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Abstract: Throughout the SARS-CoV-2 pandemic, diagnostic technology played a crucial role in
managing outbreaks on a national and global level. One diagnostic modality that has shown promise
is breath analysis, due to its non-invasive nature and ability to give a rapid result. In this study, a
portable FTIR (Fourier Transform Infra-Red) spectrometer was used to detect chemical components
in the breath from Covid positive symptomatic and asymptomatic patients versus a control cohort
of Covid negative patients. Eighty-five patients who had a nasopharyngeal polymerase chain
reaction (PCR) test for the detection of SARS-CoV-2 within the last 5 days were recruited to the
study (36 symptomatic PCR positive, 23 asymptomatic PCR positive and 26 asymptomatic PCR
negative). Data analysis indicated significant difference between the groups, with SARS-CoV-2
present on PCR versus the negative PCR control group producing an area under the curve (AUC)
of 0.87. Similar results were obtained comparing symptomatic versus control and asymptomatic
versus control. The asymptomatic results were higher than the symptomatic (0.88 vs. 0.80 AUC).
When analysing individual chemicals, we found ethanol, methanol and acetaldehyde were the most
important, with higher concentrations in the COVID-19 group, with symptomatic patients being
higher than asymptomatic patients. This study has shown that breath analysis can provide significant
results that distinguish patients with or without COVID-19 disease/carriage.

Keywords: breath analysis; COVID-19; SARS-CoV-2; electronic nose; optical spectrometry

1. Introduction

There has been increased interest in the use of volatile organic compound (VOC) and
inorganic gas detection in the diagnostic assessment of infection since the beginning of the
SARS-CoV-2 (COVID-19) pandemic [1]. Technologies such as lateral flow tests (LFTs) or
polymerase chain reaction (PCRs) detection have been adopted to detect the presence of
SARS-CoV-2 RNA from nasal and pharyngeal swabs to manage COVID disease and to
prevent onward transmission of the virus. These tests not only vary in cost and availability
but also in sensitivity and specificity [2,3]. Most of all, patients can find a nasal, pharyngeal
or combined nasopharyngeal sampling uncomfortable, and a poor sample may lead to a
false negative result.

VOC/inorganic gas analysis is used extensively in several industrial settings. For
example, in the food industry, this technology is used to detect the presence of pesticides
and degrading produce [4,5]. In addition, the chemical industry uses this technology to
monitor air pollution from the gases released back into the atmosphere [6,7]. However, its
use for medical diagnostics and monitoring has become an active area of research [8–10]. A
number of papers have been published that have studied the potential of breath analysis
to detect the presence of SARS-CoV-2 in patients at the point of care or within a clinical
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setting. These predominantly used commercial platforms and are based on a wide range of
technologies. Some can be considered traditional electronic noses and consist of an array
of metal-oxide gas sensors combined with smart pattern recognition software. This in-
cludes the Aeronose (The Aeonose Company, Netherland) and the SpiroNose (Breathomix,
Netherlands), as well as prototype systems [11–13]. Other groups used nanomaterials their
electronic nose systems [14]. Another regularly used technology is ion mobility spectrom-
etry (IMS), combined with pre-separation based with on GC (gas chromatograph) using
a capillary column or MCC (multi-capillary column). These have shown promise for the
detection of COVID-19 biomarkers in breath [15–17]. There have been further studies using
tools such as GCMS (gas chromatography mass spectrometry) and PTR-MS (proton transfer
reaction—MS), both of which have identified potential biomarkers for COVID-19 in breath.
However, these are more challenging to use as a point of care test due to the size and cost
of the instruments, making them more a research tool [18,19].

