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Abstract: Nanomaterials, including carbon nanotubes, graphene oxide, metal–organic frameworks,
metal nanoparticles, and porous carbon, play a crucial role as efficient carriers to enhance enzyme ac-
tivity through substrate channeling while improving enzyme stability and reusability. However, there
are significant debates surrounding aspects such as enzyme orientation, enzyme loading, retention
of enzyme activity, and immobilization techniques. Consequently, these subjects have become the
focus of intensive research in the realm of multi-enzyme cascade reactions. Researchers have under-
taken the challenge of creating functional in vitro multi-enzyme systems, drawing inspiration from
natural multi-enzyme processes within living organisms. Substantial progress has been achieved in
designing multi-step reactions that harness the synthetic capabilities of various enzymes, particularly
in applications such as biomarker detection (e.g., biosensors) and the development of biofuel cells.
This review provides an overview of recent developments in concurrent and sequential approaches
involving two or more enzymes in sequence. It delves into the intricacies of multi-enzyme cascade
reactions conducted on nanostructured electrodes, addressing both the challenges encountered and
the innovative solutions devised in this field.
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1. Introduction

Natural catalysts include complete cells or enzymes, commonly referred to as “biocat-
alysts”. In particular, the emergence of multi-enzyme biocatalysts, capable of orchestrating
numerous biocatalytic reactions, has bridged the gap between single-enzyme catalysis and
whole-cell catalysis. This development has had a profound impact on various fields such
as biofuel cells (BFCs), biosensors, and biomedical engineering [1]. These multi-enzyme
cascades can be categorized based on the final product and intermediates formed during
the reactions: linear cascades [2,3], parallel cascades [4,5], orthogonal cascades [6,7], and
cyclic cascades [8]. Each cascade begins with the generation of a reactive intermediate,
and this categorization has expedited the creation of novel synthetic multi-enzymatic
pathways [9]. Designing enzyme cascade reactions can be approached in three major
ways: fusion of enzymes [10], co-immobilization of enzymes [11], and enzyme–scaffold
complexes [12]. When combined with various nanomaterials like carbon nanotubes (CNTs),
graphene oxide (GO), metal–organic frameworks (MOFs), MXenes, metal nanoparticles, or
bio and organic molecules such as DNA, crosslinkers, and redox polymers, these techniques
enhance surface area, spatial control, substrate mass transfer, stability, catalytic activity,
and the retention of co-immobilized enzymes [13]. Functionalizing nanomaterials with
specific ligands or molecules can also introduce selectivity to enzyme cascades, improving
their specificity.

Efforts have been made to replicate these enzymatic cascade events in vitro for use
in chemical synthesis. In biosensors, the recognition element that interacts with the target
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analyte comprises enzymes, antibodies, aptamers, and similar components [14]. Typically,
the first enzyme involved in the reaction with the analyte or yielding a product related
to the analyte is closely linked to this recognition element. In some cascade biosensors,
multiple enzymes participate in successive reactions, necessitating intermediary enzymes.
These intermediaries aid in converting the output of the first enzyme into a more detectable
form or one that can be utilized by a second enzyme. Finally, the last enzyme in the
cascade catalyzes a reaction that produces a detectable signal, often through changes in
color, electrical conductivity, or the release of a fluorescent or electrochemical signal [15].
Hence, this study provides an overview of the role of nanomaterials in enzyme cascade
reactions within biosensors and offers valuable insights into their practical applications.

BFCs based on enzyme cascade reactions represent a promising avenue for clean and
sustainable energy conversion. They hold the potential to revolutionize energy generation
by harnessing remarkable power efficiency while minimizing environmental impact [16].
High-energy density compounds can be electrochemically oxidized by biological catalysts
to produce electricity. However, there are constraints on the energy density of the resulting
BFCs. This limitation arises because single enzymes, typically used in bioanode designs,
can only partially oxidize biofuels via a two-electron process, leaving unused electrons [17].
Before the incorporation of nanomaterials, BFCs relied solely on a variety of enzymes and
their respective reaction activities. For example, Palmore et al. offered valuable insights into
the complete oxidation of methanol to CO2 using NAD-dependent dehydrogenases and
proposed strategies to reduce voltage losses in BFCs caused by activation overpotentials.
They demonstrated the effectiveness of benzyl viologen-mediated oxidation of NADH to
NAD+ by diaphorase in constructing BFCs [18].

Moving beyond single enzymes, the utilization of two or more enzymes offers advan-
tages such as greater energy densities. Additionally, quick electron transfer reactions occur
among multiple enzymes, especially when combined with nanomaterials possessing vari-
ous properties. This synergy results in enhanced current and power densities. This review
explores the latest developments and promising future directions in the fields of biosensors
and BFCs, with a particular focus on various nanomaterials, DNA, crosslinker support,
redox polymers, and polymers/hydrogels for multi-enzyme immobilization, providing an
in-depth discussion of these topics.

2. Nanomaterials—An Emerging Tool for Enzyme Cascade Reactions
2.1. Porous Carbon

Porous carbon materials have been attracting attention for their applicability for
scaffolds of enzyme immobilization [19]. They have high surface area, good electrical
conductivity, and outstanding biocompatibility, all of which are important properties in
fabricating bioelectrochemical devices such as BFCs and biosensors. The development of
biodevices based on direct electron transfer (DET) requires an adequate number of immo-
bilized enzymes, ideally with an acceptable orientation to facilitate the electron exchange
with the electrode and easy accessibility of the substrate to the active site. Adequate enzyme
immobilization has emerged as a crucial step in the process [20], as shown in Figure 1a,
which is attained via the mesoporous carbon materials, MgO-templated carbon (MgOC),
since they are known to have a high specific surface area and an excellent capacity for
enzyme adsorption. The size and volume of mesopores and micropores can be tuned by
selecting the MgO precursor and carbon precursor, respectively [21]. Having tunable pore
size is a great advantage, considering the application for biodevices, because the pore size
of MgOC can affect enzymatic and biocatalytic properties in the system. According to
Mazurenko et al., the catalytic current increased when the pore size was larger than the
enzyme size, attributed to high enzyme loading, while the enzyme stability at a higher
temperature was enhanced by the smaller pore size closer to the enzyme size. The improve-
ment in enzyme stability is probably because of the stronger interactions between MgOC
and enzymes [22]. Because of these attractive characteristics, MgOC has been utilized in
BFCs. Niiyama et al. developed a glucose/O2 BFC using MgOC-carbon textile composite
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electrodes and applying flavin adenine dinucleotide-dependent glucose dehydrogenase
(FAD-GDH) as the anode and bilirubin oxidase (BOD) as the cathode. The maximum
output power density of this BFC was 2 mW cm−2 at 0.4 V [23].

