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Abstract: Integrating biosensors with smartphones is becoming an increasingly popular method for
detecting various biomolecules and could replace expensive laboratory-based instruments. In this
work, we demonstrate a novel smartphone-based biosensor system with a gradient grating period
guided-mode resonance (GGP-GMR) sensor. The sensor comprises numerous gratings which each
correspond to and block the light of a specific resonant wavelength. This results in a dark band,
which is observed using a CCD underneath the GGP-GMR sensor. By monitoring the shift in the dark
band, the concentration of a molecule in a sample can be determined. The sensor is illuminated by a
light-emitting diode, and the light transmitted through the GGP-GMR sensor is directly captured
by a smartphone, which then displays the results. Experiments were performed to validate the
proposed smartphone biosensor and a limit of detection (LOD) of 1.50 × 10−3 RIU was achieved for
sucrose solutions. Additionally, multiplexed detection was demonstrated for albumin and creatinine
solutions at concentrations of 0–500 and 0–1 mg/mL, respectively; the corresponding LODs were
1.18 and 20.56 µg/mL.

Keywords: smartphone biosensor; optical biosensor; guided-mode resonance; albumin; creatinine

1. Introduction

Since 2004, smartphones have become indispensable devices for people worldwide [1].
The data storage, wireless communication, high-resolution imaging, and high-speed com-
puting capabilities of smartphones are continually increasing, and these devices have
numerous sensors, such as vibration, rotation, and acceleration sensors, cameras, and
satellite navigation receivers. Some researchers have integrated custom hardware and
software into smartphones for various applications, including medical tests. The current
smartphone biosensor systems can be classified into four categories in accordance with
their measurement or detection target, namely, cell or pathogen detection, biochemical
reaction detection (e.g., blood sugar detection), immune detection, and molecular de-
tection (e.g., DNA) [2]. They can also be classified by their detection mechanism into
microscope (e.g., bright field) [3,4] fluorescence [5,6], electrochemical [1,7,8], reagent test
paper [9–11] or colorimetric [12–14], and lateral flow assay [7,15] detection systems. Smart-
phone spectrometers have also been developed that act as signal readout devices for several
optical biosensors [16–20].

For each detection mechanism, different detection instruments are required to measure
the target physical quantities. Recently, researchers have developed various smartphone-
integrated readout or measurement devices. The majority of studies on smartphone-
integrated biomolecule detection methods have focused on fluorescence and colorimetrical
detection [5–7,9–15]. In these applications, the smartphone is used for image capture
and subsequent analysis to quantify the variation in the color of a test strip or sample.
Researchers have mainly focused on designing a fixture or cradle for holding the smart-
phone, other necessary components, or user interface software [9–15]. Electrochemical
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biosensors usually use surface-modified electrodes that react with specific molecules (e.g.,
blood sugar, uric acid, and blood ketones). To integrate these biosensors with smartphones,
an external circuit module is often required to read out the sensor signal, which varies
in accordance with the concentration of the detected molecules. Three detection mech-
anisms are commonly used: those based on potential, impedance, and current [21,22].
Conventional electrochemical biosensors have shortcomings, including poor stability and
reproducibility [23]. In contrast, optical biosensors have various advantageous capabilities,
namely, high sensitivity, remote detection, real-time monitoring, multiplexing, a simplified
design, and immunity from electromagnetic interference. In contrast to that of electro-
chemical biosensors, the performance of optical biosensors is less strongly affected by
the pH of reagents. Hence, optical biosensors have been widely used in the detection of
various biomolecules.

Surface plasmon resonance (SPR) and localized SPR (LSPR) sensors are the optical
biosensors most commonly integrated with smartphones. Preechaburana et al. [24] de-
signed a polydimethylsiloxane (PDMS) optical coupling mechanism in which various
optical components are integrated with an SPR chip. The PDMS coupling mechanism
allows the light from the smartphone screen to be coupled into the SPR chip and sub-
sequently couples the reflected light from the SPR chip into the smartphone’s camera.
The light intensity was then measured with a CCD. The detection mechanism was based
on angle-resolved intensity modulation; this method requires a complex optical path de-
sign and has demanding requirements regarding the alignment between the coupling
mechanism and the smartphone.