Though both electronic nose and IMS technologies have been applied to COVID-19
detection in breath, optical techniques, such as FTIR (Fourier Transform Infrared) is also a
highly promising approach. These predominantly operate by measuring the absorbance
by a gas or a VOC at a specific wavelength and are used extensively for point of care
measurements in a wide range of fields [20], including medical [21]. A recent study carried
out by Sholomo et al. indicated that FTIR has the potential for COVID-19 diagnosis in
breath [22]. Though this result was very positive, the size of the instrument was consid-
erable (non-portable), did not consider systematic and asymptomatic patients, and the
FTIR was not used to monitor any bio-marker concentrations. Furthermore, this study
was not undertaken in the UK and patients were not tested at admission. The aim of the
ENOSE CoVal study was to use a fully portable FTIR instrument and to take it into a major
UK hospital to correlate breath gases/VOCs with a clinical presentation, and secondly,
to investigate inorganic/VOC differences in patients’ breath between COVID-19 positive
(asymptomatic/symptomatic) patients and COVID-19 negative patients.

2. Materials and Methods
2.1. Patient Group

Patients were recruited from University Hospital Coventry and Warwickshire (UHCW),
an 1100 bed tertiary UK hospital in the West Midlands, UK. The COVID-19 positive, symp-
tomatic group were patients that were admitted based on respiratory symptoms and were
then found to be COVID-19 positive based on a PCR test. Asymptomatic patients were
identified through regular SARS-CoV-2 screening in accordance with the national guide-
lines at the time. COVID-19 negative patients (control arm) were identified from patients
entering hospital for surgery associated with non-infectious conditions (for example, a
prostate biopsy). These patients received a SARS-CoV-2 PCR test prior to admission to
the hospital. The patients were reviewed for eligibility, consented to enter the study and
were given a patient information leaflet. A letter detailing recruitment was then sent to
their general practitioner. Demographic data collected included the age, gender, nationality,
smoker status, medications they were currently prescribed and SARS-CoV-2 vaccination
status of the patient. The most common medications the participants were prescribed were
paracetamol, bisoprolol, omeprazole, AdCal D3, a statin, metformin, amlodipine, ramipril
and sertraline. These drugs were seen in all the groups. In total, 85 patients were recruited
into the study. Table 1 provides the demographic breakdown of the patient groups.

2.2. Breath Sampling

The sample was only taken if the patient had not eaten, smoked tobacco, vaped
nicotine or drunk anything but water for 3 hours. A demonstration was given to each
participant, showing the optimal manner of breathing into the 1.5 litre collection bags.
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Table 1. Demographic data for subject groups.

Group Symptomatic Asymptomatic Controls

Number of samples and percentage 36 (42.4%) 23 (27.1%) 26 (30.5%)
Mean Age (years) 56.7 66.7 53.3

Gender; Male/Female 20:16 14:9 20:6
Vaccinated 26 (72.4%) 21 (91.3%) 24 (92.3%)
Nationality

British 24 (66.7%) 18 (78.2%) 19 (73.1%)
Caribbean 0 1 (4.35%) 0

Indian 1 (2.7%) 0 3 (11.5%)
Iranian 3 (8.4%) 0 0

Irish 1 (2.7%) 2 (8.7%) 1 (3.85%)
Latvian 0 0 2 (7.7%)

Pakistani 0 1 (4.35%) 0
Portuguese 1 (2.7%) 0 0
Somalian 0 1 (4.35%) 0

Unknown/not declared 6 (16.8%) 0 1 (3.85%)
Smoking History
Current Smoker 2 (5.6%) 4 (17.4%) 11 (42.3%)

Ex-smoker 9 (25%) 5 (21.7%) 4 (15.4%)
Never smoked 25 (69.4%) 14 (60.9%) 11 (42.3%)
Drug History

Total number of medications taken per
group and the average number of

medications per patient

160 (4.3 per patient) 72 (3.1 per patient) 50 (1.9 per patient)