Considering the advantages of the use of mesoporous carbon materials, especially
MgOC, in bioelectrocatalysis, it is expected that the performance of BFCs can improve
by combining enzyme cascade reactions with mesoporous carbon electrodes. Shitanda
et al. applied a three-enzyme cascade reaction involving lactate oxidase (LOx), pyruvate
decarboxylase (PDC), and pyrroloquinoline quinone-dependent aldehyde dehydrogenase
(ALDH) to oxidation at the bioanode [24]. Four electrons were produced through one cycle
of this cascade reaction. All the enzymes were immobilized on the surface of a carbon
cloth (CC) with an MgOC electrode via physical adsorption. A BOD-modified electrode
was used as the biocathode. The BFC with an LOx-modified bioanode, with two electrons
per reaction cycle, produced a current density of about 0.3 mA cm−2 at 600 s, while the
BFC using LOx/PDC/ALDH with four electrons per reaction exhibited approximately
1 mA cm−2 of current density in the same conditions. In the LOx/PDC/ALDH cascade
system, the existence of pyruvate prevents a lack of fuel near the electrode surface even
after most lactate is consumed. This condition can solve the problem of the diffusion
speed of lactate, which is the rate-limiting step in BFCs using only LOx. Shitanda’s group
also fabricated a high-performance BFC which employs a BOD-dropped biocathode and a
two-enzyme bioanode using LOx and pyruvate oxidase (POx) [25], as shown in Figure 1b.
Both the electrodes are made of MgOC-modified carbon cloth, and the LOx and POx
are immobilized inside the pores. This BFC achieved the maximum power and current
density of 1.75 mW cm−2 and 7.25 mA cm−2, respectively. The combination of mesoporous
carbon materials and enzyme cascade reactions is also used for biosensors. For example,
Kawai et al. used Ketjen Black (KB), a kind of conductive carbon black, to modify a
gold (Au) microdisk electrode for the immobilization of POx and horseradish peroxidase
(HRP) as a pyruvate sensor [26]. By using this strategy, a linear current response of up to
600 µM of pyruvate was achieved. This sensor does not require mediators because it uses
DET-type bioelectrocatalysis.
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Figure 1. Schematic illustration of enzyme incorporation into the porous carbon material, where S, 
I, and P represent substrate, intermediate, and product, respectively (a) (reprinted with permission Figure 1. Schematic illustration of enzyme incorporation into the porous carbon material, where S,
I, and P represent substrate, intermediate, and product, respectively (a) (reprinted with permission
from Ref. [20], Copyright 2021, Elsevier) and its application towards BFC, where NQ represents
naphthoquinone. (b) (reprinted with permission from Ref. [25], Copyright 2023, Elsevier). Similarly,
the hydrogenase and reductase-loaded MWCNT for H2-driven NADH production is illustrated [27]
(c), and the role of MWNCT in constructing a biofuel is depicted (d) (reprinted with permission from
Ref. [28], Copyright 2023, ACS).
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2.2. Carbon Nanomaterials

CNTs are nanosized circular tubes with suitable characteristics for enzyme immobi-
lization such as adjustable surface entities, astonishing surface-volume area, good electrical
conductivity, and mechanical, chemical, and thermal stability [11,29]. A series of research
on enzyme cascade reactions was conducted with these nanotubes as electrode platforms
for constructing biosensors and BFCs, which is as follows. Zor et al. demonstrated the
potential for biocatalytic hydrogenations using enzymes immobilized on a CNT-lined
quartz column (CNC) in continuous flow of both hydrogenase and reductase [27], as seen
in Figure 1c. The sequential co-immobilization of α-amylase (AA) and glucoamylase (GluA)
on a silica microsphere immobilized on CNTs provided excellent stability and strong ad-
sorption of enzymes, and improved catalytic activity was discussed by Du et al. [30]. In
terms of application, Lang et al. developed an enzyme cascade system exhibiting an H2O2
biosensor and starch/O2 biofuel activity. It was constructed via the co-immobilization
of two enzymes, namely, GA and GOD, on a GCE modified with multi-walled carbon
nanotubes (MWCNTs) using a chemical crosslinking approach. The crosslinker, glutaralde-
hyde (GA), and the blocking agent, bovine serum albumin (BSA), were used to prevent the
leaching of enzymes. FAD present in the GOD promotes the DET between the GOD- and
CNT-modified electrodes. Using the GA/GOD/MWCNTs/GCE electrode as the bioanode
and laccase/MWCNTs/GCE as the biocathode, a starch/O2 BFC was constructed. This cell
displayed open circuit voltage up to approximately 0.53 V and a maximum power density
of 8.15 µW cm−2 at 0.31 V, which is comparable to the performance of existing glucose/O2-
based BFCs [31]. Similarly, Zhang et al. utilized a screen-printed electrode (SPE) modified
with two enzymes, invertase (INV) and GDH, to develop a MWCNT/INV/GDH electrode,
along with the use of redox mediators such as methylene green (MG) in combination with
[Ni(phendion)(phen)]Cl2 complex for the detection of nicotinamide adenine dinucleotide
(NADH) at a lower overpotential. This modified electrode was alternately built upon
DNA nanocomposites and polyethyleneimine (PEI) to create a bioanode. While MWCNTs
promoted effective electron transfer from sucrose oxidation and increased current density,
the layer-by-layer architecture showed advantages for sequential enzymatic reactions that
encouraged the efficient penetration of substrate and products in a cascade system. The
BFC produced a greater power density (W cm−2) with a GCE bioanode modified with
an MG or Ni complex, with 145.8% and 130.11% enhancements in comparison to an SPE
bioanode [32]. In another work, Contaldo et al. immobilized copper-containing nitrite
reductase (NiR) on MWCNT electrodes modified with 4-(1-pyren) butyric acid adamanty-
lamide [33]. This work explains that the role of 4-(1-pyren) butyric acid adamantylamine is
to enhance the hydrophobicity of CNT sidewalls; therefore, the hydrophobic part of the
modified CNTs can strongly interact with the hydrophobic substrate pocket of NiR. Hence,
the main driving force of this immobilization is hydrophobic interactions between NiR
and the surface of MWCNTs. The electrode showed a high bioelectrochemical reduction of
nitrite with a current density of 1.41 mA cm−2. Franco et al. prepared an ADH/ALDH-
immobilized bienzymatic bioanode using carbon paper containing electropolymerized
MG/MWCNTs [34]. They carried out power density measurements and found that the
ADH/ALDH bioanode produced a power density which was 6.3 times higher than that
obtained from the ADH monoenzymatic system. Later, Adachi et al. demonstrated that
by immobilizing the enzymes on MWCNTs functionalized with 1-pyrene carboxylic acid,
ADH/ALDH bienzymatic bioanode can be produced. Recently, high electricity was gen-
erated by an ethanol/air BFC using this bioanode, which showed a maximum current
density of 2.69 ± 0.09 mA cm−2 and a maximum power output of 0.48 ± 0.01 mW cm−2 at
0.366 ± 0.004 V [28], as shown in Figure 1d. Chansaenpak et al. fabricated a BFC using a
graphite electrode, which was modified with MWCNTs, as the cathode [35]. The modified
CNT electrode was immobilized with 1-pyrenebutyric acid N-hydroxysuccinimide ester,
HRP, and glucose oxidase (GOx), sequentially. The bioanode was a reduced graphene oxide
(rGO)-modified glassy carbon electrode which was immobilized with poly(toluidine blue
O)-modified NAD-dependent GDH. The BFC showed 31.3 µW cm−2 of a maximum power
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density at a potential of 0.3 V with 40 mM glucose. The proposed BFC was investigated for
the detection of glucose as a self-powered biosensor. By using a nonlinear calibration, the
sensor could determine glucose concentration in the range of 0.1–7.0 mM, which is a suit-
able level of detection for common biofluids such as blood. It is considered that such high
sensitivity as a biosensor was achieved via the increased potential of the cell (OCV = 0.65 V),
resulting from the enzymatic cascade reaction on the cathode. Thus, CNTs are proven to be
widely modifiable, and this has a greater advantage as an enzyme immobilization platform
for designing various biosensors and BFCs. Some examples of enzyme cascade systems on
CNTs and MgOC are summarized in Table 1.