Bremer et al. [17] and Liu et al. [25] avoided the need for a free-space optical design
by using optical fibers for SPR detection; in both studies, the smartphone’s built-in flash
was employed as the light source. In 2018, Zhang et al. [16] used a grating-coupled
SPR chip with a custom-made optomechanical coupling device that enabled the flash
light to be coupled with the SPR chip. The reflected light was transmitted through a
diffraction grating which converted the spectral information into pixel information that
could be captured using the CCD and allowed the resonant wavelength to be calculated.
Walter et al. [18] used an optical waveguide SPR chip instead of optical fibers, creating a
smaller optomechanical device.

Roche et al. [26] and Dutta et al. [20] employed the characteristics of LSPR of metal
nanoparticles to detect biomolecules in suspension assays. The detection mechanism was
based on the resonant wavelength shift upon the metal nanoparticles’ immobilized capture
probes binding with the analyte. Fan et al. [19] developed an LSPR-based array of nine
sensors containing randomly distributed gold nanoparticles. In addition, they produced a
custom smartphone attachment with an embedded grating that incorporated the sensor
array and other components.

Researchers have also investigated detection modalities other than the common
intensity- or wavelength-based methods. Cetin et al. [27] developed an SPR-based smart-
phone biosensing system in which a light-emitting diode (LED) light source was used
to illuminate the sensor in a nanoarray structure. The variation in the diffraction image
formed in the CCD was then used to quantify the concentration in a sample. The achieved
limit of detection (LOD) was lower than those achieved with other techniques; however,
the system uniquely did not require any additional optics—the algorithm alone enabled
the calculation of the variation in the diffraction image and the corresponding intensity.

The first smartphone biosensor based on photonic crystals was developed by
Gallegos et al. [28]. Detection was achieved through spectral measurements realized using
a diffraction grating, camera lens, CCD, and external white light. The shift of the resonant
wavelength of the photonic crystal upon sample loading was monitored to determine the
concentration of the target substance. Giavazzi et al. [29] designed a custom smartphone
cradle and used its flash as a light source to illuminate a reflective phantom interface
(RPI). The reflected light was captured by the smartphone’s camera, and the intensity was
recorded by a CCD. The reflected intensity was affected when an analyte was bound to the
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RPI; this intensity was correlated with the analyte concentration. Although the detection
mechanism was simple, the setup was somewhat complex.

Table 1 presents a summary of the aforementioned optical label-free biosensor smart-
phone systems, including their optomechanical and attachment designs, sensor type, detec-
tion modality, assays and detection limit, and other characteristics. Many designs leverage
either the wavelength or intensity modulation for detection and require an external grating
or prism for spectral analysis.

In this work, we demonstrate a new type of smartphone biosensor system based
on a gradient grating period (GGP) guided-mode resonance (GMR) biosensor [30,31].
The system works as follows: (1) An external LED is used to excite the resonance of
the GGP-GMR sensor at normal incidence, simplifying the overall optical path design
and minimizing the attachment volume. (2) The GGP-GMR sensor directly converts the
spectral information into spatial information on the CCD; a dispersive element such as a
prism or diffraction grating is not required, facilitating smartphone integration. (3) The
measurement is based on the relative shift in the intensity distribution instead of a single
intensity value; therefore, the measurement is self-referencing and unlikely to be affected by
environmental fluctuations, ensuring high accuracy. The GGP-GMR was first proposed as a
linear variable bandstop filter [30] and then demonstrated as a refractive index sensor [31]
and biosensor [32]. In this study, we developed a new design and fabrication process to
make a 2 × 2 GGP-GMR sensor array. For the first time, multiplexing detection with a
GGP-GMR sensor array was demonstrated and directly read out by a smartphone.

Table 1. Summary of optical biosensor smartphone systems.

Mech Sensor Det Mod Light Source Assay DR LODAA Remarks R

SPR Au film ARI Phone screen β2M 0.132–1.32
µg/mL 0.1 µg/mL PDMS

coupling device [24]

SPR Au
nanohole array PRI Flash IgG 3.9–1000 µg/mL µg/mL Lens free [27]

SPR Ag-coated fiber λ Flash – – – Grating [17]

SPR Au-coated fiber I Flash/NB SPA 67–1000 nM 47.4 nM – [25]

SPR Au-coated
grating film λ Flash LPS 0–10 µg/mL 32.5 ng/mL Grating [16]

SPR Au-coated
waveguide λ LED Vit D 0–100 nM 25 nM Grating [18]

SPRi
Ag/Au-coated

grating
bilayer film

I LED IgG 1.3–830 nM ~nM Array [33]

LSPR Suspension
AuNPs LED CCL2 0.099–1 µg/mL 0.099 µg/mL Grating

and cuvette [26]

LSPR Suspension
AuNPs λ BB – – – Grating

and cuvette [20]

