniques that are
widely used in the fields of environment, agriculture, medicine, and food; a method that
can take the target analyzes and convert the biological signals into electrical signals, re-
spectively [36–40]. Due to significant advances in nanotechnology and related sciences, the
increase in electrochemical sensing platforms by modifying the electrode surface based on
nanomaterials has made it possible to improve sensitive sensors as well as electrochemical
selectivity [41–43]. Graphene is a material with unique properties that have high intrinsic
mobility and high thermal conductivity, good optical and electrical conductivity for appli-
cations such as transparent conductive electrodes, among many other noteworthy potential
applications [44]. On the other hand, synthesized perovskite compounds are known as
attractive nanomaterials for use in analytical studies [45–47]. These oxides are known

http://www.mirbase.org/


Biosensors 2023, 13, 172 3 of 21

as magic catalysts in different applications due to their excellent physical and chemical
properties, flexible structure, and catalytic potential. The catalytic activity and application
of perovskites can be modified by doping with various elements of the periodic table.
Perovskite/graphene oxide nanocomposite has been used as an innovative modifier to
enhance the electrochemical signal whose properties and benefits can be attributed to its
conductivity, unique physical, chemical, optical and catalytic properties, as well as fast and
easy synthesis [48–50]. Being with the environment, narrow size distribution and feasibility
at low temperatures [37,51,52].

In this study, an electrochemical oligonucleotide genosensor was developed to de-
tect and measure miRNA-21. To achieve this goal, multilayer nanocomposites based on
perovskite-graphene oxide were initially synthesized. The resulting nanocomposite was
immobilized on the surface of the working electrode by the dropping method. Next,
a single-stranded RNA probe (ss-capture RNA) was immobilized on the electrode. The
interaction of the target RNA probe (miRNA-21) with the ss-capture RNA affects the electro-
chemical behavior of the electrode or interphase function because of miRNA hybridization
to signal, electrochemically active reporter changes in electrode properties. As a result, with
various analytical features, it is possible to identify and detect miRNA-21 in the human
gastric cell line sample.

2. Experimental
2.1. Apparatus and Instrumentation

To perform the biosensing and electrochemical analysis, the Galvanostat/Potentiostat
Autolab PGSTAT 30 (Eco Chemie B.V., Utrecht, The Netherlands) has been applied. A cell
containing three electrodes has been used to perform the electrochemical analysis. The
modified and bare gold electrodes have been utilized as working electrodes (d = 2 mm).
The reference electrode was a saturated calomel electrode (SCE and Hg2Cl2), and the
auxiliary electrode was a Pt wire electrode in a KCl solution.

Azar electrode Co. (Urmia, Iran) has been selected to buy all electrodes. For character-
ization purposes, the Bruker instruments, Germany, model Aquinox 55 has been selected to
obtain the Fourier-transform infrared (FT-IR) spectra. To explain the surface morphology,
the energy-dispersive X-ray analysis (EDS) and scanning electron microscopy (SEM) have
been examined on a MIRA3 FEG-SEM TESCAN developed in the Czech Republic. Siemens
diffractometer (D500 S) has been used to examine the composition of synthesized X-ray
diffraction (XRD) and perovskite/graphene oxide analysis, and it has been applied at room
temperature, where the scan range of 2θ was from 5 to 70◦, and Cu- Kα radiation was at
35 kV. StepOnePlus real-time PCR (Applied Biosystems, Foster City, CA, USA) was used
to carry out gene expression analysis.

2.2. Reagents and Materials

Starting materials for La0.8Sr0.2Cu0.7Mn0.3O3/SiO2 (LSCMO3/SiO2) were La(NO3)3·6H2O,
Cu(NO3)2·3H2O, and glycine (99%), purchased from Samchun Pure Chemical Company,
Mn(NO3)2·4H2O, Sr(NO3)2, were purchased from Merck and de-ionized water. Potas-
sium chloride (KCl), hydrogen tetrachloroaurate (III) hydrate (HAuCL4·3H2O), potassium
ferrocyanide K4Fe(CN)6, and potassium ferricyanide K3Fe(CN)6 were purchased from
Sigma-Aldrich (Winston Park Drive Oakville, ON, Canada). Merck (Rahway, NJ, USA)
Chemicals Co. has been selected to obtain Hydrogen peroxide solution (H2O2) 30%,
acetone (CH3COCH3), hydrochloric acid (HCl), sulfuric acid (H2SO4) (0.5 M), sodium
acetate (CH3COONa), mercaptoethanol (HS(CH2)6OH), DLdithiotrietol (DTT), ethanol
and all other demanded supplies. A ferrocyanide/ferricyanide solution including 0.01 M
of K4Fe(CN)6/K3Fe(CN)6 (1:1) and 0.1 M KCl has been prepared to obtain the effective
electrochemical examination of the working electrode surface areas. Piranha solution with
hydrogen peroxide, water, and concentrated sulfuric acid in a 1:1:1 (v/v) ratio has been
obtained and instantly utilized to maintain its reactivity. By mixing 500 mM of DTT and
10 mM of sodium acetate at pH = 5.2 and kept at 4 ◦C, a DTT solution has eventually
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been obtained. Double-distilled DEPC water has been used in all experimental steps. Sol-
vents utilized for experimental purposes were used without any purification and had an
analytical grade.

