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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disease. Due to its complex pathological
mechanism, its etiology is not yet clear. As one of the main pathological markers of AD, amyloid-β
(Aβ) plays an important role in the development of AD. The deposition of Aβ is not only related
to the degeneration of neurons, but also can activate a series of pathological events, including the
activation of astrocytes and microglia, the breakdown of the blood–brain barrier, and the change
in microcirculation, which is the main cause of brain lesions and death in AD patients. Therefore,
the development of efficient and reliable Aβ-specific probes is crucial for the early diagnosis and
treatment of AD. This paper focuses on reviewing the application of small-molecule fluorescent
probes in Aβ imaging in vivo in recent years. These probes efficiently map the presence of Aβ in vivo,
providing a pathway for the early diagnosis of AD and providing enlightenment for the design of
Aβ-specific probes in the future.
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1. Introduction

Alzheimer’s disease (AD) is a degenerative disease of the central nervous system that
occurs mostly in elderly people. AD is characterized by progressive cognitive dysfunction
and behavioral disorders. As the most common type of dementia, it impairs the thinking,
memory, and independence of patients, leading to decreased quality of life and even death.
Due to its complex pathological mechanism, there is no effective treatment for AD [1–5]. At
present, it has been reported that Leqembi and Donanemab can be used in the treatment of
AD [6,7]. However, due to its complex pathological mechanism, the research on most AD
therapeutic drugs is at a stagnant stage [8,9]. Relevant pathological studies have shown
that the accumulation of Amyloid-β (Aβ) inside and outside the nerve cells can cause
toxic reactions, leading to neuronal degeneration or death [10]. Therefore, the excessive
accumulation of Aβ is considered to be an important pathological marker of AD. Hence,
the detection of Aβ plays an important role in the study of AD, such as the early screening
of AD, dynamically monitoring the process of AD, and evaluation of the therapeutic
effect. In addition, the monitoring of Aβ can also assist in the diagnosis of craniocerebral
injury, which is of great significance for judging the severity of craniocerebral injury and
optimizing the treatment plan [11–13].

Aβ is produced by the hydrolysis of amyloid precursor protein by β- and γ-secretases.
It is generally a polypeptide containing 39–43 amino acids [14,15]. Its self-assembly process
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forms a variety of structures with varying degrees of neurotoxicity. In humans, the most
common Aβ subtypes are Aβ1–40 and Aβ1–42 [16,17]. Compared with Aβ1–40, Aβ1–42 is
more inclined to aggregate, progressing from monomer to oligomer to aggregate, resulting
in greater neurotoxicity [18,19]. The deposition of Aβ can cause cerebrovascular sclerosis or
even rupture and induce premature apoptosis of nerve cells, which leads to corresponding
pathological change [20,21].

At present, numerous fluorescent probes have been reported for the detection of Aβ.
However, due to their inability to penetrate the blood–brain barrier (BBB), most Aβ probes
can only be used for the detection of Aβ in vitro [22–24]. Therefore, it is of great significance
to design Aβ probes that can be used for in vivo imaging [25,26]. In the development of
Aβ imaging probes, many luminescent materials stand out because of their excellent
photophysical properties, such as curcumin, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene
(BODIPY), etc. (Figure 1) [27]. These dyes can bind to the hydrophobic cavities of Aβ,
causing their fluorescence to light up and mapping the location of Aβ deposits in the
brain [28,29]. It is worth mentioning that their core structures are liable to functionalize
by group substitution, adjusting their photophysical properties and adapting to various
conditions [30–32]. In recent years, these luminescent materials have been widely used in
the field of Aβ imaging in vivo. Many Aβ probes have been reported one after another, but
no article has systematically summarized the application of Aβ probes in vivo. Therefore,
based on the structure of curcumin and other materials, we comprehensively summarized
the fluorescent probes of Aβ using in vivo imaging based on core structure published in
recent years (Table 1) and discussed the challenges faced by their wide application.
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Figure 1. Common core structures of fluorescent probes used for Aβ detection.

Table 1. Summary of properties of the probes binding with Aβ.