LSPR Random
AuNP film λ LED CA125

CA153 – 4.2
0.87 U/ml Grating [19]

PC 1-D PC λ BB IgG 4.25–3400 nM 4.25 nM Grating [28]

RPI RPI surface I LED p24 10 ng/ml Prism [29]

Mech, mechanism; Det Mod, detection modality; SPR, surface plasmon resonance; SPRi, surface plasma resonance
imaging; LSPR, localized surface plasma resonance; PC, photonic crystal; RPI, reflective phantom interface; ARI,
angle-resolved intensity; PRI, phase-resolved intensity; R, reference; I, intensity λ, wavelength; NB, narrowband
filter; BB, broadband; Vit D, vitamin D; LODB, limit of detection from bulk solution; LODA, limit of detection
from assay; DR, detection range; and AuNPs, gold nanoparticles.
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2. Materials and Methods
2.1. Design and Fabrication of GGP-GMR Sensor Array

A GMR filter of appropriately selected dimensions and materials functions as a band-
stop filter [34–36]. At normal incidence, light of a specific wavelength resonates with a
structure (of resonance wavelength λ) and is reflected; light of other wavelengths is trans-
mitted. The reflected (or resonant) wavelength can be calculated based on the second-order
Bragg condition [37]:

λ = neffΛ (1)

where neff is the effective refractive index (RI) of the structure and Λ is the grating period.
neff can be considered as a weighted RI, which is related to the thickness of the waveguide
layer and the RIs of the substrate, waveguide, and cover (or sample solution) layer.

Conventional GMR filters have a constant grating period. By contrast, the GGP-
GMR system proposed in this work has grating periods of between 370 and 390 nm in
2 nm increments and each period is repeated 100 times (Figure 1a; only three times are
shown for simplicity). In this work, each period was repeated for 100 cycles. We tried
50, 150, and 200 cycles previously. Our observations indicated that with only 50 cycles,
the resonant efficiency is diminished, resulting in a less distinct dark band. This could
pose a challenge for subsequent image analysis and potentially compromise detection
resolution. Conversely, employing 150 or 200 cycles results in a sensor that is too large,
possibly exceeding the field of view. When light of a specific wavelength illuminates the
GGP-GMR sensor, the light resonates at a specific period in accordance with Equation (1);
hence, the light is reflected back from this (resonant) period but transmitted through other
periods. In the CCD underneath the GGP-GMR sensor, the pixel underneath the resonant
period is exposed to the lowest intensity of light. If the concentration in the sample on top
of the GGP-GMR sensor changes, the RI and, therefore, neff changes; hence, the resonant
period for the same incident wavelength changes in accordance with Equation (1). The
minimum-intensity pixel shifts accordingly and the magnitude of this shift is correlated
with the change in the sample’s RI.
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Figure 1. (a) GGP-GMR periods. Processes for fabricating the (b–h) GGP-GMR sensor array and
(i–k) microfluidic channel. (l) Schematic of the integrated sensor chip.

An integrated sensor chip comprising a 2 × 2 GGP-GMR sensor array embedded
in two microfluidic channels was fabricated to demonstrate the proposed biosensor’s
potential multiplexing capability and smartphone integration. The overall fabrication
process comprised the fabrication of the sensor array (Figure 1b–h), fabrication of the
microfluidic channels (Figure 1i–k), and bonding (Figure 1l).
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The GGP-GMR sensor array was fabricated through four main processes, namely,
electron beam (e-beam) lithography, nanoimprinting, photolithography, and film deposition
(Figure 1b–h). In brief, e-beam lithography and dry etching were used to generate a gradient
grating pattern on a Si wafer; subsequently, the pattern was replicated on a PDMS master
(Sylgard 184, Dow Corning, MI, USA; Figure 1b). The Si mold was treated with repel silane
(PlusOne Repel-Silane ES, GE Healthcare) to prevent it from sticking to the PDMS. After
surface silanization was performed, the PDMS was used to replicate the GGP patterns. A
base resin and curing agent in a 7:1 ratio were thoroughly mixed and applied to the Si
mold, which was placed in a vacuum desiccator to remove air bubbles. Once the liquid
PDMS had solidified in an oven at 100 ◦C for 1 h, the cured PDMS was separated from the
Si mold, as illustrated in Figure 1b.