Bioneer Co. (Daejeon, Republic of Korea) has been selected to purchase applied RNA
oligonucleotides with sequences in Table 1. Moreover, stock solutions of the oligonucleotide
have been diluted with 0.1 M tris-HCL buffer at pH = 7.4. Pasteur Institute (Tehran, Iran)
has been selected to obtain human gastric cancer cell lines. The cells were transfected
with anti-miR-21 (GenePharma Co., Shanghai, China). According to supplied procedures,
total RNA has been extracted using the GeneAll Trizol RNA extraction kit (Daejeon, Re-
public of Korea). To quantify miRNAs expression, 1 µg of extracted RNA was initially
converted to complementary RNA (ss-RNA) synthesis by the Universal cDNA Synthesis
miRCURYLNATM kit (Exiqon, Copenhagen, Denmark).

Table 1. Oligonucleotide sequences of ss-capture RNA (capture probe), miRNA-21(target), mismatch
(1, 2, 3), negative control (miRNA-126).

Oligonucleotide Sequences

Capture probe 5′-SH-(CH20)6-UCAACAUCAGUCUGAUAAGCUA-3′

miRNA-21 5′-UAGCUUAUCAGACUGAUGUUGA-3′

Mismatch1 5′-UAGCUUAUCACACUGAUGUUGA-3′

Mismatch2 5′-UAGCUUAUAAGACUAAUGUUGA-3′

Mismatch3 5′-UUGCUUAUCGGACUGAUCUUGA-3′

miRNA-126 5′-UCGUACCGUGAGUAAUAAUGCG-3′

2.3. Nanocomposite Preparation Steps
2.3.1. Preparation of Perovskite and Chemically-Synthesis of Graphene Oxide (GO)

To synthesize the La0.8Sr0.2Cu0.7Mn0.3O3/SiO2 perovskite, denoted as LSCMO-S, the
sol-gel combustion method. Firstly, SiO2 was dispersed in deionized water with continuous
stirring. In the next step, the stochiometric amounts of metal nitrates were added to the
suspension and heated up to 85 ◦C. At this temperature, the glycine was added, and the
NH3·H2O was to adjust the pH of the solution to 6. After about 2 h, a gel was formed. In
this step, the temperature was increased suddenly to 250 ◦C until combustion happened
and a black powder was obtained. Finally, the obtained black powder calcinated at 700 ◦C
for 6 h [53,54].

For the synthesis of graphene oxide, denoted as GO, Hummer’s method [55]. Sulfuric
acid (H2SO4 98%) was stirred in the ice bath, sodium nitrate and graphite (2.5/5) were
added slowly in 10 min with vigorous stirring, and the solution was stirred for 1 h in the
ice bath until a viscose solution was obtained. Potassium permanganate was very carefully
poured into the solution for 2 h, and then the ice bath was removed. The solution was left
at room temperature overnight, and a light brown suspension was obtained. Deionized
water was added in 1 h, and the temperature increased to 98 ◦C and refluxed for 24 h. the
solution cooled at room temperature, then an H2O2 solution was added and stirred at room
temperature, and the end of the process, HCl solution was added and stirred for 24 h. the
acid-washed solution was washed and centrifuged till it obtained pH = 7. The solution was
dried overnight at 90 ◦C.
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2.3.2. Preparing Perovskite/Graphene Oxide Nanocomposite

The catalyst powders (perovskite/graphene oxide nanocomposite) were crushed by a
physical method for 1 h (denoted as LSCMO-S/GO). The complete dispersion of synthe-
sized perovskite among graphene oxide sheets is confirmed by the obtained result. Then
the powders were dispersed in NMP (N-Methyl-2-pyrrolidone) (11 g·L−1) and sonicated
in an ultrasonic bath for about 2 h. The prepared solution was effectively used for the
modification of the electrode surface.

2.4. Fabricating Electrochemical Genosensing Assessment

For obtaining the newest surface of the Au electrode before coating and performing
electrochemical analysis, alumina-saturated woven glasses were used to polish it, and
then, it took 20 min to float it in Piranha solution. Afterward, a water/acetone mixture
was used to float the electrode for 20 min, where the volume ratio was 1:1 (v/v), and it
was then washed with double distilled water. During the first step and to modify the Au
electrode surface, the synthesized perovskite/graphene oxide compound has been utilized
as an efficient substrate. By so doing, it was possible to dissolve a specified quantity of
the synthesized compound in an NMP solution and immobilize it on the surface of Au
electrodes using the dropping method. To improve the electrochemical signal in the best
possible manner, AuNPs (synthesized gold nanoparticles) have been immobilized on the
modified Au electrode surface using the CA method accompanied by complete drying and
stabilization of the surface modifiers.