Range of the number of medications
taken per patient 0–11 0–11 0–7

2.3. Breath Analyser

In this study, a commercial FTIR (Fourier-transform infrared spectrometer) was used
(Figure 1). This was chosen due to its ability to measure gas phase samples in real-time
with the ability to detect a large number of inorganic gases and VOCs. Furthermore, it has
the potential to provide concentration information on specific VOCs. The unit chosen was
a AtmosFTIR platform from Protea (UK). This unit is designed to measure stack emissions
and ambient air monitoring and thus is portable, just requiring a power plug to operate it,
and was small enough to fit onto a standard medical trolley. The unit is designed to sweep
optical frequencies with a spectral range of 485–8500 cm−1. It weighs around 21 Kg and,
depending on the gas, has a detection limit below 0.2 ppm (parts per million). The unit
was left to warm and was calibrated in pure nitrogen before the start of the experiments,
in line with the recommendations from the manufacturer. Furthermore, before each batch
of experiments, a room air sample was taken to ensure that the machine was functioning
correctly and to ensure that the room was not heavily contaminated with other gases/VOCs.
Data were collected using a laptop connected to the instrument, and saved locally on the
hard disc. The FTIR was calibrated by the manufacturer for the following compounds:
acetaldehyde, acetone, ammonia, benzene, carbon monoxide, carbon dioxide, chloroform,
ethanol, ethylene oxide, formaldehyde, hydrogen bromide, hydrogen cyanide, hydrogen
sulphide, methane, methanol, methyl mercapatan, nitric oxide, nitrogen dioxide, nitrous
oxide, ozone, phosphine, sulphur dioxide, and toluene.

The instrument was located in a room close to the ward and samples were transported
from the patient to the instrument within a few minutes of collection. Patients consented
prior to sampling, and 1.5 L of true tidal volume was captured into a Tedlar sampling
bag (Thames Restek, High Wycombe, UK). This volume was used as the analytical cell
in the FTIR was 300 mL (excluding valves/pipes etc.) and ensured that the cell could be
completely filled with patient breath before the bag was empty. Furthermore, the large
volume of breath also minimized changes in pressure sampling through the transfer process.
The FTIR was fitted with shutoff valves, both on the inlet and outlet, to seal in a test sample.
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The bag was attached to the FTIR using tubing, with all valves open. Once attached, the
sample was pulled directly into the machine, taking less than 1 min. After this, the valves
on the sample inlet and pump outlet were closed and the bag removed. This allowed the
breath sample to be held in the sample chamber for the full sampling period of 6 min.
The FTIR had a cell temperature setting of 40 ◦C, and a nominal gas flow of 2.5 L/min. A
spectra was generated every minute, comprising of 5 scans (12 s each) averaged together to
give the resultant spectra. Once the sample was completed, the valves were opened and at
least 8 min was left between samples to ensure there was no sample carryover from the
previous patient. In addition, a new Tedlar bag was used for each experiment.
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Figure 1. The Protea atmosFIR gas analyser.

For QA/QC checks, the instrument had to be operating correctly before a sample
was measured. This included flow rates, temperature zones and checking that all internal
settings were correct. Next, the output of the instrument in room air was checked for any
contamination (such as cleaning fluids) before a sample was measured. This was done by
checking the chemical outputs of the instrument before analysis. Furthermore, the unit was
referenced to pure N2 when possible, within the limitations of the instrument being in a
restricted area.

2.4. Data Analysis

The instrument provides two different outputs. The first provides a list of concentra-
tions (in ppm) for a common set of 16 chemicals. The second is the raw datafiles of the IR
spectra, containing 8500 data points per scan. The instrument is free running with a scan
rate of 1 Hz. The instrument averages 10 scans before recording this scan to a file. Each
created multiple files per scan. The CO2 levels were monitored throughout the scan period
and the scan with the highest CO2 reading was used for further data analysis. Due to the
dynamics of the internal chamber, this was likely to align with the highest concentration of
gases and VOCs.