The PDMS master was then used to transfer the grating pattern to produce the final
sensor array. A glass slide was cleaned through sonication in solutions of acetone, iso-
propanol (IPA), and deionized (DI) water for 10 min each. A layer of SU8 3005 (negative
photoresist) was then spin-coated onto the glass slide at 2000 rpm for 30 s; the slide was
subsequently soft-baked at 90 ◦C for 2 min on a hotplate. An optical adhesive (Norland
68, NOA) was applied to the top of the SU8 3005, as depicted in Figure 1c. The PDMS
master was gently pressed against the NOA (Figure 1d) to imprint the grating pattern. The
SU8/NOA was exposed using an i-line contact aligner (Kyowa Riken) at 24,000 mJ/cm2

through a photomask with a 2 × 2 opening (2 × 2 mm2), as shown in Figure 1e. After
this exposure, the PDMS was separated from the NOA, and the whole glass slide was
developed in propylene glycol methyl ether acetate (PGMEA) to dissolve the unexposed
region (Figure 1f). A layer of TiO2 (~130 nm) was sputtered on the imprinted NOA region
by using a shadow mask (Figure 1g). The shadow mask was then removed, completing the
2 × 2 GGP-GMR sensor array (Figure 1h).

The grating pattern on the GGP-GMR sensor was produced by performing two pattern
transfers: PDMS replication from an original Si mold and PDMS imprinting on NOA.
Figure 2a depicts an image of the Si mold fabricated through e-beam lithography, featuring
two gradient grating patterns, each with a length of 1.2 cm. Figure 2b presents a top-
view scanning electron microscopy (SEM) image of the Si mold at the smallest period.
Figure 2c,d present SEM cross-sectional images of the original Si mold (illustrated in
Figure 1b). Figure 2e presents a photograph of the fabricated 2 × 2 GGP-GMR sensor on
the SU8/NOA mesa. The shadow mask used for sputter deposition enabled the deposition
of TiO2 on the grating/mesa region, resulting in a gap and a glass surface surrounding
the mesa. This surface was required for the subsequent bonding with PDMS microfluidic
channels through an oxygen plasma treatment technique. The SEM cross-sectional images
of the final TiO2/NOA grating on the mesa are shown in Figure 2f,g, illustrated in Figure 1h.
The resulting grating pattern deviates from that of the original Si mold in several aspects,
namely, its surface profile (sinusoidal vs. rectangular), shallower grating depth, and
rounded corners. The Si mold exhibits periods ranging from 371.2 to 396.9 nm with a
grating depth of 93.3 nm, as shown in Figure 2c,d. By contrast, the resulting periods for the
GGP-GMR sensor on the NOA substrate range from 373.7 to 403.3 nm with an approximate
grating depth of 81.6 nm, as depicted in Figure 2f,g.

To assess the impact on the deviation of the grating profile, we employed the simula-
tion tool DiffractMOD from RSoft Design Group, which is based on rigorous coupled-
wave analysis, to estimate the sensor performance. Based on the SEM images from
Figure 2, two types of models were constructed in the simulation: one with rounded
corners (Figure 3a) and the other with rectangular corners (Figure 3b). First, both models
used a grating period of 370 nm, a grating depth of 90 nm, and a TiO2 thickness of 90 nm
for comparing the resonance bandwidth as a typical GMR device. RIs of 1.33299, 2.29,
and 1.556 were assigned to the sample, TiO2, and NOA, respectively. The transmission
spectra are presented in Figure 3c,d for rounded and rectangular corners, respectively, with
resulting full width at half maximum (FWHM) values of 4.41 and 2.03 nm, respectively.
Secondly, by fixing the wavelength at 630.5 nm and scanning both the period from 370
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to 400 nm and the RI of the sample from 1.33299 (0% sucrose solution) to 1.4418 (60%
sucrose solution), we obtained the transmission efficiency as a function of the period at
different sample RIs. This is illustrated in Figure 3e,f for rounded and rectangular grating,
respectively. The detailed steps for constructing Figure 3e,f can be found in a previous
publication [31]. The color in Figure 3e,f signifies the transmission efficiency; thus, for each
sample (or RI), there exists a corresponding period (resonant period) associated with the
minimum transmission efficiency. Hence, the resulting dark band can be observed with the
CCD or CMOS underneath the GGP-GMR. Referring to Figure 3c–f, it can be concluded
that the GMR with rectangular corners yields a narrower resonance, and the GGP-GMR
with rectangular corners results in a narrower dark bandwidth. This holds the potential to
enhance detection resolution and improve the LOD. Despite these deviations, the resonance
(dark band) was still detectable in the smartphone image. Nevertheless, these deviations
led to a slight broadening of the dark bandwidth and a reduction in detection resolution.
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2.2. Design and Fabrication of Microfluidic Channel