Table 1. Porous carbon materials and CNT-based enzyme cascade BFCs and biosensors.

Cascade System Substrate Immobilization Matrix Power (µW/cm2) Concentration (mM) Ref.

LOx/POx lactate MgOC 1750 200 [25]

GA/GOD starch MWCNTs 8.15 0.5% (w/w) [31]

INV/MUT/GOD/FAD sucrose MWCNTs-modified carbon
felt (CF) 2900 500 [36]

INV/GDH sucrose MWCNTs 405 ± 6 200 [32]

ADH/ALDH/ForDH methanol carbon nanodots 68.7 ± 0.4 100 [37]

MAL/MUT/GOx maltose MWCNT-modified CF 2300 50 [38]

2.3. Graphene and Graphene Oxide (GO/rGO)

Since the GO surface’s functional groups are easily accessible for reactions involving
biomolecules, protein immobilization over graphene sheets is easily accessible, and hence,
it plays a vital role in biosensor applications [39]. Zore et al. investigated the creation
of a stable, high-temperature, and pH-resistant catalytic system for glucose oxidation,
achieved by combining two enzymes, GOx and HRP, within a polymer network via simple
physical adsorption of graphene oxide (GO) nanoplates [40] (Figure 2a). The destabilization
of GOx higher than 50 ◦C was retained via polymer adsorption with GO. The role of
GO–polyethylene glycol (PEG) served as a stable platform for delivering biologically active
compounds, such as enzymes, to cells in this work. This can enable precise control over
biological processes. Adsorption onto a 2D nanolayered material after enzyme–polymer
conjugation results in increased substrate channeling and high enzyme cascade stability [40].
Similarly, GOx and GA were immobilized on chemically reduced graphene oxide (CRGO)
to create a multi-enzyme microsystem reported by Zhao et al. The stability of the multi-
enzyme biocatalyst immobilized on CRGO was significantly improved compared to a
system using GO as the carrier. The starch-to-gluconic acid process was carried out in
one pot using this multi-enzyme microsystem as a biocatalyst, and the gluconic acid yield
could reach 82% in under two hours. These findings showed that the unique method
of building biomicrosystems with several enzymes on 2D CRGO via noncovalent bonds
to carry out some complex conversions was feasible [41]. Zhang et al. investigated a
step-by-step method to fabricate the biocatalytic system that involves GOx and cellulase
(CEL) for the effective conversion of glucose to gluconic acid and carboxymethyl cellulose
(CMC) [42]. Cyanuric chloride (TCT), EDC-NHS, GA, and tetrahydrofuran were used
for GO activation and for cleaning purposes during the fabrication of the electrodes. The
results demonstrated the viability of the technique of constructing a biomicrosystem with
CEL and GOD immobilized on GO via covalent bonds in order to convert CMC to gluconic
acid in a single step (Figure 2b). The enzyme cascade applications over GO/rGO need
deeper study and mechanistic features which would be of growing interest in future.
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3. DNA Scaffold for Multi-Enzyme Cascade System

A multi-enzyme cascade reaction is involved in the production of energy and the com-
plete metabolism of a biomolecule, in which the reaction efficiency of the enzyme depends
on the regulation of distance among the enzymes on the immobilized scaffold [43]. Con-
ventionally, the enzyme cascade system co-immobilizes via adsorption, covalent binding,
polymer hydrogel, nanomaterial, and crosslinking; all of the methods are based on random
co-immobilization, in which it is difficult to accurately control the spatial position of the
enzymes and high-efficiency system [44]. In order to solve this problem, various attempts
are developed such as encapsulation [45], layer-by-layer co-immobilization, and nanocham-
bers [46]. Among the various strategies for the control of spatial position enzymes, DNA is
the attractive biocompatible biomaterial used to construct nanoscale engineered structures
allowed in various applications [47]. The scaffold DNA sequences have determined many
targeted properties to modify the DNA nanostructure via other molecules for introducing
DNA-based functional architectures [48–52]. Usually, the DNA scaffold is used to manipu-
late a biomolecule such as a protein via engrafting to allow for robust molecule access [53].
Particularly, the assemblies of DNA and protein lead to the generation of structural and
functional biomaterial [54–56]. Recently, the DNA nanostructured material has been devel-
oped impressively with a variety of structures through the rational design of base pairing
method [57,58]. By taking these properties, the DNA origami nanostructure has precisely
led to several applications, including multi-enzyme [59], nanoactuator [60], protein–DNA
interactions [61,62], and aptamer [63]. However, the reaction efficiency of the enzyme
depends on the regulation of the distance of the multi-enzyme on the immobilized DNA
scaffold [64–66]. It is difficult to attain complete control of inter-enzyme distance, owing to
their reliably designed DNA scaffold. Various examples have been explored with the design
of DNA origami, as shown in Figure 3, such as when Wilner et al. topologically organized
the enzyme cascade system by the self-assembly of a DNA scaffold, namely, “hexagon-
shaped”. This work successfully controls the topology of DNA, which controls the relative
position of GOx and HRP [59]. Klein et al. constructed a triangle-shaped DNA scaffold
for the immobilization of three-enzyme amylase, maltase (MAL), and glucokinase; the
DNA nanostructured scaffold demonstrated the sequential catalysis of the multi-enzyme
by exploiting the channeling effects, as in Figure 4a [67]. Zhilei et al. assembled and named
a “DNA origami tile” for the two enzymatic GOx and HRP systems for electrochemical
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devices. This work mainly tuned the distance between the GOx and HRP to control the
electrical potential substrate/product flow through the cascade system, as in Figure 4b [68].
Recently, Chu et al. developed a Y-shaped DNA scaffold for the co-immobilization of GOx
and HRP. This work successfully reduces inter-enzyme spacing’s distance to improve the
cascade activity to 967 U mg−1 at 13.6 nm [69], as seen in Figure 4d. Similarly, Wang et al.
improved the controllability and biocompatibility of a scleroid skeleton by engineering a
DNA tetrahedron scaffold that controls the two-enzyme distance by pairing Gox and HRP.
This work precisely controls the distance allowed for DNA detection by 3 fM LOD, as in
Figure 4d,e [70,71].
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DNA Scaffold for the Multi-Enzyme BFC and Biosensor