Ss-capture RNA has been treated with DTT (dithiothreitol) to fabricate the RNA-based
genosensor. Dithiothreitol (DTT) has been considered an efficient protecting mediator
for thiolated ss-capture RNA, which prevents thiol group oxidation. It is considered a
substantial mediator and can be used in clinical medicine, biochemistry, peptide-protein
reaction, and chemistry [56]. When oxygen exists in the solution, the end sulfur atoms
related to a thiolated ss-capture RNA have dimerization affinity. The effectiveness of
significant immobilizing reactions, such as the immobilization of RNA on the Au electrode
in the biosensing assay, is diminished by forming dimer compounds. According to such
research, a 10-µL DTT has been added to a 10-µL ss-capture RNA solution. Based on the
next step, the acquired solution was mixed by a vortex and located for 30 min at 25 ◦C.
Afterward, the surface of AuNPs/perovskite/graphene oxide/Au electrode was used for
dropping the solution, and it took 2 h for incubation to be performed at 4 ◦C. Finally, self-
assembling monolayer reaction of ss-capture RNA ensued on the Au-modified electrode
surface. At this stage, the electrode was rinsed with double distilled water, and it took
20 min to incubate the ss-capture RNA-modified genosensor by MCH (mercaptohexanol)
at 25 ◦C. As a short-chain thiol with a hydrophilic hydroxyl group, mercaptoethanol
(MCH) is frequently co-assembled with probe RNA to make probe RNA erect on an Au-
modified electrode and reduce nonspecific adsorption of probe RNA. RNA hybridization
performance can be improved by co-assembly of MCH with probe RNA on Au [57,58]. In
another word, nonspecific interactions are displaced by MCH between the gold and RNA,
and SAM (self-assembled monolayer) is formed, which withstands nonspecific adsorption
of target RNA. The remaining gold sites have been filled by MCH immobilization, and a
well-aligned ss- RNA monolayer has been formed. Blocking non-reacted AuNPs with an
RNA probe was the purpose of this step. At the next stage, the take-up of the miRNA-21 is
significantly increased by MCH. At the final stage, miRNA-21 was cast on the Au electrode
surface to apply the hybridization process. As a result, the solution containing KCl and
[Fe(CN)6]3−/4− has been selected to perform the electrochemical analysis. The fabrication
process of the electrochemical genosensing platform is represented in Figure 1.
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Figure 1. The fabrication process of the electrochemical genosensing platform.

2.5. Electrochemically Detecting miRNA-21

After successfully fabricating the ss-capture RNA/AuNPs/perovskite/graphene ox-
ide/Au electrode bioelectrode, incubation for 50 min was used to test various concen-
trations of miRNA-21, which has a range of 10 fM–100 nM. It was possible to hybridize
ss-capture RNA to the target miRNA-21 with strong affinity and produce concentration-
dependent signals that have electrochemically been calculated by DPV and CV assay.

2.6. Real Samples
2.6.1. Cell Culture

The Pasteur Institute (Tehran, Iran) has been selected to obtain the human gastric
cancer cell lines, including MKN-45, KATO III, and AGS cell lines, and RPMI 1640 medium
has been used to culture them, and then they have been enriched with 10% FBS and
contained 1% antibiotics (100 Unit/mL penicillin, and 100 µg/mL streptomycin) at an
incubator providing 37 ◦C, 5% CO2 and 95% humidity. Subsequently, qRT-PCR was
performed to evaluate miRNA expression levels in mentioned cell lines for the selection of
the target cell line with higher expression of miRNA 21.

2.6.2. MicroRNA Transfection

According to the protocols supplied (TC = 12.5 ms and Volts = 160 v), the AGS cell
line was transfected with anti-miRNA-21 and FITC-conjugated controls (GenePharma Co.,
Shanghai, China) in the amount of 40 pmol with the help of Gene Pulser electroporation
system (Bio-Rad, Hercules, CA, USA). 2 × 105 transfected cells have been seeded into
six-well plates and cultured for 24, 48, and 72 h. Subsequently, qRT-PCR was performed to
evaluate miRNA expression levels in the transfected group and estimate the optimum time
and dose for anti-miRNA 21 transfection.
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2.6.3. Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR)

According to supplied procedures, the GeneAll Trizol RNA extraction kit (Daejeon,
Republic of Korea) has been used to extract total RNA. To quantify miRNA expression, the
Universal cDNA Synthesis miRCURYLNATM kit (Exiqon, Copenhagen, Denmark) has
been used to initially convert 1 µg of extracted RNA to the synthesis of cDNA (comple-
mentary DNA). BioFACT™ 2X Real-Time PCR Master Mix (Daejeon, Republic of Korea) in
the StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) has
been used to measure miRNA-21 at target cells and evaluation of miRNA 21 expression
at anti-miRNA 21 treated cells. For normalizing miRNA 21 expression, U6 was used as
the internal control. The primer sequences were designed and blasted using the NCBI
primer blast online tool (www.primerdesigntools.com, accessed on 28 May 2021). Each re-
action was repeated three times, and the 2-∆∆CT method was used to measure the relative
expression levels of genes.