A two-channel microfluidic chip was fabricated using photolithography and PDMS
replica molding for sample delivery and measurement to demonstrate multiplexing de-
tection. First, photolithography was used to fabricate a complementary SU8 mold on a
glass slide. In brief, a glass slide was cleaned, as described previously, and subsequently
spin-coated with SU8 2100 at 1500 rpm for 30 s. The SU8 2100/glass slide was then placed
on a leveled table for 24 h for further planarization. The SU8 2100 was next soft-baked on a
hotplate at 65 ◦C for 10 min and then at 95 ◦C for 100 min. These processes were repeated
two more times before the sample was exposed to the same contact aligner at a dosage of
900 mJ/cm2. After this exposure, the SU8 2100/glass slide was post-baked on a hotplate
at 65 ◦C for 5 min and then at 95 ◦C for 30 min before it was developed in PGMEA for
30 min. To further enhance the mechanical strength of the SU8, the SU8 2100/glass slide
was hard-baked at 150 ◦C for 10 min to complete the complementary SU8 mold, which is
shown in Figure 4a.
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The liquid PDMS mixture was then poured into the SU8 mold (Figure 1i). After
curing, the PDMS microfluidic channel was separated from the SU8 mold (Figure 1j). Lastly,
the inlet and outlet holes were punched using a biopsy punch for sample injection and
aspiration (Figure 1k). To bond the PDMS microfluidic channel and GGP-GMR sensor array,
both chips were treated with oxygen plasma (PDC-32G, Harrick Plasma) to generate silanol
groups on the PDMS and glass surfaces. The exposed surfaces were then brought into
contact to create an irreversible bond through permanent Si–O–Si bonds [38] (Figure 1l).
Figure 4b presents a photograph of the integrated chip with GGP-GMR sensors embedded
in the microfluidic channels.

2.3. Assay Protocol

Immunoassay was used for biomolecule detection. Therefore, the surface of the GGP-
GMR sensor array was first modified for antibody immobilization before it was bonded
with the microfluidic channels as described previously. Epoxy silane (3-glycidoxypropyl
dimethylethoxysilane, GPDMS, Gelest) surface modification was used in this work [39].
In brief, the GGP-GMR sensor was first treated with oxygen plasma to enrich the TiO2
surface with hydroxyl groups. Subsequently, 1% GPDMS in toluene was dispensed on the
sensor surface. Once the biosensor was incubated for 40 min at room temperature, the
GPDMS formed covalent bonds with the hydroxyl groups. The GGP-GMR sensor was then
rinsed with acetone, IPA, and DI water and blow dried with N2 gas. After silanization
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was performed, the GGP-GMR sensor chip was bonded with the microfluidic channels as
described previously.

Albumin and creatinine, commonly used biomarkers for screening microalbuminuria [40,41],
exhibit diagnostic efficacy when the urine albumin-to-creatinine ratio exceeds 30 mg/g.
These markers were specifically chosen as test models to demonstrate the multiplex-
ing capability of the two-channel microfluidic chip (Figure 1k). A solution comprising
100 µg/mL antialbumin antibodies (CSB-PA00060E1Rb, Cusabio) and anticreatinine anti-
bodies (CRN12-A, Genemed Synthesis) in phosphate-buffered saline (PBS) was injected
into each channel. The injected antibody solution only covered one of the GGP-GMR sen-
sors within each channel; these sensors were measurement sensors, and the other sensors
without antibodies were reference sensors. After being incubated for 12 h, the antibody
solutions were aspirated, and the channels were rinsed using PBS containing 0.05% Tween
(PBS-T) thrice to remove unbound antibodies. The channels were then blocked for 1 h at
room temperature in a solution comprising 1% casein (ab126587, Abcam, Cambridge, UK)
in PBS to minimize nonspecific binding and thus enable subsequent antigen binding. The
blocking solution was then aspirated, and the channels were rinsed with PBS-T. Finally,
PBS was injected into the channels for measurement to represent a 0% concentration, which
served as the baseline signal.

Dose–response curves were generated for various concentrations of albumin (CSB-
NP000601h, Cusabio, Houston, TX, USA) and creatinine (02101423-CF, MP Biomedicals,
Irvine, CA, USA) in PBS containing 0.1% casein. Albumin solutions of five concentra-
tions from 0.8 to 500 µg/mL with a five-fold dilution were used. The creatinine solution
concentrations ranged from 1 µg/mL to 10 mg/mL with a 10-fold dilution. The analyte
solutions (starting from the lowest concentration) were injected into the microfluidic chan-
nels and incubated for 20 min at room temperature. Once the channels had been rinsed
with PBS-T, images were recorded every 10 s for 10 min. This procedure was repeated for
the other concentrations.