The raw data was first checked for sample alignment, and corrections were made if
necessary. The data was then thresholded to reduce the dimensionality. This value was
chosen to be twice the background level and the same threshold was applied to all the
samples. This reduced the number of data points to 3500. These were then treated as
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independent features and were used in a cross-validation approach. First, the data was
divided into 10 groups, with 9 being used for training and the 10th for the test. Within the
training group, a rank-sum test was applied to find the 100 features with the lowest p-value.
These were then used to create two models, sparse linear regression (SLR) and random
forest (RF), which were then applied to the test group. This was repeated 10 times until
all the data had been a test group. From these results, statical parameters were calculated
including AUC (area under the curve), sensitivity, specificity, positive predictive value and
negative predictive value. This was undertaken using a custom R script and is similar to
the pipeline we have used in other studies [23,24].

In addition, the absolute identified chemicals were also processed. In this case, the
value was used as the input feature. Chemicals that would not be found naturally in
the body (or in the environment) or were not present in the majority of samples were
removed from the list before processing. The excluded chemicals included chloroform,
ethylene oxide, formaldehyde, hydrogen bromide, ozone, nitrogen dioxide, nitric oxide
and phosphine. This left acetaldehyde, acetone, ammonia, benzene, carbon monoxide,
carbon dioxide, ethanol, hydrogen cyanide, hydrogen sulphide, methane, methanol, methyl
mercapatan, sulphur dioxide and toluene. The shortlist of chemicals was then used as
input features for classification and a similar cross-validation approach, as described above,
was used.

3. Results

A typical raw output plot of an asymptomatic COVID-19 patient is shown in Figure 2.
As can be seen, much of the output is dominated by the water peaks produced by the high
humidity in human breath. However, it shows that a high information odour content was
collected from each sample. We have directly labelled the CO2 peak for reference.
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Figure 2. Typical spectral output of a Covid-19 positive patient. Figure 2. Typical spectral output of a COVID-19 positive patient.

Figure 3 shows the CO2 levels for all the samples at which the data was used for further
data analysis. Though there is variance across all the sample groups, every group is similar.
The results indicated that the symptomatic patients had the lowest CO2 concentration,
which may be linked to the severity of the disease and ability to breathe. However, the
chemical information content of these samples remained high.
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Figure 3. Carbon dioxide levels measured for different patient groups.

The analysis of the data and statistical results are presented in Table 2, with the
subsequent ROCs in Figure 4.

Table 2. Statistical results comparing different patient groups.

Comparisons Classifiers AUC Sensitivity Specificity PPV NPV

COVID-19 positive
(symptomatic and

asymptomatic) vs. COVID-19
negative (control)

SLR 0.76
(0.61–0.92)

0.69
(0.41–0.89)

0.88
(0.76–0.95) 0.65 0.90

RF 0.87
(0.77–0.97)

0.69
(0.41–0.89)

0.94
(0.83–0.99) 0.79 0.90

COVID-19 positive
(symptomatic) vs. COVID-19

negative (control)

SLR 0.80
(0.67–0.93)

0.63
(0.35–0.85)

0.86
(0.68–0.96) 0.71 0.81

RF 0.77
(0.62–0.92)

0.69
(0.41–0.89)

0.86
(0.68–0.96) 0.73 0.83

COVID-19 positive
(asymptomatic) vs. COVID-19

negative (control)

SLR 0.83
(0.69–0.97)

0.88
(0.62–0.98)

0.76
(0.53–0.92) 0.74 0.89

RF 0.88
(0.77–1)

0.88
(0.62–0.98)

0.76
(0.53–0.92) 0.74 0.89

COVID-19 positive
(symptomatic) vs. COVID-19

positive (asymptomatic)

SLR 0.78
(0.65–0.92)

0.71
(0.48–0.89)

0.79
(0.60–0.92) 0.71 0.79

RF 0.80
(0.66–0.95)

0.71
(0.48–0.89)

0.86
(0.68–0.96) 0.79 0.81
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Figure 4. ROCs for patient group combinations (a) COVID-19 positive (symptomatic and asymp-
tomatic) vs. COVID-19 negative (control) (b) COVID-19 positive (symptomatic) vs. COVID-19
negative (control), (c) COVID-19 positive (asymptomatic) vs. COVID-19 negative (control) and
(d) COVID-19 positive (symptomatic) vs. COVID-19 positive (asymptomatic).