Compounds λex (nm) λem (nm)
with Aβ

(FAβ/F0) Kd (nM)

Curcumin

8b 560 667 21.4 91.2 ± 3.28
CAQ 565 635 10 78.89

3b 635 667 / 2.12 ± 0.77
probe 9 620 697 10 14.57 ± 1.27

Coumarin XCYX-3 502 632 / 71.11

BODIPY

TPipBDP / 692 75.5 28.30 ± 5.94
BocBDP / / 5 67.8 ± 3.18
QAD-1 635 700 / 27
5MB-SZ / 550 43.64 /

DCM

YHY2 / 596 7.7 23.5
QM-FN-SO3 / / 50 170

DCIP-1 / 635 / 674.3
PAD-1 / / 7 58.9
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2. Fluorescent Probes In Vivo for Amyloid-β Detection
2.1. Curcumin-Based Probes for Aβ

Curcumin is a pigment with a diketone structure. As a typical fluorophore, it has
been widely used in the field of biological imaging because of its strong luminescence
and low biotoxicity [33]. Due to the extensiveness of its functionality, curcumin dyes
can be considered as a unique platform for designing probes and sensors to detect and
track structural changes in various Aβ aggregates. The almost unmatched versatility of
curcumin dyes in terms of synthesis and dimmable light physical properties makes them
one of the superior scaffolds for the development of Aβ probes. Previous studies have
shown that the introduction of a difluoroboric acid group into the fluorophore of curcumin
derivatives causes a red shift in its fluorescence emission [34,35]. This is because, after the
boric acid group is coordinated, the empty orbital electron of oxygen is lifted to the boron
atom through the π→π transition [36]. Based on these studies, difluoroboric acid is often
introduced into curcumin scaffolds to synthesize new fluorophores.

Park et al. reported a near-infrared probe 8b based on the curcumin D-A-D structure.
The probe uses a curcumin scaffold complexed with difluoroboronic acid as an electron
acceptor, and the common N, N-dimethylamino and phenylhydroxy groups are used as
electron donors at both ends (Figure 2A). Fluorophores have desirable optical properties for
brain imaging in vivo. Probe 8b emits strong fluorescence at 667 nm after binding with Aβ

fiber. The fluorescence difference before and after binding is 21.4 times, and the detection
limit is 91.2 nm. It is worth noting that, after injecting probe 8b into the tail vein of 5 × FAD
mice, the largest fluorescence signal was detected in the brains of the mice 10 min later, and
the fluorescence signal reached 2.26 times that in wild mice; furthermore, the fluorescence
intensity decreased significantly after 60 min (Figure 2C). In addition, the probe’s biological
distribution in the brain suggests that 8b can bind to Aβ in the brains of 5 × FAD mice
for more than 60 min. Moreover, it showed strong contrast between 5 × FAD mice and
WT mice between 30 and 60 min. The design of the probe demonstrated the feasibility of
curcumin derivatives in vivo imaging of Aβ [37].
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Based on the same electron acceptor, Wu et al. changed the benzene hydroxyl terminal
of the 8b electron donor into quinoline and designed Aβ probe CAQ for in vivo imaging
of Aβ (Figure 3A). CAQ has obvious specificity to Aβ: the fluorescence is obvious after
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binding with Aβ and the red fluorescence is gradually enhanced with the increase in
Aβ concentration. Later, in vivo experiments found that CAQ could enter organisms
better than traditional Aβ dyes (Figure 3B). Subsequently, Wu’s team further investigated
the imaging behavior of CAQ in the nematode AD model. After CAQ staining, the red
fluorescence in the ganglia of C. elegans was significantly enhanced, indicating that CAQ
has good imaging ability in vivo (Figure 3C). MTT experiment also showed that CAQ had
good biocompatibility [38]. Li et al. used a similar molecular design strategy, except that
the quinoline end of CAQ was changed to N, N-diethyl-3-methoxyaniline and reported
a curcumin-based NIR probe 3b (Figure 4A). Probe 3b has a high affinity with Aβ1–40
(KD = 2.12 ± 0.77 µM), and the fluorescence intensity of probe 3b increased sharply after
binding with Aβ1–40 (Figure 4B). The maximum emission wavelength of probe 3b is about
667 nm. Then, 120 min after administration, the fluorescence signal intensity in the brain of
the APP/PS1 mouse model was more than twice that of the wild control group, which could
show the pathological changes in Aβ. During in vivo imaging experiments, 3b exhibited
slower brain clearance, significantly different fluorescence from wild mice, and showed a
longer detection window (Figure 4C) [39].
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Figure 3. (A) Synthesis routes of the compounds CAQ. (B) Ex vivo fluorescence images of the brains
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2021, American Chemical Society).
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Figure 4. (A) Structure of 3b. (B) Fluorescence spectra of 3b combined with Aβ1–40 aggregates;
concentration unit: ×10−5 mol/L. (C) Fluorescence imaging of probe 3b in vivo. (D) Fluorescence
intensity change curve. (Reproduced with permission from [39], Copyright 2023, Elsevier).