The enzymatic BFC is a promising tool for energy conversion [72]; however, it has the
limitation of producing low energy density for the incomplete oxidation of fuel [73]. To
address this issue, a multi-enzyme cascade system has been developed for deep or complete
oxidation of fuel; it helps to enhance the high energy density of BFC to develop an effective
energy device. Recently, the DNA scaffold has become a powerful tool for increasing multi-
enzyme catalytic activity for power generation because DNA provides a programmable
and versatile platform to precisely immobilize the various enzymes in a nanometer scale.
By taking advantage of this, various researchers have used DNA origami to construct
enzymatic biofuel cells to improve power generation. In the work of Gilad et al., the first
DNA scaffold was utilized as an electrode platform towards the improvement of electrical
contact between the GOx and mediator [74], as shown in Figure 5. Later, The Minteer group
improved substrate channeling by utilizing DNA templated with two enzymes, namely,
alcohol dehydrogenase (ADH) and ALDH, for biofuel cells. The enzyme was tagged
with a zinc finger domain as well as anchored with a DNA-modified carbon nanotube
(Figure 6a) [75]. The constructed anode-based system was improved to the maximum
power generation of 24 µW cm–2. Recently, Song et al. constructed a 3D tetrahedral
DNA nanostructure (TDN) framework for the sensor platform (Figure 6b), leading to a
uniform biorecognition layer for biomarker detection with remarkable sensitivity [76].
This work engineered the bulk enzyme heterojunction strategy with TDN for sarcosine
oxidase (SOx) and HRP cascade employed for electrochemical biomarker detection. They
successfully created an enzyme cascade system in mm scale with an enzyme pair with
a 10 nm interface. Yongcun et al. constructed a high-performance cascade system by
developing an RCA-based technique toward a microsized DNA flower (DF) (Figure 6c),
which captures two enzymes, GOx and HRP [77]. The interaction between the enzyme
cascade and DF is bridged via magnesium from the enzyme and phosphate backbone on
DF. The DNA scaffold shows an excellent biointerface with high detection capabilities of
LOD 3.3 µM. Ding et al. designed a new DNA scaffold such as tetrahedron (TDN) [70] and
TDN-lattice [71] in order to make a GOx/HRP cascade system for the detection of thrombin
and DNA, respectively. This work successfully controls the distance between the enzymes
to improve the efficiency of the cascade reaction. Khiem et al. utilized a DNA scaffold to
immobilize the invertase and GOx cascade system to improve the catalytic efficiency of
sucrose (Figure 6d) [78]. This work has successfully assembled two enzymes on rolling
circle amplification (RCA) to improve power generation by 75% more than an enzyme in
solution. Table 2 reviews the comparison of BFCs and biosensors based on a multi-enzyme
cascade system via a DNA scaffold.
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Table 2. Comparison of BFCs and biosensors based on multi-enzyme cascade system via DNA scaffold.

Cascade System Fuel or Substrate DNA Scaffold
Structure

Power
(µW cm−2)

LOD/Detection
Range

Fuel Concentration
(mM) Ref.

INV/GOx sucrose DNA template 22 − 50 [78]

ALD/DLD methanol DNA template 24 − 120 [75]

GOx/HRP glucose RCA DNA flower − 3 µM [77]

GOx/HRP thrombin tetrahedron
(TDN)-lattice − 0.32 pM/0.001–10 nM [70]

GOx/HRP DNA Tetrahedron
(TDN) 3 fM/0.01 pM–10 nM [79]

4. Involvement of MOF Nanomaterial in Enzymes Cascade Reaction

Numerous studies have documented the effectiveness of enzymatic cascade systems
supported by MOFs for a variety of applications [80]. As generally known, an MOF
is an organic-inorganic hybrid material that is built from the coordination bonding of
various metal ions and organic linkers that form a porous crystalline structure [81]. The
ability to be synthesized under mild conditions, high chemical and temperature stability,
tunable structure, permanent porosity, and large surface area are the main reasons for the
MOF family becoming a favorable platform for enzyme modification. In the MOF–cascade
enzyme preparation process, the enzymes co-immobilization method mainly can be divided
into two different approaches: first, one-step co-immobilization, and second, multi-step



Biosensors 2023, 13, 1018 10 of 26

co-immobilization. In the first method, two or more enzymes will be mixed at the same
time in one pot with the MOF precursors, while in the second method, one enzyme will be
immobilized first, followed by the incorporation of the second enzyme, the third enzyme,
and so on. This strategy will produce a layer-by-layer enzyme–MOF architecture that will
give some advantages in certain applications (Scheme 1).
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4.1. One-Step Co-Immobilization of Enzymes Using MOF

Early research on immobilizing several enzymes in MOFs was mostly centered on a
one-step synthesis approach. Liu et al. simultaneously immobilized GOx and HRP in a
one-pot synthesis process along with Zn2+ and 2-Mim. As a common cascade system with
GOx and HRP, the glucose detection mechanism is based on a colorimetric method in the
help of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (Figure 7a). This work
pioneered the co-immobilization of enzymes inside of an MOF structure and inspired a lot
of researchers [82]. Chen et al. reported a cascade system involving three different enzymes,
β-galactosidase (β-Gal), GOx, and HRP, prepared via a one-pot co-immobilization process
in ZIF-8. The cascade reaction was initiated by lactose as a substrate. In detail, the immo-
bilized β-Gal catalyzed the hydrolysis of lactose to galactose and glucose, and then the
glucose was oxidized by GOx to produce gluconate and H2O2. The H2O2 was used by the
HRP to catalyze the oxidation of amplex red to resorufin, which can be observed through a
colorimetry method. Compared to the mixture of these three enzymes in a free system, the
embedded enzymes in the MOF show higher catalytic activity by 5.3 fold. This result is
because the confined cascade system has more concentrated product from each enzymatic
catalysis process, which is then used as feed for the subsequent reaction [83]. Still in the
same work, a cascade system established from NAD-dependent enzymes was also reported.
A phenylboronic acid-conjugated poly(allylamine) polymer was used to covalently bound
the NAD+ molecule. In this study, ADH, NAD+-conjugated polymer, and LDH were simul-
taneously immobilized in the ZIF-8 structure. Ethanol and pyruvate were the substrates
in this cascade system. In further detail, the immobilized ADH initiated the reduction of
NAD+-conjugated polymer to NADH-conjugated polymer by catalyzing the oxidation of
ethanol to acetyl aldehyde, while the LDH converted the pyruvate to lactate. The rate of
reduction of pyruvate to lactate is highly dependent on the individual components in the
cascade system [83]. Recently, one-step immobilization of GOx and HRP in ZIF-8 involving
a polymer was also reported by Fernando et al. In this case, poly-(acrylamide-co-diallyl
dimethylammonium chloride) (PADD), a cationic polymer with an amine functional group,
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was used to modulate the enzymes immobilization process (Figure 7b). In the glucose
detection process, the cascade reaction involves 3,3′,5,5′-tetramethylbenzidine (TMB) as
chromogenic substances. The production of H2O2 from the glucose–GOx reaction was
then used by the HRP to oxidize the TMB, which can be quantitively detected using a
spectrophotometry method. In this study, they found that compared to subsequent im-
mobilization, the one-step immobilization technique results in higher cascade enzymatic
activity (Figure 7c). The utilization of PADD also increases the enzyme catalytic activity,
1.5 higher compared to the immobilized enzymes without PADD (Figure 7d) [84].