We see that all the results show a statistically significant difference between the groups,
with COVID-19 positive (symptomatic and asymptomatic) vs. COVID-19 negative (control)
producing an AUC of 0.87. Similar results were obtained comparing COVID-19 positive
(symptomatic) vs. COVID-19 negative (control) and COVID-19 positive (asymptomatic)
vs. COVID-19 negative (control). However, it was found that the Covid positive (asymp-
tomatic) results were higher than the symptomatic (0.88 vs. 0.80 AUC). Furthermore, we
were able to distinguish asymptomatic and symptomatic patients with a high degree of
confidence, suggesting that breath VOCs can measure disease severity.

We also considered the individual chemicals to evaluate whether these gave better
separation over taking the data as a whole. In this case, each chemical was used as a feature.
The statistical results are shown in Table 3, with the associated ROCs in Figure 5.
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Table 3. Statistical results comparing different patient groups using individual chemicals.

Comparisons Classifiers AUC Sensitivity Specificity PPV NPV

COVID-19 positive
(symptomatic and

asymptomatic) vs. COVID-19
negative (control)

SLR 0.88
(0.80–0.95)

1.00
(1–1)

0.50
(0.32–0.68) 0.80 1.00

RF 0.84
(0.74–0.93)

0.89
(0.81–0.96)

0.50
(0.33–0.69) 0.79 0.69

COVID-19 positive
(symptomatic) vs. COVID-19

negative (control)

SLR 0.91
(0.83–0.98)

0.68
(0.50–0.83)

0.96
(0.89–1) 0.94 0.78

RF 0.93
(0.85–0.98)

0.82
(0.67–0.95)

0.85
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Using individual chemicals, we achieved an almost identical result for COVID-19
positive versus controls to that which was achieved when using all the data. However,
with this approach, symptomatic patients were identified with a much higher degree of
selectivity compared to asymptomatic. This difference in result could well be linked with
the way that features were identified in the large feature set.

From this analysis, we were able to identify the chemical components that separated
the data. In this case, the top four chemicals were ethanol, methanol, acetaldehyde and
carbon monoxide. Figure 6 provides a box plot of the concentrations of these chemicals for
the three patient groups.
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As can be seen in Figure 5, in the case of the first three chemicals, the chemical
concentrations are highest in the COVID-19 group, with symptomatic patients being higher
than asymptomatic patients. The exception is for carbon monoxide, which could potentially
be an external contamination factor as control patients enter the hospital and is from the
surrounding environment.

4. Discussion

The technology used in this study has been shown to significantly differentiate be-
tween patients with COVID-19 positive (symptomatic) disease, COVID-19 positive (asymp-
tomatic) carriers and those who do not have the SARS-CoV-2 virus present in the respiratory
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tract (control). The manner in which the United Kingdom and the global community have
managed COVID-19 has evolved over the last two years but the need for non-invasive
testing of respiratory viruses is ever present. These breath samples, which are processed
on an FTIR, can be simply taken from patients rather than using an uncomfortable na-
sopharyngeal swab, thus enhancing a patient’s experience. Portable devices are currently
in development and being trialled using odour analysis technology, however, this is the
first study which offers information on the optical spectrometry profile of the breath in
COVID-19 positive (symptomatic and asymptomatic) versus COVID-19 negative patients.