In 2022, Fang et al. developed nine NIR probes for in vivo Aβ imaging by modifying
curcumin analogs’ donor-acceptor-donor structure (Figure 5A). Among them, probe 9
can not only accurately distinguish AD mice from wild mice, but can also show different
fluorescence intensity in AD mice at different months of age, which has certain potential
in distinguishing different degrees of AD conditions. It may be that the introduction of a
hydroxyl group makes probe 9 obtain more suitable lipophilicity. In addition, dynamic
fluorescence imaging of AD mice with thinner skulls under an upright microscope (Nikon
NIR Apo) showed that probe 9 can rapidly cross the blood–brain barrier and selectively
label Aβ plaques in the brain lesion area (Figure 5B). Notably, the presence of probe 9
attenuated Aβ aggregation [40].

Biosensors 2023, 13, x FOR PEER REVIEW 6 of 16 
 

 
Figure 5. (A) Probes 1–9 modified by curcumin analogs. (B) Probe 9 was used for dynamic fluores-
cence imaging in 14-month-old APP/PS1 mice under an upright microscope (Nikon NIR Apo). (Re-
produced with permission from [40], Copyright 2022, Ivyspring International.) 

The summary of aforementioned probes has validated the potential of Aβ detection 
using curcumin derivatives. However, it is worth noting that the emission wavelength of 
curcumin itself is limited to the blue region. After introduction of the difluoroboric group, 
the emission of curcumin derivatives significantly red-shifts to the near-infrared region. 
Additionally, the fluorescence enhancement of curcumin probes upon binding to Aβ is 
not significant, which results in low signal-to-noise ratio (SNR). Therefore, it is recom-
mended to optimize these challenges and develop Aβ probes with high SNR in the future. 

2.2. Coumarin-Based Probes for Aβ 
Coumarin and its derivatives are UV-excited blue fluorescent dyes with an emission 

wavelength of about 390–480 nm. It is often used in the preparation of blue fluorescent 
peptides and other biomolecules [41]. Compared with some traditional fluorophores, cou-
marins are widely used in optical imaging because of their high fluorescence quantum 
yield, tunable photophysical and photochemical properties, and good stability [42,43]. 

Cao et al. designed an efficient Aβ recognition fluorescence probe XCYX-3 by em-
bedding an aromatic coumarin framework into the π bridge of the push–pull chromo-
phore (Figure 6A). XCYC-3 can effectively distinguish between Aβ aggregates and Aβ 
monomers. The fluorescence intensity of the probe was significantly enhanced after it was 
combined with Aβ fiber (Figure 6B). Cytotoxicity tests showed that probe XCYX-3 had 
good biocompatibility. In the test of blood–brain barrier permeability, the fluorescence 
intensity in the brains of mice injected with XCYC-3 was significantly higher than that in 
mice not injected with the probe, indicating that XCYX-3 had good blood–brain barrier 
penetration (Figure 6C). Then, the in vivo Aβ imaging ability of XCYC-3 was evaluated 
by detecting the fluorescence changes in the brain region of AD mice; 5 min after intrave-
nous injection of XCYC-3, the fluorescence intensity in the brain of 5 × FAD-transgenic 
mice was significantly higher than that in age-matched wild-type (WT) mice (Figure 6E) 
[44].  

Figure 5. (A) Probes 1–9 modified by curcumin analogs. (B) Probe 9 was used for dynamic fluo-
rescence imaging in 14-month-old APP/PS1 mice under an upright microscope (Nikon NIR Apo).
(Reproduced with permission from [40], Copyright 2022, Ivyspring International).



Biosensors 2023, 13, 990 6 of 16

The summary of aforementioned probes has validated the potential of Aβ detection
using curcumin derivatives. However, it is worth noting that the emission wavelength of
curcumin itself is limited to the blue region. After introduction of the difluoroboric group,
the emission of curcumin derivatives significantly red-shifts to the near-infrared region.
Additionally, the fluorescence enhancement of curcumin probes upon binding to Aβ is not
significant, which results in low signal-to-noise ratio (SNR). Therefore, it is recommended
to optimize these challenges and develop Aβ probes with high SNR in the future.