2.4. Detection Principle and Smartphone Readout

The GGP-GMR sensor converts spectral information into spatial information on a
CCD. In this work, a smartphone was used to measure the transmission intensity distri-
bution (Figure 4c). An LED (KED351RHD, Kyoto Semiconductor) was used as a light
source. The light was transverse-magnetically polarized before it was transmitted through
a bandpass filter (Alluxa), resulting in a center wavelength of 630.5 nm with a full width
at half maximum of 1.0 nm. The narrowband light source was directed at the PDMS
microfluidic channels and interacted with the GGP-GMR sensors. The transmitted light
was then focused by a lens and recorded by a smartphone (Sony Xperia XZ1). As discussed
previously, the light was reflected back at the resonant period on the sensor corresponding
to the sample RI, resulting in dark bands (lower intensity) in the smartphone image. An
example is shown in Figure 4d; four dark bands corresponding to the 2 × 2 GGP-GMR
sensor array embedded in the two microfluidic channels (Ch1 and Ch2) can be observed.

The intensity distribution along a specific row (i.e., the yellow dashed line) was ex-
tracted, and the location of the dark band (or the minimum-intensity pixel) was determined
through curve fitting using the Gaussian model in OriginPro 2016 (Figure 4e). By monitor-
ing the shift in the dark band, the sample concentration (or RI) was determined.

3. Results
3.1. Sucrose Measurement

The image captured by the smartphone contained four dark bands corresponding to a
2 × 2 GGP-GMR sensor array embedded in two microfluidic channels (Figure 4d). When
the sample concentration (or RI) changed, the neff of the structure changed accordingly,
resulting in the incident wavelength resonating at a different period, as predicted by
Equation (1). Thus, the dark bands also shifted accordingly. Different concentrations of
sucrose solutions were used to characterize the bulk sensitivity of the GGP-GMR sensor
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with a smartphone readout. First, DI water (0%) was injected into both microfluidic
channels, and images were taken every 10 s for 10 min. A sucrose solution was then added
to one of the microfluidic channels (measurement channel) at concentrations of 10%, up to
60%, in 10% increments. Before sucrose of a certain concentration was injected, the solution
was aspirated from the channel, and the channel was rinsed with DI water. The other
channel served as a reference channel; only DI water was injected into it. Figure 5a presents
the locations of the dark bands for different sucrose concentrations for one of the sensors
from both the measurement and reference channels from one of the experimental runs.
The y axis represents the location of the dark band (or minimum intensity corresponding
pixel as illustrated in Figure 4e). Sub-pixel resolution can be obtained through curve fitting.
The net shift of the dark band with respect to that for the 0% solution was calculated by
subtracting the shift in the dark band of the reference sensor from that of the measurement
sensor. The results are presented in Figure 5b. The absolute location of the dark bands in
Figure 5a is somehow arbitrary depending on the initial orientation between the sensor
chip and the smartphone’s CCD, as well as the chosen location (i.e., yellowed dashed line
in Figure 4d) for analysis. Our analysis relies on the relative shift between the reference
and the measurement, as shown in Figure 5b. The entire process was repeated for another
two runs, and the average net shift in the dark band with respect to that for the 0% solution
for each concentration is shown in Figure 5c. The pixel size is 1.15 µm/pixel so the shift in
µm is also shown on the right y axis in Figure 5c.
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The average net shift was 37.89 pixels from the 0% to the 60% solutions; this was
equivalent to a total shift of 43.57 µm (at a pixel size of 1.15 µm/pixel). The refractive
indices of different concentrations, measured using a commercial refractometer (J47-HA,
Rudolph Research Analytical, Hackettstown, NJ, USA), are presented in Figure 5c. The
average sensitivity indicates the amount of shift in the dark band for a given change in
RI (RI unit; RIU); this was calculated as the slope of the linear-fit line in Figure 5c, which
was 393.98 µm/RIU. As recommended by Holstein et al. for experiments with fewer than
10 replicates per concentration level, a pooled standard deviation for all concentrations in
the dilution series was used to better represent the population variance [42]. The LOD was
then calculated as three times the pooled standard deviation divided by the sensitivity; it
was 1.50 × 10−3 RIU.