Biosensors 2023, 13, x FOR PEER REVIEW 11 of 27 
 

help of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) (Figure 7a). This 
work pioneered the co-immobilization of enzymes inside of an MOF structure and in-
spired a lot of researchers [82]. Chen et al. reported a cascade system involving three dif-
ferent enzymes, β-galactosidase (β-Gal), GOx, and HRP, prepared via a one-pot co-immo-
bilization process in ZIF-8. The cascade reaction was initiated by lactose as a substrate. In 
detail, the immobilized β-Gal catalyzed the hydrolysis of lactose to galactose and glucose, 
and then the glucose was oxidized by GOx to produce gluconate and H2O2. The H2O2 was 
used by the HRP to catalyze the oxidation of amplex red to resorufin, which can be ob-
served through a colorimetry method. Compared to the mixture of these three enzymes 
in a free system, the embedded enzymes in the MOF show higher catalytic activity by 5.3 
fold. This result is because the confined cascade system has more concentrated product 
from each enzymatic catalysis process, which is then used as feed for the subsequent re-
action [83]. Still in the same work, a cascade system established from NAD-dependent 
enzymes was also reported. A phenylboronic acid-conjugated poly(allylamine) polymer 
was used to covalently bound the NAD+ molecule. In this study, ADH, NAD+-conjugated 
polymer, and LDH were simultaneously immobilized in the ZIF-8 structure. Ethanol and 
pyruvate were the substrates in this cascade system. In further detail, the immobilized 
ADH initiated the reduction of NAD+-conjugated polymer to NADH-conjugated polymer 
by catalyzing the oxidation of ethanol to acetyl aldehyde, while the LDH converted the 
pyruvate to lactate. The rate of reduction of pyruvate to lactate is highly dependent on the 
individual components in the cascade system [83]. Recently, one-step immobilization of 
GOx and HRP in ZIF-8 involving a polymer was also reported by Fernando et al. In this 
case, poly-(acrylamide-co-diallyl dimethylammonium chloride) (PADD), a cationic poly-
mer with an amine functional group, was used to modulate the enzymes immobilization 
process (Figure 7b). In the glucose detection process, the cascade reaction involves 
3,3′,5,5′-tetramethylbenzidine (TMB) as chromogenic substances. The production of H2O2 
from the glucose–GOx reaction was then used by the HRP to oxidize the TMB, which can 
be quantitively detected using a spectrophotometry method. In this study, they found that 
compared to subsequent immobilization, the one-step immobilization technique results 
in higher cascade enzymatic activity (Figure 7c). The utilization of PADD also increases 
the enzyme catalytic activity, 1.5 higher compared to the immobilized enzymes without 
PADD (Figure 7d) [84].  

 

Figure 7. (a) One-step co-immobilization enzymes cascade in ZIF-8 (reprinted with permission from [82],
Copyright 2015, Royal Chemical Society), (b) one-step co-immobilization enzymes cascade involving
PADD polymer, (c) catalytic activity comparison of free enzyme and different types of immobilized
cascade enzymes, (d) catalytic activity comparison of immobilized enzymes with and without PADD
polymer (reprinted with permission from [84], Copyright 2023, American Chemical Society).

The covalent immobilization of enzymes on the surface of functionalized MOFs
has also been described, in addition to immobilization through encapsulation or co-
precipitation. The advantage of using this strategy is efficient substrate diffusion due
to a barrierless immobilization approach. For example, Xia et al. synthesize NH2-MIL-101
from Fe3+ metal ions and NH2-BDC linkers. The available NH2 site on the MOF surface
was crosslinked to the amine group of the enzyme using glutaraldehyde. Palmitic acid was
used to create defects on the NH2-MIL-101 surface, which enhances the peroxidase-like
activity of this material. Two different enzymes, GOx and β-Gal, were immobilized to carry
out the colorimetric detection of lactose. In the presence of lactose, the β-Gal will catalyze
this substrate to galactose and glucose, then, the glucose will be oxidized by the GOx and
produce H2O2, and finally, the peroxidase-like activity of the NH2-MIL-101 catalyzes the
oxidation of TMB in the presence of H2O2 [85].

4.2. Multi-Step Co-Immobilization of Enzymes Using MOF

A multi-step enzymes immobilization using zeolite imidazole frameworks (ZIF-8) was
reported by Man et al. In detail, GOx was encapsulated in a ZIF-8 structure using the co-
precipitation method. Then, the as-synthesized GOx@ZIF-8 performed two synthetic routes
with HRP and other ZIF-8 precursors via a similar method. In this case, the GOx@ZIF-8
acted as a core for the growth of HRP@ZIF-8 which acted as a shell, in a core–shell structure,
namely, GOx@ZIF-8 in HRP@ZIF-8. Despite that the synthesizing process is layer-over-
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layer assembly, the pore distribution of the original ZIF-8 did not change significantly; thus,
the diffusion of the substrate through the ZIF-8 micropores was not restricted. As can be
seen in Figure 8a, in the cascade reaction mechanism, the glucose molecule diffuses via
the micropore of ZIF-8 and reaches the encapsulated GOx inside it, and then the produced
H2O2 from this reaction is used by the encapsulated HRP in the outer side (shell) to catalyze
the reaction of o-phenylenediamine (OPD) to 2,3-diaminophenazine (DAP), which can be
detected fluorescently [86]. The main advantage of utilizing this enzymes immobilization
strategy is to separate enzymes that cannot directly interact with each other but can carry
out a cascade reaction. In the same work, they immobilize alkaline protease (Pro), ADH,
and a co-enzyme (NADH) in different compartments. The ZIF-8 structure is shown in
Figure 8b. This strategy is beneficial for preventing ADH digestion by the protease as well
as maintaining NAD+/NADH co-factor regeneration.
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Liu et al. presented a compartmentally immobilized enzyme system for the cascade
reaction of glucose and phenol sensing. In this work, they immobilized HRP in the inner
cavity of a hollow ZIF-8 structure, while the GOx was immobilized on the outer side, closer
to the surface. A hollow ZIF-8 structure was achieved via a templated synthesis strategy
using sodium deoxycholate (NADC) hydrogel. This strategy successfully overcomes the
toxic effect of H2O2 for the enzyme. The sensing mechanism is based on the color change
of ABTS in the presence of H2O2 from the glucose–GOx reaction and HRP. For phenol
detection, the phenol substitutes for the role of ABTS in the reaction system. Another
approach in multi-step enzymes co-immobilization is to separately immobilize enzymes
in different MOFs and then mix them to carry out the desired cascade reaction. As an
example, Xu et al. immobilized GOx and protease in different MOF carriers via separate
immobilization processes. This strategy successfully prevents the digestion of GOx by
protease and carries out a cascade reaction initiated by β-glucopyranose at the same time. In
the synthesis process, a PMMA (polymethyl methacrylate) polymer was used to encapsulate
the enzyme and forming a PMMA–enzyme spheres, and then UIO-66, a member of the
MOF family composed from Zr4+ metal ion and benzene dicarboxylic acid (BDC) linker,
was grown surrounding the PMMA–enzyme spheres. Zhao et al. reported a multi-step
co-immobilization of cholesterol oxidase (ChOx) via surface adsorption and HRP via the
pore entrapment method, on the same PCN-333 MOF. In the synthesis process, the PCN-333
was first synthesized using triazine-2,4,6-triyl-tribenzoic acid (H3TATB) ligand and Al3+ as
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metal ions. A short comparison of enzymes immobilization for cascade reactions in MOFs
using one-step and multi-step immobilization strategies is shown in Table 3.

Table 3. Comparison of one-step and multi-step enzyme co-immobilization in MOFs.

Immobilization Techniques Description Advantages Disadvantages

One-step The enzymes were
immobilized at once.

Simple synthesis process
Short distance of each enzyme

will improve the cascade
reaction efficiency

Cannot be used to immobilize
unmatched enzyme

Multi-step

The first enzyme was
immobilized, followed by the
immobilization of the second

enzyme, the third enzyme,
and soon in a

compartment structure.