3. Results and Discussion
3.1. Surface Morphology of the Gold Electrode
3.1.1. Field Emission Scanning Electron Microscope

The morphology of LSCMO-S, GO, and LSCMO-S/GO was investigated by scanning
electron microscopy. The SEM image of the synthesized perovskite is represented in
Figure 2A. In Figure 2, two different phases of LSCM (indistinctive shape) and SiO2
spherical shapes with an average diameter of about 30 nm were observed, and silica
particles were embedded into the LSCM matrix that was validated with the Scherrer
equation. In some segments (as seen in the SEM), the amorphous SiO2 blocked the diffusion
of metal ions during the combustion reaction, which is undesirable for perovskite formation.
The morphology of GO shows a typically synthesized graphene oxide and the composite of
LSCMO-S/GO (containing 10% LSCMO-S), suggesting that the presence of the perovskite
does not modify graphene oxide’s pattern and the morphology retains well.
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Figure 2. (A) SEM and (B) EDS results of LSCMO-S, GO, and LSCM-S/GO, (C) Raman spectra
of LSCMO-S (a), GO (b), LSCMO-S/G (c), (D) XRD results of LSCMO-S (a), GO (b), and LSCMO-
S/GO (c).
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3.1.2. Energy-Dispersive X-ray Spectroscopy (EDS)

EDS (Figure 2B) investigation is carried out to determine the elemental composition of
the material synthesized at a voltage of 15 kV, and a Si detector has been used to capture
the spectrum, which is a characteristic X-ray. The LSCMO-S comprises 38% silicon and
37% oxygen, which indicates that the main elements in LSCMO-S are silicon and oxygen.
The other elements are dispersed exactly in sociometric amounts. GO is mostly composed
of carbon atoms and a percentage of oxygen with no other trace elements. Hence, the
synthesized material is pure. LSCMO-S/GO (containing 10% LSCMO-S) showed a high
amount of Carbon with sociometric amounts of La, Sr, Mn, and Cu.

3.1.3. Raman Spectroscopy

Raman spectroscopy was used to determine the structural changes of the prepared
samples (LSCMO-S, GO, and LSCMO-S/G; Figure 3C). At GO, two strong peaks are seen at
1354 cm−1 (referenced to the D mode), indicating the presence of sp3 defects, and 1621 cm−1

(referenced to the G mode), associated with all sp2 carbon forms [59]. The vibrational mode
of the perovskite material (ABO3) is active in the 200 cm−1 region [60]. The characteristic
vibrational band of SiO2, centered around 143 cm−1, can also be observed in LSCMO-S [61].
Compared to the pure LSCMO-S, the intensity of the peaks of the LSCMO-S hybrid GO
has slightly decreased, and some of the main peaks corresponding to LSCMO-S have
disappeared due to the high content of GO in the hybrid sample.
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3.1.4. X-ray Powder Diffraction (XRD)

Figure 2D illustrates the XRD patterns of the samples (LSCMO-S (a), LSCMO-S/GO
(b), and GO (c)). For LSCMO-S, all of the diffraction peaks of LSCM, which are consistent
with the pattern reported for ABO3 (JCPDS No. 75–2100), are observed. Also, the silica
content embedded in the LSCM matrix can be seen as segregated phases. Moreover, in the
SiO2 spheres, a broad peak centered at 2θ = 20.5◦ is observed. For the calculation of the
average size of SiO2 spheres, the Scherrer equation (Equation (1)) was applied:

L =
Kλ

BCos(θ)
(1)

In Equation (1), L is the average crystallite size, K is the Scherrer constant (1), λ
represents the X-ray wavelength (0.15406 nm), B represents the line-broadening full-width
at half maximum, θ represents the Bragg diffraction angle. Here, 2θ = 22.5◦ was selected to
calculate the average crystallite size of the SiO2. The average crystallite size of the SiO2 is
35.86 nm. XRD pattern of GO shows three peaks that peak at 26.44◦ and 42.6◦ due to the
presence of graphite [35]. For the composite of the GO and perovskite (10/1), the intensity
of the diffraction peaks of the perovskite slightly decreased, and some of the main peaks
corresponding to the LSCM/SiO2 disappeared due to the high content of GO.