2.2. Coumarin-Based Probes for Aβ

Coumarin and its derivatives are UV-excited blue fluorescent dyes with an emission
wavelength of about 390–480 nm. It is often used in the preparation of blue fluorescent
peptides and other biomolecules [41]. Compared with some traditional fluorophores,
coumarins are widely used in optical imaging because of their high fluorescence quantum
yield, tunable photophysical and photochemical properties, and good stability [42,43].

Cao et al. designed an efficient Aβ recognition fluorescence probe XCYX-3 by embed-
ding an aromatic coumarin framework into the π bridge of the push–pull chromophore
(Figure 6A). XCYC-3 can effectively distinguish between Aβ aggregates and Aβ monomers.
The fluorescence intensity of the probe was significantly enhanced after it was combined
with Aβ fiber (Figure 6B). Cytotoxicity tests showed that probe XCYX-3 had good bio-
compatibility. In the test of blood–brain barrier permeability, the fluorescence intensity
in the brains of mice injected with XCYC-3 was significantly higher than that in mice not
injected with the probe, indicating that XCYX-3 had good blood–brain barrier penetration
(Figure 6C). Then, the in vivo Aβ imaging ability of XCYC-3 was evaluated by detecting
the fluorescence changes in the brain region of AD mice; 5 min after intravenous injec-
tion of XCYC-3, the fluorescence intensity in the brain of 5 × FAD-transgenic mice was
significantly higher than that in age-matched wild-type (WT) mice (Figure 6E) [44].
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of fluorescent signals in the brain of 5 × FAD mice and WT mice after intravenous injection.
(E) Fluorescence imaging of brain regions in 5 × FAD and WT mice at specific time points before
and after intravenous injection. (Reproduced with permission from [44], Copyright 2023, American
Chemical Society).

These results indicate that coumarin-based probes are promising fluorescent probes
for Aβ in vivo. However, the absorption and emission wavelengths of coumarin are
relatively short, resulting in limited tissue penetration depth, which may affect the in vivo
imaging effect. Additionally, the unsaturated lactone structure of coumarin dyes is prone
to hydrolysis under alkaline conditions. This instability poses a challenge in the in vivo
imaging of Aβ.

2.3. BODIPY-Based Probes for Aβ

The BODIPY series dyes have been well studied and have attracted much attention
due to their special structure and versatility [45]. Compared with other traditional small
molecule probes, BODIPY fluorescent dyes have excellent photochemical and photophys-
ical properties. These mainly include (1) higher molar extinction coefficient, which is
conducive to the photosensitivity of dyes; (2) high fluorescence quantum yield—the fluo-
rescence quenching is not easy, and it can be applied to biological analysis in a variety of
environments; (3) good light stability and strong anti-interference ability; (4) small peak
width of the fluorescence spectrum and high detection sensitivity [46,47]. These excellent
properties make the application of this kind of dye develop rapidly, and it has become the
focus of the fluorescent dye [48].

Ma et al. proposed a BODIPY-based D-π-A structure probe design strategy. In this
work, Ma’s team used cyclic amines instead of common N, N-dimethylamines as electron
donors to synthesize three probes (Figure 7A). Because cyclic amines have a more rigid
structure, the rigid planar structure is conducive to improving the fluorescence intensity
and response to Aβ of the probe. Among the three probes, TPipBDP showed the best
response to Aβ1–42 aggregates: the fluorescence intensity was increased by 75.5 times
and the KD value indicated that the probe had a high affinity for Aβ (Figure 7B). The
fluorescence response of bovine serum albumin (BSA) to the probe may result in non-
specific fluorescence enhancement, thus generating a false signal. Therefore, the interaction
between the probe and BSA was evaluated, and the results showed that the presence of
BSA did not enhance the fluorescent signal marks of TPipBDP (Figure 7C). In the follow-up
in vivo imaging, the fluorescence signal in the brain of APP/PS1 mice was significantly
higher than that in WT mice and the maximum fluorescence intensity was about three
times that in WT mice (Figure 7D) [49].