Can immobilize various types
of enzymes, even unmatched
enzymes or enzyme that can
inhibit each other’s activity
Prevent the toxicity of the
enzyme caused by another

enzyme’s byproduct reaction

Longer synthesis steps
Limiting analyte diffusion

The ChOx was absorbed on the surface of PCN-333 via 40-min incubation at 37 ◦C.
The HRP was then immobilized using a similar step on the ChOx/PCN-333. However,
due to the dimension of HRP (4.0 nm × 4.4 nm × 6.8 nm) being smaller than that of ChOx
(size: 5.13 nm × 6.30 nm × 7.30 nm), the HRP can penetrate and then be entrapped in the
PCN-333 pores (pore size = 5.5 mm). This strategy can carry out the colorimetric detection
of cholesterol in the presence of ABTS using a colorimetric approach [87].

4.3. Progress in MOF Cascade Enzyme in Electrochemical BFCs and Biosensor Applications

Most of the reported works utilize MOFs to support cascade reactions of multi-enzyme
in colorimetric or luminescence-based analysis. Only limited studies use this approach for
electrochemical applications such as electrochemical sensors or BFCs. Compared to the
colorimetric method, bioanalyte detection using an electrochemical technique provides
some advantages such as wider linear range of detection and faster response time. Electro-
chemical techniques also can be combined with future technology such as wearable devices,
self-powered devices, etc. For instance, Yimamumaimaiti et al. synthesized GOx–HRP encap-
sulated in MAF-7 (zinc and 3-methyl-1,2,4-triazole (Hmtz)) combined single-walled carbon
nanotube (SWCNT) composite as a bioanode material for implantable enzymatic glucose
BFCs. The encapsulation in an MOF could protect the enzymes against various inhibitors that
present in human blood. The synergetic reaction of the GOx–HRP produces a high current
density of 1.68 mA cm−2 at −0.35 V [88], as seen in Figure 9a,b. Meanwhile, when only GOx
was used, the current density output was 0.3 mA cm−2. As shown in Table 4, the use of
MAF-7 improves the enzyme bioelectrode stability when it is exposed with high temperature
and some enzyme denaturant chemicals. This strategy increases the power density of the
enzymatic BFCs in human whole blood from 14 µW cm−2 to 119 µW cm−2 compared to the
unencapsulated enzymes.

More recently, an enzyme microneedle patch utilized encapsulated enzymes (GOx
and HRP) in a ZIF-8 structure to construct an implantable self-powered device for diabetic
wounds healing. A conductive polymer, polypyrrole (PPy), was used to improve the
microneedle patch conductivity. The cascade reaction of GOx and HRP consumes the
glucose in the wounds area of diabetes patients and produces a stable microcurrent that
could improve the regeneration of the tissue around the wound area without leaving
a tissue scar. The utilization of ZIF-8 in this work is also to protect the enzyme and to
improve enzyme stability in human body fluid environment. In addition, ZIF-8 also has an
antibacterial feature that can protect the wounds from microorganism infections [89].
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Table 4. Comparison of BFC performance with and without MAF-7 [88].

Aspects SWCNT-GOx/HRP SWCNT-MAF-7-GOx/HRP

Current density
(mA cm−2) 0.3 1.68

Temperature stability (remaining current
density after heating at 65 ◦C) 13% 53%

Chemical stability (remaining current density
in organic solvents)

Significant current density loss when exposed
to organic solvents

77% in THF
60% in methanol

60% in DMF
53% in pyridine

Pmax in blood (µW cm−2) 14 119

OCV in blood (V) 0.22 0.34

Operation stability
(hours) 2 14

Another group demonstrated that GOx was encapsulated with nickel palladium
catalyst nanoparticles (NiPdNps) in a ZIF-8 nanoflower to obtain a nanobio composite
material for glucose sensing applications. As reported, this strategy was able to detect
glucose via both colorimetry and the electrochemical method. The NiPd acts as a tandem
catalyst for the GOx. This material provides peroxidase-like activity and ORR activity, as
well. In the colorimetry analysis, the peroxidase-like activity of the NiPd could oxidize
the OPD in the presence of H2O2 from a glucose oxidation reaction, resulting in the color
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changing linearly with the increase in glucose concentration, while in electrochemical
analysis, the ORR activity of the NiPd catalyst is more dominant. Thus, upon the glucose
oxidation reaction by the GOx, the oxygen content in the solution will decrease, resulting in
the decrease in the ORR current linearly with the increase in glucose concentration. These
two methods have a significant difference in the saturation value of detection. By using the
electrochemical technique, the dynamic range concentration obtained for glucose was 0.1
to 1.7 mM, while for the same case when the colorimetric technique was used, the dynamic
range was observed to be 0.01 to 0.3 mM. Hence, the superiority of the electrochemical
method over the other techniques is clear in this comparison [90].

5. Crosslinked Support

It is easy to oxidize monosaccharides, such as glucose, to make a BFC using one
enzyme [91,92]; however, disaccharides, such as sucrose, are challenging to oxidize using
multiple enzymes, considering their highly efficient energy storage and biosensors [93]. A
variety of research methodologies have been explored for the design of enzyme cascades,
including programmed DNA scaffolds and random co-immobilization. It is usually easier
to design an enzyme cascade system through random immobilization, such as adsorption,
covalent binding, and crosslinking. Among these, crosslinking is the most promising
technique that allows for the incorporation of enzymes and redox molecules onto the
support platform [94]. In order to create the enzyme cascade system, the crosslinking
technique is employed to co-immobilize different enzymes on the support surface with
close proximity, thus allowing for its catalytic efficiency and reusability [95]. In addition,
in some cases, the crosslinking technique can also control spatial distance and substrate
channeling to attain catalytic efficiency [96]. Substrate channeling has a great impact on
the design of multi-enzyme cascades to create an effective substrate oxidation pathway.
This can be achieved via a co-immobilized enzyme, where the substrate transfers from one
enzyme to another enzyme via the control of crosslinker spacer arm length (Scheme 2). The
development of an optimal protocol considering the length and reactivity of a crosslinker
for making an efficient cascade system for the implementation of biosensors and BFCs
is therefore imperative. There are some examples of the use of crosslinkers for the de-
sign of cascade systems, for example, the Komaba group extensively investigated via a
crosslinker in order to design a multi-enzyme cascade system, where sucrose, maltose,
and starch were used as fuel for constructing BFCs. Handa et al. utilized glutaraldehyde
(GA) for the co-immobilization of four different enzymes such as INV, mutarotase (MUT),
GOx, and fructose dehydrogenase (FDH) in order to generate a sucrose BFC [36,97], as
in Scheme 3A. The power density was generated by constructing the sucrose/O2 BFC as
2.9 mW cm−2. This work demonstrated a four-enzyme cascade system using sucrose as
a fuel from beverages when the enzyme was co-immobilized via a crosslinker. The GA
is widely used as a crosslinker for protein or enzyme conjugation [98], and the length
of the crosslinker is very short (7.3 Å) [99]. However, the reaction of this crosslinker is
prompt and makes a rigid multi-enzyme network [98]; such type of structure impedes
the diffusion of a substrate through the multi-enzyme cascade network [100,101]. The
same crosslinker GA, utilized by Yasujima et al., demonstrated BFCs to consume maltose
as fuel for power generation by incorporating MAL, MUT, and GOx enzymes [38], as
in Scheme 3B. This work successfully combines various enzymes to construct a BFC on
carbon felt towards the developed BFC, demonstrating a high power output density of
2.3 mW cm−2 by design of maltose/O2 BFC. Considering the drawbacks of GA, alterna-
tively, Toda et al. used poly(ethylene glycol) diglycidyl ether (PEGDGE) as a crosslinker
to develop a bioanode using the co-immobilization of AA, glucoamylase (GAL), MUT,
and flavine adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH), as in
Scheme 3C [102]. This work successfully oxidized polysaccharide starch to the generation
of a current via the co-immobilized multiple enzymes cascade system at 5.8 mA cm−2. The
PEGDGE is a well-known protein/enzyme crosslinker, and the rate of reaction with the
primary amine is slower; however, the spacer length is as high as 40 Å, which has a great
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impact on enzyme-to-enzyme spacing for the design of a multi-enzyme cascade system.
The Minteer group developed a BFC where the mitochondrial enzyme was immobilized via
two types of crosslinkers, GA and dimethyl suberimidate (DMS) [103]. The result exhibited
a higher power density output (0.03 mW cm−2) via the crosslinked enzymes than via the
free enzymes from the lysate of native mitochondria. Their finding mainly related to the
positive effect on the substrate channeling that was performed by the crosslinker. The com-
parison of various BFCs is constructed using an enzyme cascade system via a crosslinker in
Table 5. Considering the spacing among the enzymes on the cascade system, the length and
reactivity of the crosslinker are important factors; therefore, an optimal-size and reactive
crosslinker is desirable for the design of a cascade for biofuel and biosensors. In addition,
the above-mentioned multi-enzyme cascade system immobilized by a crosslinker uses
either GOx or FAD-GDH in order to oxidize the final substrate β-D-glucose to gluconolac-
tone (Scheme 3) for the BFC or biosensor. Typically, in mediated electron transfer, the GOx
can also utilize oxygen as an artificial electron acceptor [104]; therefore, the GOx cascade
system may lead to the error of the biofuel and biosensor devices. Alternatively, FAD-
GDH is the oxygen-insensitive prominent oxidoreductase enzyme employed for glucose
oxidation. However, the FAD-GDH active center is covered by insulating debris that is
unable to transfer electrons directly into the electrode surface; therefore, a redox mediator
is required. In order to attain the stable BFC and sensitive biosensor, the FAD-GDH must
be immobilized along with the redox mediator in the enzyme electrode system [105–107].
Table 5 provides the comparison of BFC based on a multi-enzyme cascade via crosslinkers
of various modifications of anodes.
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Table 5. Comparison of BFC based on multi-enzyme cascade via crosslinker.