3.2. Electrochemical Investigation of the Engineered Genosensing Assay

Electrochemical behavior The CV method in a solution containing [Fe(CN)6]3−/4− has been
used to assess electrochemical behavior associated with the modification of the Au electrode.
CVs of the AuNPs/perovskite/grapheneoxide/Au electrode, perovskite/graphene oxide/Au
electrode, and bare Au electrode are represented in Figure 3A. Accordingly, different electrochem-
ical performances in terms of potential and current are considered for Au electrode modified by
ss-miRNA (miRNA-21/ss-capture RNA/AuNPs/perovskite/graphene oxide/Au electrode) and
Au electrode modified by ss-capture RNA (ss-capture RNA/AuNPs/perovskite/graphene
oxide/Au electrode). The peak current of 21.7 µA at 0.25 V is represented by the obtained
voltammograms associated with the bare Au electrode. It was possible to detect the ox-
idation peak with a current of 56.5 µA at a potential of 0.23 V after modifying the Au
electrode surface by applying perovskite/graphene oxide. The outcome represents that the
peak current can be enlarged in the presence of perovskite/graphene oxide as an effective
modifier and its reason is the presence of the various size pores on their surface and large
surface area. According to Figure 3B, a good surface for probe immobilization is provided
by the electrodeposition of AuNPs by the CA method, and according to CV patterns, the
electrochemical response (0.23 V, 70 µA) can be enhanced by the deposition of AuNPs. A
slight decrease in the current of the oxidation peak has been noticed, and the peak poten-
tial became 0.25 V after immobilizing ss-capture RNA. Perhaps, the self-assembly binds
among thiol groups at the ends of ss-capture RNAs, and Au elements can provide such an
alteration, which could happen on the modified Au electrode surface. After the fabrication
of the genosensor, miRNA-21 can be added, and after the occurrence of hybridization, the
peak current decreased to 39.4 µA. The associated result represents that efficient miRNA-21
immobilization on the substrate was performed.

3.3. ss-Capture RNA Immobilization Time and Hybridization Time

The ss-capture RNA immobilization time has a drastic effect on the determination of
miRNA-21, efficiency, hybridization, and sensitivity of the genosensing assay. In this study,
the immobilization time of ss-capture RNA has been investigated for 1–4 h to reach the
optimal time for the best performance of the biosensing platform. As shown in Figure 4A,B,
increasing immobilization time from 1 to 2 h causes to increase in the related peak currents
as well. Subsequently, the electrochemical responses were reduced with a steady increase
in immobilization time.
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Figure 4. (A) DPV curves of ss-capture RNA immobilization time (10–120 min at 30-min intervals)
on the surface of the gold electrode, (B) Histogram for ss-capture RNA immobilization time, (C) DPV
voltammograms of the fabricated genosensor after incubation with miRNA-21 in different times
(10–60 min at 10-min intervals). [Fe(CN)6]3−/4− is applied as a redox probe, ss-capture RNA con-
centration is 1 µM, and also the scan rate is 50 mV s−1, (D) Histogram of miRNA-21 incubation
time. Equilibration time = 0, E initial = −0.2 V, E end = 0.5 V, Estep = 0.1 V, frequency = 10 Hz, and
amplitude = 0.01995 V.

On the other hand, one of the most significant steps is considered to be the optimiza-
tion of the target hybridization time. Therefore, a 10-µL (0.1 nM) miRNA-21 has been
dropped on the surface of the Au-modified electrode. The hybridization duration can have
an important role in the research. Therefore, optimum conditions have been selected to
examine different miRNA-21 incubation times. Times of 10–60 min have been used to
incubate the genosensing assay by miRNA-21 at 10-min intervals at 25 ◦C (Figure 4C). Sub-
sequently, an optimum time for target hybridization time has been obtained using the DPV
method. After incubation at certain times and drying/washing the Au electrode surface,
DPVs have been achieved in a supporting electrode solution including [Fe(CN)6]3−/4−.
According to Figure 4D, it was possible to verify the greatest peak current associated with
the process of hybridization at 50 min. Therefore, it was possible to obtain the hybridization
of ss-capture RNA with miRNA-21 at an optimum incubation time of 50 min.

3.4. Kinetic Investigation

Figure 3 represents the cyclic voltammograms (CVs) of Au-modified electrodes by
AuNPs/perovskite/graphene oxide achieved at different scan rates. The various scan
rates from 1 to 1000 mV s−1 have been used to investigate the kinetic performance of the
fabricated genosensing platform by the CV technique. According to Figure 5A, it is possible
to increase the width of the voltammograms, and the anodic and cathodic peaks increase in
greater scan rates. Such a fact verifies that, in the smaller scan rates, the electron exchange
increases gradually on the electrode surface, and accordingly, thinner voltammograms
with smaller peak currents are resulted (Figure 5A). Two significant aspects are considered
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for the dependence of Ip vs. v1/2 or and ln Ip vs. ln v to estimate the reversibility of a
reaction and present the control of the reaction by adsorption or diffusion. According to
Figure 5B, the linear dependence (R2 = 0.996) of the anodic and cathodic peak currents
with square roots of scan rates is represented by the scan rate analysis. Furthermore, the
linear dependence (R2 = 0.9829) of Ln Ip vs. Ln in the chosen range of scan rates (i.e.,
1–300 mV s−1) is confirmed by Figure 5C. Such results confirm the control of mass transfer
through the diffusion process. Consequently, it is possible to say that the Randles–Sevcik
equation is followed by the electrochemical process:

Ip = 2.69 × 105 AD1/2 n3/2C υ1/2 (2)
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Figure 5. (A) CV voltammograms of Perovskite/graphene oxide/AuNPs modified Au electrode in
the solution containing Fe(CN)6

3−/4−, KCl in various scan rates (10, 20, 30, 40, 50, 60, 70, 90, 100, 150,
200, 250, 300 mVs−1): [Fe(CN)6]3−/4− is applied as a supporting electrolyte, (B) Plot of Ip (µA) vs. v
1/2 (V1/2. s−1/2), (C) Ln Ip (µA) vs. Ln v (mV s−1), (D) Ip (µA) vs. v 1/2 (mV1/2. s−1/2).

According to Equation (2), the peak current (µA) is represented by Ip, the electroactive
surface (cm2) is represented by A, D represents the molecular diffusion coefficient in
solution (cm2/s), the electron is represented by n, which is transferred in an electrochemical
reaction, relates to the scan rate (V/s), and the concentration of the analyte (mol/dm3)
is represented by C. Because of such a fact that as a result of the change in scanning
velocity, the peak potential partially alters, the reaction is irreversibly controlled by the
redox process. On another hand, to explain the mechanism of mass transfer, Figure 5C
represents the equivalence of the slope with 0.5, and such an outcome represents that
the electrochemical reaction is diffusional control. A slope near 1 and 0.5 verifies the
control of the electrochemical procedure through adsorption and diffusion, respectively.
In conclusion, Figure 5D represents that the dependence of Ip vs. does not have a linear
pattern and verifies that there is not a linear relation between Ip vs. v. Afterward, there is
no adsorption dependence between the electrochemical reaction. Additionally, CV with
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5 mM [Fe(CN)6]3−/4− as a probe at various scan rates was used to obtain the surface area.
To calculate the surface area, the mentioned Randles–Sevcik (Equation (1) has been applied.
Anodic peak current is represented by Ip, n referred to the electron transfer, is equal to 1,
the concentration of [Fe(CN)6]3−/4− is represented by C0, the scan rate is represented by ν,
and D is equal to 0.76 × 10−5 cm2s−1 which presents the diffusion coefficient. Based on
the slope of Ip and ν1/2 relation, 0.073 cm2 has been obtained for the surface area. Based
on the cyclic voltammograms of Figure 5, an increase in the peak currents is based on an
expansion of the modified electrode surface. In comparison to the bare electrode, the rest
of the electrodes have an increase in surface area, but the increase in surface area of the
desired electrode is higher than that of others. The order of electrode surface areas related
to their voltammograms of CV is in the following manner: AuNPs/perovskite/graphene
oxide/Au electrode > perovskite/graphene oxide/Au electrode.

3.5. Calibration Plot and Analytical Features

To evaluate the analytical features of RNA-based genosensing assay, the sensitivity of a
fabricated genosensing bio-assay can be a particular parameter. Therefore, the incubation of
different concentrations of miRNA-21 has been used to measure the rate of the hybridization
process at 25 ◦C for 50 min. Figure 6A represents the results associated with DPV of
different miRNA-21 concentrations (10−14–10−7 M at 10−1 M intervals). The outcomes
represent that an increase in the concentration of miRNA-21 leads to a decrease in the
peak current. [Fe(CN)6]3−/4− and RNA have negative charges, and this is the reason for
a decrease in the current. When casting ss-capture RNA on the Au electrode surface, the
negative charges associated with the RNA and solution, including [Fe(CN)6]3−/4−, have
an electrostatic repulsion. After adding miRNA-21, accumulating the negative charge on
the electrode is enlarged, and therefore, an increase in the electrostatic repulsion and a
reduction in the electrochemical signal have resulted. Accordingly, the non-occurrence or
occurrence of the hybridization process is diagnosed by applying the [Fe(CN)6]3−/4− to
record the electrochemical signal. More significantly, a desirable linear relation (R2 = 0.9992)
between the DPV peak current (∆I = Iss-capture RNA–ImiRNA-21) and the logarithm
values of miRNA-21 concentration is observed (Figure 6B). According to the optimum
conditions, 10−14 to 10−7 has been obtained for LR (linear range). Furthermore, LOQ
(limit of quantification) and LOD (limit of detection) have been at 8.75 fM and 2.94 fM,
respectively. It is noteworthy that supplying the limit of quantification and limit of detection
of the fabricated genosensing assay is based on the 10 σ/m and 3 σ/m criteria, respectively
(where the standard deviation of the intercept or the standard deviation of the blank is
represented by σ and the slope of the calibration plot is represented by m). Therefore,
the fabricated genosensing bio-assay has been used to determine miRNA-21 with high
sensitivity. It was possible to perform all the measurements in triplicates, and the relative
standard deviations of the measurements (RSD% = 3.4–5.3) have been represented by
the error bars, which demonstrates the great accuracy of the genosensor. Based on the
explanations concerning the earlier methods, it is said that all analytical features have
improved. In this research, LOQ and LOD are significantly smaller, which represents
the great sensitivity of the presented genosensing assay. The high electron transfer rate
provides high sensitivity, and applying AuNPs/perovskite/graphene oxide nanocomposite
provides increased surface area. Additionally, the presented genosensor has a wide linear
range, and it can be used to analyze the wide concentration of the analytes. The achieved
values represent that a suitable method for miRNA-21 determination at low concentrations
with a wide linear range is offered by the engineered platform (Table 2).
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Table 2. Comparison of fabricated genosensor with other related methods for highly sensitive
recognition of miRNA-21.