Zhu et al. designed a small-molecular probe BocBDP with D-π-A structure by using a
tert-butylcarbonyl (Boc) modified aniline unit as an electron donor and a BODIPY unit as
an electron acceptor through π-bridge coupling (Figure 8A). The hydrogen bond interaction
between the carbonyl oxygen atom and Lys16 in the Boc unit facilitates binding to Aβ and
stable imaging over long periods of time. It is worth mentioning that BocBDP has suitable
lipophilicity, allowing it to cross the blood–brain barrier and maintain imaging of Aβ in the
brain for more than two hours (Figure 8C) [50].
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In addition, Ren et al. designed the probe QAD-1 based on the photoinduced electron
transfer quenching mechanism, which uses BODIPY as the fluorophore and tetrahydro-
quinoline as the quenching group (Figure 9A). QAD-1 showed a distinct fluorescent switch
after binding to both soluble and insoluble Aβ. In vivo imaging showed that QAD-1 accu-
rately detected the presence of Aβ in APP/PS1 mice at 6 months of age. QAD-1 showed
the advantage of low background signal and good elimination kinetics. The fluorescent
signal in the mice reached its maximum at 5 min post-injection, and 90% of the probe was
eliminated at 30 min (Figure 9B) [51].

Figure 9. (A) Structure of QAD-1. (B) Comparison of intracranial fluorescence in QAD-1 imaging
APP/PS1 mice and C57 mice. (Reproduced with permission from [51], Copyright 2018, American
Chemical Society).

By introducing benzothiazole as a rotor at position 2 of the BODIPY core, Wang’s team
prepared a probe (5MB-SZ) with an extended π-conjugate bridge. Due to the introduction
of the benzothiazole group, 5MB-SZ can easily be inserted into the hydrophobic cavity
in Aβ, which limits the free rotation of the single bond leading to a sharp increase in
fluorescence intensity. When combined with Aβ oligomer, the fluorescence intensity of
5MB-SZ is increased by 43.64 times, and the fluorescence quantum yield is increased from
0.85% to 27.43%. After intravenous administration of 5MB-SZ, the fluorescence signals of
APP/PS1 and WT mouse brain sections were significantly enhanced at 2 min, confirming
that 5MB-SZ could easily penetrate the blood–brain barrier. After 10 min, the fluorescence
signals of the APP/PS1 group and WT group were significantly different; the fluorescence
signal of the WT group was gradually weakened, while that of the APP/PS1 group was
gradually enhanced, indicating that 5MB-SZ specifically bound Aβ (Figure 10) [52].

These probes utilize BODIPY as the core skeleton and introduce different functional
groups to design various Aβ probes. However, most BODIPY dyes demonstrate poor water
solubility, leading to strong background fluorescence, which limits their applications in
aqueous environments and biological systems. Therefore, finding a balance between the
hydrophilicity of BODIPY dyes is a critical challenge in the development of such probes.
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2.4. DCM-Based Probes for Aβ

As one of the typical fluorophores, dicyanomethylene-4H-pyran (DCM) is widely
used in biosensing, target detection, and other fields due to its excellent photophysical and
photochemical properties [53]. The mechanism of DCM derivatives’ luminescence is mainly
intramolecular charge transfer (ICT), so the probe can act specifically on different target
molecules by adjusting the structure of the donor and the receptor, as well as the distance.

Based on DCM, Yang et al. developed a D-A-D-structured fluorescent probe, YHY2,
which was designed with a tertiary amine as the electron donor and malononitrile as the
electron acceptor (Figure 11A). YHY2 can be used to rapidly detect Aβ peptide monomers,
oligomers, and fibrils in aqueous solutions. Furthermore, it can also quickly stain Aβ

depositions in the brains of transgenic mice by intravenous injection. In previous studies,
the hydroxyl group of YHY2 was replaced by a methyl group, resulting in an inability
to bind to Aβ. This suggests that the hydroxyethyl group of YHY2 may be critical to the
binding properties of Aβ. In the presence of Aβ aggregates, the fluorescence intensity of
YHY2 was significantly enhanced (Figure 11B). After incubation with mouse fibroblasts,
the survival rate of the cells was more than 90%, showing good biocompatibility. During
in vivo imaging experiments, APP/PS1 mice showed higher fluorescence intensity than
wild-type mice for 15 min (Figure 11C) [54]. The above experiments confirm the ability of
YHY2 to detect AB in vivo.