Multi-Enzyme as
Anode Fuel Crosslinker Current Output

(mA cm−2)
Power (mW

cm−2) OCV (V) Fuel Conc. Ref.

INV, MUT, GOx, and
FDH Sucrose GA 12 2.9 0.69 50 mM [36]

MAL, MUT, and GOx Maltose GA 6.5 2.3 0.69 50 mM [38]

AA, GluA, MUT, and
FAD-GDH Starch PEGDGE 5.8 − − 0.8% (w/v) [102]

β-glucosidase and PDH β-glucan GA − 0.031 − 0.5 % (w/v) [108]

Metabolon Pyruvate GA, DMS 0.1 0.03 − 100 mM [103]

6. Polymeric Matrix/Hydrogel

The mediated multi-enzyme cascade system has an advantage in improving the energy
density and sensitive detection for biofuels and biosensors, respectively [109,110]. The
immobilization of the mediator with enzyme is crucial for the complete oxidation of fuel
or biomolecules to obtain an efficient cascade system. The redox polymer contains an
electrochemically active species along with an enzyme and a crosslinker in order to link
with polymer and enzyme, thus allowing for a 3D structure [107,111]. Once it forms a
network, it increases the immobilized amount of enzyme and redox species in the electrode
surface, where electron transfer is improved by self-exchange among the immobilized
enzyme mediator to the electrode surface [112]. The redox polymer has been widely applied
in the design of BFCs [113] and biosensors [114] for several decades. In addition, the redox
polymer still has many modern applications, such as the design of self-powered sensors,
wearable sensors, and implantable sensors [115]. Several examples were also provided for
how redox polymers can be used to create multi-enzyme cascade BFCs and biosensors. For
example, Hickey et al. demonstrated a tetramethyl-ferrocene-modified poly(ethylenimine)
(FcMe4-C3-LPEI) (Scheme 4A) as a redox polymer along with a crosslinked multi-enzyme
cascade system including INV, FDH, and Gox, as in Figure 10a [116]. A crosslinker ethylene
glycol diglycidyl ether (EGDGE) is used to interact from enzyme to enzyme, enzyme to
polymer, and mediator to enzyme, thus allowing for a 3D network. They successfully
oxidized sucrose via multiple enzymes, generating 0.36 mA cm−2 and 0.06 mW cm−2

of current and power density. The low power generation may be attributed to the slow
conversion of the mutarotation of α-glucose and low cell voltage. Lau et al. demonstrated
a linear polyethylene imine (LPEI) along with EGDGE as a crosslinker and poly MG as
a redox mediator, as seen in Figure 10b [117]. This work describes two types of cascade
systems, one for ethanol oxidation via ADH and ALDH and another one for methanol
oxidation via ADH, ALDH, and formate dehydrogenase (FDH) multi-enzyme. This work
generated 0.04 and 0.01 mW cm−2 power density by utilizing ethanol and methanol as fuel,
respectively. Molecularly, this multi-enzyme cascade system was designed by the epoxy
crosslinker as an enzyme–enzyme and enzyme–polymer 3D crosslinked network, where
the enzyme is incorporated. However, the mediator is electropolymerized on the surface,
and the electrical connection among the enzymes on the 3D network is challenging. Neih
et al. designed a pentacyanoferrate complex-based redox polymer (Scheme 4B) for the
mediated electron in order to detect creatinine from multiple enzymes such as creatinine
amidohydrolase (CNH), creatine amidohydrolase (CRH), sarcosine oxidase (SOD), and
peroxidase (POD), as shown in Figure 10c [118]. The redox complex successfully detected
12 µM of creatinine with 12–500 µM linear range. The 3D redox composite was prepared
via a PEGDGE crosslinker, which incorporated enzyme along with redox polymer. Auino
Neto et al. used a ferrocene-LPEI-based redox polymer with EGDGE as a crosslinker for
the generation of power from ethanol via the immobilization of a multi-enzyme cascade
system [97]. This work generated 0.02 mW cm−2 power density when ADH and ALDH
were used and 0.01 mW cm−2 power density when ADH, ALDH, S-acetyl-CoA synthetase,
citrate synthase, aconitase, and isocitric dehydrogenase were used. In this immobilization
technique, the EGDGE is connected to enzyme–enzyme, enzyme–polymer, and polymer–
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polymer via the amine–epoxy reaction, which forms a 3D network with electron transfer
by self-exchange via a mediator. Usually, the ferrocene has high formal potential and has
some drawbacks, such as the oxidized form having slow hydrolysis and its derivatives
not being soluble in aqueous solution, which causes an error in the design of sensors
or BFCs [119]. Alternatively, the osmium (Os)-based redox complex easily controls the
redox potential by changing ligands [120] and high solubility in water. Therefore, Kopiece
et al. designed an Os complex with PEGDGE as a crosslinker for the immobilization of
purine nucleoside phosphorylase (PNP) and xanthine oxidase (XOx) in order to detect
phosphate molecules, as shown in Figure 10d [121]. The PNP and XOx were crosslinked in
the redox polymer Os complex (Scheme 4C) via PEGDGE integration, where a 3D support
matrix was formed via a PNP/XOx-to-Os complex and PNP-to-XOx through an amine–
epoxy reaction. This design improves the bienzymatic layer, which allows the electron
to shuttle from the enzyme to the electrode surface via a hopping mechanism. Recently,
Rafighi et al. co-immobilized pyranose dehydrogenase (PDH) and Rhodothermus marinus β-
glucosidase (RmBgl3B) on the Os complex-based buckypaper electrode in order to construct
a β-glucan/O2 BFC. In molecular design, the GA was used to make a 3D network matrix
with Os complex (Scheme 4D), wherein GA formed the PDH-to-RmBgl3B network along
with the polymer matrix, which incorporated the enzyme and improved electron transfer.
The β-glucan/O2 BFC generated 0.031 mW cm−2 power density. All the above-mentioned
cascade systems are designed via a mediator tethered to the polymer backbone (Table 6).
The electron diffusion for the mediator-tethered system can be described by a function
of mediator amount, mediator flexibility, and self-exchange rate. In addition, the rate
of electron transfer can be achieved by the extended spacer length from the mediator to
the polymer backbone [122–124]. Therefore, an alternative immobilization technique is
desirable in order to avoid the polymer-bound strategy such as a redox-crosslinked network
into the multi-enzyme cascade system [94].
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Table 6. Enzyme cascade system based on redox polymer.