Technologies such as the matrix-assisted laser desorption/ionisation time of flight
mass spectrometer is now incorporated in many UK laboratories. This technology in many
settings is the primary means of identification of many microbes using a protein signature.
Although this technology is markedly different in its mechanism of action, it also requires
a substantial database of information to identify the species of the bacteria or fungi it is
processing. The same principle will likely be required for this optic scanning technology.

VOCs are present in humans when there is illness and thus physiological stress.
Therefore, this is one important marker of disease, but we see this in different hierarchies
with the other compounds deemed the most important in differentiating disease and non-
disease states. A review from 2013 highlighted a number of different inorganic/VOCs
which were prevalent in the patients either infected or colonised with a number of different
micro-organisms such as higher concentrations of hydrogen cyanide in the breath of those
patients with pseudomonas aureginosa colonisation in their respiratory tract [25].

Methanol, ethanol and acetaldehyde have also been shown to be important markers
differentiating the clinical groups within this study, which were also identified in a previous
study [16]. Our best results achieved an AUC of 0.93 for symptomatic vs. controls and
0.84 for all COVID-19 subjects versus controls, which is a similar diagnostic performance
to other work in breath analysis studies [13,14,16–19]. These different concentrations of
the inorganic/VOCs have also been able to allow us to identify those patients who have
symptomatic disease versus asymptomatic disease. This is likely due to the oxidative
stresses occurring in the respiratory tract at the time of sampling. The more samples
processed and the more profiling documented, the more robust the identification of disease
will be.

Previous trials using similar technology have been performed and the results have been
positive, but only through collaboration and data compilation will profiling be achieved.
Work in the past has focussed on infectious processes such as pneumonia, aiming to identify
the difference between a bacterial pneumonia and a viral pneumonitis [26]. These studies
have shown promise. Other infection studies have focussed on tuberculosis and enteric
pathogens leading to colitis [27,28]. However, breath technology has also been used to
identify cancers [29]. This year, we have seen further work of trained medical detection
dogs, which have been trained to identify patients positive with COVID-19 [30], but there
are limitations to training animals when aiming to provide a reproducible technology on a
mass scale.

Therefore, the e-NOSE CoVal study may be a way of diagnosing disease in primary
and secondary care. If we focus on the diagnosis of infectious diseases, the benefits of
rapid, cost-effective diagnostics will lead to improved infection and prevention control
for those transmissible diseases such as COVID-19, reduced antibiotic consumption for
viral, not bacterial diseases and a better outcome for the individual patient. If antibiotic
stewardship is supported by the eNOSE technology then this not only will negate any
side effects experienced by the individual patient who may be prescribed unnecessary
antibiotics, but it will also reduce the selective pressures bacteria undergo when antibiotics
are used, thus reducing antibiotic resistance in the surviving biome or the pathogenic
bacterial population.

The study has limitations. First, as with other eNOSE technologies, the environ-
ment, i.e., the gases of the room, may affect the composition of the sample. Ideally, a
well-ventilated room should be used, and strong cleaning products should not have been
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used recently. Secondly, the patient’s own breath composition may be affected by recent
food consumption, or strong fluids such as coffee or tobacco use. We have reduced this
confounder by not assessing any patient who had eaten or smoked 3 h prior to collecting
their sample. Thirdly, the technology offers a range of identified chemical components,
but the list is not exhaustive and other gaseous products in the breath may have relevance.
Finally, although we believe the number of people enrolled into this study to be appro-
priate, the sample size still remains low, and the participants will have had other medical
problems which may affect their breath components. This has been acknowledged in our
statistical analysis.

5. Conclusions

In this paper, we report on the use of an FTIR for the analysis of breath samples from
COVID-19 positive patients and controls. Here, a commercially available, portable FTIR
system was modified to accept breath samples. This study has proven that breath analysis
can be used in a tertiary hospital setting to identify SARS-COV-2 infection and colonisation.
The technology produces rapid results and the analyser is simple to use. This study further
supports electronic nose/breath analysis technology as viable diagnostic test that can be
used in a healthcare setting.
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