3.2. Biomolecule Detection

Albumin and creatinine were used as test models to demonstrate the multiplexing
capability of the proposed integrated sensor chip. One channel was used to measure
albumin, and the other was used to measure creatinine. Within each channel, the chip had
two GGP-GMR sensors; one was a measurement sensor with antibodies, and the other
was a reference sensor without antibodies. The four sensors could perform measurements
simultaneously (Figure 4d). For albumin or creatinine detection, the measurement was
begun by first injecting PBS to stabilize the sensors and acquire a baseline signal (0%);
the lowest concentration was then injected and allowed to rest for 20 min. The analytes
were then aspirated, PBS-T was used to rinse the channels, and PBS was injected into both
channels for the measurement. The image readout and analysis processes were similar



Biosensors 2023, 13, 1006 10 of 14

to those for the sucrose solution measurement. During the measurement, images of the
transmitted intensity distribution were captured every 10 s for 10 min, and the locations
of the dark bands were determined as described previously. The same procedure was
repeated for other concentrations.

The net shift in the dark band caused by the analyte concentration was determined by
subtracting the dark band shift of the reference sensor (without antibodies) from that of the
measurement sensor (with antibodies) to account for any nonspecific binding and any fluc-
tuations in the measurement system or experimental procedure. The dose–response curves
obtained from three experimental runs with three integrated sensor chips are presented
in Figure 6. A four-parameter logistic model was developed using OriginPro 2016 to fit
the data. The concentration corresponding to a shift of three standard deviations was used
to calculate the LOD. The result indicated that for albumin solutions with concentrations
of 0.8–500 µg/mL, an LOD of 1.18 µg/mL could be achieved (Figure 6a). For creatinine
solutions with concentrations of 1–10 000 µg/mL, the LOD was 20.56 µg/mL (Figure 6b).
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The measured shift was less than 2 pixels for albumin and 1 pixel for creatinine; thus,
the accuracy of the curve fitting is very important. To mitigate fluctuations in the curve
fitting process, for each concentration (i.e., sucrose, albumin, and creatinine), images were
captured every 10 s over a period of 10 min (as illustrated in Figure 5a). The average
location of the dark band was then employed to represent the dark band location for a
specific concentration. This approach helps minimize the potential impact of curve fitting
inaccuracies, allowing us to obtain an average net shift with respect to the 0% (blank) for
each concentration.

4. Discussion

For the sucrose solution, a LOD of 1.50 × 10−3 RIU was achieved; this is inferior
to those of many RI biosensors reported in the literature. However, an optical biosensor
utilizing a photonic crystal waveguide exhibited an LOD of 10−2 RIU for bulk solutions
and successfully detected human immunoglobulin G with an LOD of 67 nM [43]. The
sensing capability demonstrated with the proposed system can be sufficiently effective
for the detection of some biomolecules. In addition, preliminary results from the albumin
(0.8–500 µg/mL) and creatinine (1–10,000 µg/mL) solutions achieved LODs of 1.18 and
20.56 µg/mL, respectively. It should be noted, however, that the results obtained in this
work were from buffer solutions. According to a study with 577 general participants aged
more than forty years old from Pakistan, the concentration of albumin in urine was between
2.1 and 8.5 µg/mL [44]. Another study showed the concentration of creatinine in urine
was 390–2590 and 280–2170 µg/mL in male and female participants, respectively [45].
While interferences are expected to be encountered when dealing with clinical samples,
potentially leading to a reduction in the sensing performance compared to that achieved
with buffer solution, it is worth noting that the proposed smartphone biosensor system’s
performance can be enhanced by optimizing surface functionalization and assay protocols.
This optimization can potentially enable the system to meet the requirements of many
clinical applications.
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The system’s LOD could be improved through several methods. Many studies have
suggested that optimizing the GGP-GMR’s biosensor’s dimensions, including the TiO2
thickness and materials, can improve its sensitivity (i.e., increase the dark band shift for a
given change of RI) and resonant quality (i.e., narrow the dark band to increase the sensing
resolution), thus improving the LOD [46,47]. Additionally, a 2 nm increment in the grating
period was employed in this study, owing to the constraints of our e-beam lithography
system. Reducing the increment can enhance the detection sensitivity, but it also results
in an increase in the sensor size. Further optimization, exploring the number of repeated
cycles and increments in the grating period, can be pursued to achieve a higher sensitivity
and a narrower dark bandwidth with sufficient resonant efficiency.