Multi-Enzyme as Anode Fuel Redox Polymer Current Output
(mA cm−2)

Power (mW
cm−2) OCV (V) Fuel Conc. Ref.

β-glucosidase, PDH β-glucan Os complex,
glutaraldehyde − 0.031 − 0.5 % (w/v) [108]

INV, FDH, GOx Sucrose Fc-LPEI, EGDGE 0.36 0.06 − 100 mM [116]

ADH, ALDH Ethanol Fc-LPEI, EGDGE 0.23 0.02 − 30 mM

[97]
ADH, AldDH, S-acetyl-CoA
synthetase, citrate synthase,

aconitase, and isocitric
dehydrogenase

Ethanol Fc-LPEI, EGDGE 0.12 0.01 − 30 mM

ADH, AldDH Ethanol Poly-MG,
LPEI-EGDGE

0.12 0.04 0.53 100 mM
[117]

ADH, AldDH, ForDH Methanol 0.08 0.01 0.38 100 mM

PNP, XOx Phosphate Os complex,
PEGDGE − − − − [121]

7. Conclusions and Future Perspectives

This review offers a comprehensive exploration of various materials, including nano-
sized materials, biomaterials, and micro/mesosized porous materials. The primary ob-
jective is to augment the efficiency of multi-enzyme cascade systems. Throughout this
analysis, two critical factors consistently emerge: (1) the precise spatial arrangement of en-
zymes and (2) the effective channeling of substrates between these enzymes. These factors
are pivotal in ensuring the seamless transfer of substrates between enzymes, minimizing
undesired side reactions and ultimately amplifying the overall catalytic efficiency.

Selecting the most suitable nanomaterial for the intended application and consistently
synthesizing it with the requisite properties pose formidable challenges that demand exper-
tise in materials science. The task of affixing an enzyme cascade system to a nanomaterial
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while preserving enzyme activity and stability is particularly intricate. In intricate enzy-
matic systems, where factors beyond the target analyte can influence biosensor performance,
acknowledging the crosslinking effect becomes imperative.

The integration of enzyme cascade systems with graphene oxide (GO) is an emerging
research area, albeit one with a limited body of work compared to more established
domains. It is evident that achieving a more profound or complete oxidation of fuels
can significantly enhance the power density and current density of BFCs through the
incorporation of enzyme cascade systems. However, the introduction of multiple enzymes
into BFC construction introduces complexities that may potentially restrict its practicality.
The utilization of multiple enzymes often enables the electrochemical detection of a greater
variety of biomarkers and bolsters the performance of biosensors, but employing more
than two enzymes in a solution can present challenges, such as random enzyme dispersion
and collisions, introducing additional hurdles.

Thus, effective solutions necessitate interdisciplinary collaboration, cutting-edge nano-
material fabrication techniques, thorough characterization protocols, and innovative biosen-
sor design strategies. Future research endeavors will be dedicated to elevating the sensitiv-
ity and selectivity of enzyme cascade techniques built upon nanomaterial foundations.
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Abbreviations

AA α-amylase.
ABTS (2:2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)).
ADH alcohol dehydrogenase.
ALDH aldehyde dehydrogenase.
BDC benzene dicarboxylic acid.
BFCs biofuel devices.
BOD bilirubin oxidase.
BSA bovine serum albumin.
CC carbon cloth.
CEL cellulase.
CMC carboxymethyl cellulose.
CNH creatinine amidohydrolase.
CNT carbon nanotubes.
CRGO chemically reduced graphene oxide.
ChOx cholesterol oxidase.
DAP 2:3-diaminophenazine.
DET direct electron transfer.
DF DNA flower.
DMS dimethyl suberimidate.
DNA deoxyribonucleic acid.
EGDGE ethylene glycol diglycidyl ether.
FAD flavin adenine dinucleotide.
FAD-GDH flavin adenine dinucleotide-dependent glucose dehydrogenase.
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FDH fructose dehydrogenase.
ForDH formate dehydrogenase.
GA glutaraldehyde.
GCE glassy carbon electrode.
GDH glucose dehydrogenase.
GO graphene oxide.
GOD/GOx glucose oxidase.
GluA/GAL glucoamylase.
H3TATB 2:4,6-triyl-tribenzoic acid.
HRP horseradish peroxidase.
INV invertase.
LOD limit of detection.
LOx lactate oxidase.
LDH lactate dehydrogenase.
MAF-7 zinc and 3-methyl-1,2,4-triazole (Hmtz)).
MAL maltase.
MG methylene green.
MOF metal–organic frameworks.
MUT mutarotase.
MWCNT multiwalled carbon nanotubes.
MgOC magnesium oxide templated carbon.
NADC sodium deoxycholate.
NADH nicotinamide adenine dinucleotide.
NiPdNPs nickel palladium nanoparticles.
NiR nitrite reductase.
OCV open circuit voltage.
OPD o-phenylenediamine.
ORR oxygen reduction reaction.
PADD poly-(acrylamide-co-diallyl dimethylammonium chloride).
PC porous carbon.
PDC pyruvate decarboxylase.
PDH pyranose dehydrogenase.
PEDGE poly(ethylene glycol) diglycidyl ether.
PMMA polymethyl methacrylate/poly(methyl 2-methylpropenoate).
PNP purine nucleoside phosphorylase.
POD peroxidase.
Pox pyruvate oxidase.
PPy polypyrrole.
RCA rolling circle amplification.
RmBgl3B Rhodothermus marinus β-glucosidase.
SOx/SOD sarcosine oxidase.
SWCNT single-walled carbon nanotubes.
TDN tetrahedron.
TMB 3:3′:5,5′-tetramethylbenzidine.
XOx xanthine oxidase.
ZIF zeolitic imidazolate framework.
β-Gal β-galactosidase.
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