Methods Modifier Agents Linear Range LOD References

ECL a GCE/Au NPs/DNA
tweezer/report DNA 0.02–150 pM 6.3 fM [62]

SPR b Au/MB/miRNA/StreGNRs 0.1–100 pM 45 fM [63]

Fluorescence
Au nanorod functionalized
polydiacetylene microtube

waveguide
50–1000 fM 10 fM [64]

EC c miRNA-21/DNA-Au
NPs@MoS2

0.01–1000 0.78 fM [65]

Colorimetric - 10 pM–1 nM 1 pM [66]

LFNAB d AuPt NF-based 2–5000 pM 0.3 pM [67]

Electrochemical AuNPs/GQDs/GO 0.001–1000 pM 0.04 fM [68]

Electrochemical AuNPMMBs/MAuE 5–600 fM 0.20 fM [69]

Electrochemical TDN/depAu/GCE 10 µM–10 nM 18.9 aM [70]

Ratiometric
electrochemistry

Mg2+-dependent
DNAzyme-cleavage cycling

10 fM–0.1 nM 1.8 fM [71]

THz e spectroscopy THz metamaterials 1 fM–10 pM 14.54 aM [72]

Electrochemical
genosensor Perovskite-graphene oxide 10 fM–100 nM 2.94 fM The present study

a Electrochemiluminescence; b Surface plasmon resonance; c Electrochemistry; d Lateral flow nucleic acid biosen-
sor; e Terahertz.
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3.6. Selectivity Investigation

According to the research, mismatched RNA sequences have been used to assess the
selectivity of the planned bio-assay. To investigate the aforementioned step, 10.0 µL of
miRNA-21 and the mismatch sequences with 25 µM concentration have been hybridized
with the ss-capture probe on the surface of the presented genosensing bio-assay and incu-
bated at 25 ◦C after doing the preparation steps and fabricating the required genosensor.
Table 1 represents the sequences of the mismatches. According to Figure 7A,B, due to the
successful and effective miRNA-21 hybridization process, the peak current respecting the
presented bioassay is smaller than the other mismatch RNA sequences. In comparison to
the mismatch target sequence, the results demonstrate the great selectivity of the electro-
chemical response associated with mismatch 1 is close to the electrochemical response of
the presented genosensing bio-assay and smaller than other mismatches, and the reason
is that the existence of similarity between the sequence of our miRNA-21 probe and the
sequences of the related mismatch 1 sequence. Accordingly, due to the abovementioned
reason, the electrochemical response of mismatch 2 and 3 have been increased, and their
electrochemical signal is close to the ss-capture RNA-related signal. In another hand, nega-
tive control tests have been used to investigate the selectivity of the fabricated genosensor.
Instead of miRNA-21, miRNA-126 as negative control has been used for the hybridization
process. Therefore, there is one more rational reason for the confirmation of the great
selectivity of fabricated genosensing bio-assay.
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Figure 7. (A) Selectivity of the fabricated genosensor: DPVs of the engineered genosensor in hy-
bridization by miRNA-21, 1-mismatch miRNA-21, 2-mismatch, and 3-mismatch miRNA-21. The scan
rate is 50 mV s−1. (B) Histograms of the proposed genosensing assay selectivity, (C) CVs of modified
Au electrode in different cycle numbers. (D) Histogram associated with different cycle numbers.