According to the simulation results discussed in the previous section, the grating
structure with rectangular corners can yield a narrower dark bandwidth to enhance the
detection resolution and improve the LOD. The creation of a rectangular grating profile
can be achieved through e-beam lithography and reactive ion etching on glass or other
low RI substrates. Following the deposition of another higher RI waveguide guiding layer
through atomic layer deposition, we anticipate the formation of a rectangular corner grating
structure, akin to Figure 3b. This configuration is expected to result in a narrower dark
bandwidth, as depicted in Figure 3f, thereby enhancing the sensor performance.

Based on the simulation results from the sinusoidal grating profile shown in Figure 3a,
the resonant period shifted from 398.33 to 391.11 nm (Figure 3c), corresponding to sucrose
concentrations ranging from 0% to 60%. In addition, at 0%, we could calculate the FWHM as
2.84 nm in terms of the period (396.89 to 399.73 nm, Figure 3c). In this work, the increment
was 2 nm, and each period was repeated 100 times. Under the assumption that the CCD
is in direct contact with the GGP-GMR sensor, the period shift directly corresponds to
the dark band shift in the CCD, resulting in a sensitivity of 1309.72 µm/RIU and a dark
bandwidth of 56.58 µm. In contrast, the sensitivity obtained from the experimental results
in this study was approximately 393.98 µm/RIU, and the dark bandwidth (as illustrated in
Figure 4d,e) at 0% was measured as 22 pixels (equivalent to 25.3 µm). It is evident that the
magnification factor introduced by the aspherical and smartphone lens system diminishes
the detection sensitivity. However, as long as the dark band remains within the field of
view, increasing the magnification factor can enhance the detection sensitivity.

A simple GPDMS surface functionalization was used for antibody immobilization
to demonstrate biomolecule detection. However, this resulted in the antibodies having
random orientations, reducing the subsequent antigen binding efficiency [48]. Other
surface functionalization techniques could be used to achieve higher antibody density
or a more favorable orientation, increasing the antigen binding efficiency and further
improving the assay detection limit. Furthermore, achieving uniform surface coverage
in surface functionalization and antibody immobilization is crucial for detecting low-
concentration samples. Further investigation in this regard can be pursued to enhance the
overall sensing performance.

As mentioned earlier, the utilization of the average location of the dark band aimed
to mitigate the potential impact of curve fitting inaccuracies. Nonetheless, there is still
room for improvement. Achieving more accurate curve fitting necessitates a higher quality
of the dark band. This entails a preference for a narrower and darker dark band. Such
improvements can be realized through device optimization, considering factors such as
GGP-GMR dimensions, material selection, or employing a more rectangular grating profile
as discussed in the previous section.

Additionally, the optimization of optical components, such as a better collimated
light source or a narrower bandwidth of the incident light, can contribute to enhancing
the quality of the dark band. The LED used in this work had an average beam angle
of 10.45◦; if a more collimated light source could be used, a higher resonance quality
could be achieved, resulting in a narrower dark band that would enable the resolution
of more subtle concentration variations, improving the detection resolution. In addition,
a bandpass filter with an FWHM of 1.0 nm was utilized. If a bandpass filter with a nar-
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rower FWHM is employed, it could yield a narrower dark bandwidth, thereby enhancing
detection resolution.

5. Conclusions

In this work, an integrated sensor chip comprising a 2 × 2 GGP-GMR sensor array
embedded within two pairs of microfluidic channels was demonstrated for the first time.
The sensor can simultaneously detect albumin and creatinine by using a smartphone to
directly capture an output image for subsequent analysis. The sensing system achieved
a LOD of 1.50 × 10−3 RIU for a bulk solution. In addition, the integrated sensor chip
and smartphone detection system achieved the simultaneous detection of albumin and
creatinine. The LODs were 1.18 and 20.56 µg/mL for albumin and creatinine in buffer
solution, respectively.

Once the GGP-GMR sensor array is fabricated, it necessitates a 40 min surface func-
tionalization step, followed by 12 h for antibody immobilization and an additional 1 h
blocking process to prepare it for analyte detection. Subsequently, 25 min is required for
measurement, including a 20 min analyte incubation period and a 5 min image recording
step. The time needed for both sensor preparation and analyte measurement can be further
reduced through the optimization of the assay protocol.

The overall detection performance could be further improved by optimizing the fol-
lowing aspects: the GGP-GMR sensor design and fabrication processes, optical setup,
antibody immobilization strategy, and assay protocol. The GGP-GMR sensor with smart-
phone readout represents a new paradigm for label-free biosensor systems and could be
useful for many point-of-care applications.
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