3.7. Repeatability, Reproducibility, and Stability of Genosensing Bio-Assay

The performance of the proposed genosensing assay is related to the stability of RNA
probes in electrochemical reactions that happen throughout the genosensor fabrication
process. Investigating the CV signals on the electrode in a supporting solution including
[Fe(CN)6] 3−/4− can help assess the stability of the genosensor based on the mentioned
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modifiers (AuNPs/perovskite/graphene oxide). Different cycle numbers, including 1, 5, 20,
50, 80, and 100, have been used to perform this step. According to Figure 7C,D, significant
substantial alteration is not seen between the 100 cycles and the first one. In another word,
constancy and reliability are seen among the verified cycles. The results represent a suitable
stability level in the well-fabricated genosensing assay.

In another hand, to examine the genosensing assay reproducibility, 5 different modified
electrodes have been arranged by ss-capture RNA/AuNPs/perovskite/graphene oxide
to determine 0.1 nM of the miRNA-21, and thus, it was possible to efficiently measure the
electrochemical responses. RSD (relative standard deviation) of five modified electrodes
was equal to 2.9%. Five determinations of 0.1 pM miRNA-21 with one modified electrode
have been used to investigate the repeatability of the fabricated genosensing assay. RSD
was equal to 4.7%. Satisfactory values for the novel analytical genosensor have been
demonstrated by RSDs of the achieved electrochemical responses for reproducibility and
repeatability steps.

3.8. Investigating the Performance of Bioassays in Real Samples
3.8.1. Gastric Cancer Cell Lines

To evaluate the efficiency of the designed biosensor, three gastric cancer cell lines,
including AGS, KATO III, and MKN-45, were selected. First, the selected cell lines were
cultured, and then their RNA was extracted. The investigation of RNA samples from all
three cell lines by the designed electrochemical genosensor started with the DPV method
from a base concentration of 1000 ng/µL and reached the lowest detectable concentration
with step-by-step dilution similar to calibration. The minimum concentrations detected for
AGS, KATO III, and MKN-45 cell lines were 5 × 10−5 ng/µL, 0.01 ng/µL, and 1 ng/µL,
respectively (Figure 8). In addition, the expression level of miRNA-21 in all three cell lines
was checked by the qRT-PCR technique, and the expression of miRNA-21 in the AGS cell
line was significantly higher than in other lines. Figure 9A confirms the high expression of
miRNA-21 in the AGS cell line.
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To compare the detection ability of the qRT-PCR technique with the designed elec-
trochemical biosensor, different concentrations of extracted RNA from AGS cell lines and
cDNAs, which were synthesized for the qRT-PCR technique, were prepared. Subsequently,
the investigation process of the proposed genosensing assay has been performed. Based on
the results, there was not enough synthesis signal in the qRT-PCR technique for concen-
trations less than 100 ng/µL (Figure 10). At the same time, the electrochemical biosensor
detected up to 5 × 10−5 ng/µL concentration (Figure 9A).
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3.8.2. Anti-miR-21 Treatment

To check the specificity and accuracy of the designed genosensor, the AGS cell line was
treated with anti-miR-21 and subsequently analyzed by qRT-PCR technique. Accordingly,
treatment with anti-miR-21 leads to a decrease in miRNA-21 expression (Figure 7B). The
electrochemical investigation was also done by the fabricated genosensor, and the minimum
detectable dilution was obtained as 0.1 ng/µL, which has a significant decrease compared
to the state before treatment with Anti-miR-21 (5 × 10−5 ng/µL) (Figure 11).
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Different analytical features of the genosensor have been efficiently improved (Table 2)
when comparing this investigation with other research works. The great efficiency of
our fabricated genosensor is represented by these results. The better performance of our
genosensing assay is confirmed by investigating various parameters such as selectivity,
stability, regeneration, repeatability, and reproducibility. Observing that biosensing and
sensing assays provide a new field of study, maintaining the newness of each research
work, and synthesis of the novel composite as an effective modifier is a difficult task.

4. Conclusions, Challenges, and Future Outlooks

In conclusion, it was possible to develop a new label-free electrochemical genosensing
assay based on RNA hybridization for sensitively determining miRNA-21 in real samples.
According to the achieved results, it was possible to confirm that such a high-sensing
bio-assay has the capability of being applied in recognizing varieties of miRNAs in clinical
samples. With the comparison of the outcomes of the reported investigations and the
analytical features of the fabricated genosensing assay, it is concluded that the presented
bio-assay has superior sensitivity to others. In comparison to other approaches, a singular
RNA-based bio-assay with higher characteristics for determining miRNAs is developed by
using such a methodology. A high potential of selecting the target from one-, two-, and
three-base mismatched sequences are represented by the well-fabricated genosensing assay.
In another hand, the current investigation has been used to propose a selective bio-device
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for sensitively determining miRNA-21 in the existence of negative control. Additionally,
the reusability and regeneration of the well-aligned bio-assay have been researched. For
identifying the critical biomarkers and timely administrating efficient treatment to patients,
the promising aspect of fabricated genosensing assay is its singular characteristics. In
conclusion, such an investigation can be a new method to develop such genosensing bio-
devices for the greatly selective and sensitive determination of other significant biomarkers.
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