Commercially available thioflavin derivatives (ThT or ThS) have been used to detect
Aβ, but past practice has shown that the ability of thioflavin derivatives to detect Aβ in vivo
is very limited. Fu et al. designed a DCM-based probe QM-FN-SO3 by improving the
defects of ThT, such as ACQ effect, low S/N ratio, and limited BBB penetrability (Figure 12B.
The probe was redshifted to the near-infrared region by introducing a thiophene-conjugated
π bridge. Then, quinoline malonitrile was used as the AIE building block to overcome
the quenching effect. Finally, the fluorescence of the probe was turned off before binding
with Aβ by adjusting the substitution position of the sulfonate group. QM-FN-SO3 has
an extremely high signal-to-noise ratio, strong BBB penetration, and high-performance
near-infrared emission characteristics, enabling high-fidelity imaging of Aβ plaques in the
brain. Compared with ThS, QM-FN-SO3 emits more strongly during Aβ enrichment and
can label and amplify fluorescence signals more accurately. During in vivo experiments,
the fluorescence intensity of QM-FN-SO3 in the brain region of APP/PS1 mice was much
higher than that in wild-type mice. In addition, according to MTT detection, the probe
QM-FN-SO3 has good biocompatibility [55].
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Furthermore, Zhu’s team synthesized DCIP-1, using the DCM-like dicyano-isophorone
chromophore, which is more selective to Aβ aggregates than other intracellular proteins.
The calculated detection limit is as low as 109 nM. When combined with the hydrophobic
cavity of Aβ, the probe showed a large fluorescence enhancement. In vivo imaging studies
showed that the probe could penetrate the blood–brain barrier and label Ab plaques in
10-month-old transgenic live mice (APP/PS1), with fluorescence lasting more than 60 min
(Figure 13) [56].

Biosensors 2023, 13, x FOR PEER REVIEW 12 of 16 
 

 
Figure 12. Structure and advantages of probe QM-FN-SO3. (Reproduced with permission from [55], 
Copyright 2019, American Chemical Society.) 

Furthermore, Zhu’s team synthesized DCIP-1, using the DCM-like dicyano-isopho-
rone chromophore, which is more selective to Aβ aggregates than other intracellular pro-
teins. The calculated detection limit is as low as 109 nM. When combined with the hydro-
phobic cavity of Aβ, the probe showed a large fluorescence enhancement. In vivo imaging 
studies showed that the probe could penetrate the blood–brain barrier and label Ab 
plaques in 10-month-old transgenic live mice (APP/PS1), with fluorescence lasting more 
than 60 min (Figure 13) [56]. 

 
Figure 13. DCIP-1 was used for imaging live mice and ex vivo brain slices. (Reproduced with per-
mission from [56], Copyright 2017, Elsevier.) 

Based on the study of DCM, Cheng et al. designed an intelligent fluorophore PAD-1 
for in vivo fluorescence imaging of Aβ in the brain (Figure 14A). PAD-1 showed a signif-
icant fluorescence enhancement effect when bound to aggregated Aβ. To evaluate the 
blood–brain barrier permeability of PAD-1, in vivo fluorescence experiments were per-
formed on normal mice. After intravenous injection of the probe, the brain of the mice 
showed a high fluorescence signal immediately. In vivo imaging of brain signals at each 

Figure 13. DCIP-1 was used for imaging live mice and ex vivo brain slices. (Reproduced with
permission from [56], Copyright 2017, Elsevier).

Based on the study of DCM, Cheng et al. designed an intelligent fluorophore PAD-1 for
in vivo fluorescence imaging of Aβ in the brain (Figure 14A). PAD-1 showed a significant
fluorescence enhancement effect when bound to aggregated Aβ. To evaluate the blood–
brain barrier permeability of PAD-1, in vivo fluorescence experiments were performed
on normal mice. After intravenous injection of the probe, the brain of the mice showed a
high fluorescence signal immediately. In vivo imaging of brain signals at each time point
showed that PAD-1 crossed the blood–brain barrier with high initial uptake, peaking 5 min
after injection and rapidly clearing from the brain, which is highly desirable for in vivo
detection of Aβ (Figure 14C). In addition, it also showed specific labeling of Aβ deposits in
APP/PS1 transgenic mouse brains (Figure 14B) [57].
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DCM derivatives possess numerous advantages and hold great potential for applica-
tions in biosensing and bioimaging. Similar to BODIPY dyes, most DCM probes exhibit
poor water solubility and require the use of DMSO as a solvent for biological applications.
However, excessive DMSO may be harmful to biological systems. Therefore, achieving
appropriate hydrophilicity is a critical challenge in the further development of DCM probes.

3. Conclusions and Outlook

In this review, most of the imaging mechanisms of Aβ probes are based on ICT effects.
By modifying the electron donor and acceptor groups in the molecular structure, the
probe can obtain different luminescence properties to meet the specific tracking of Aβ

in the complex brain environment. These probes have excellent photostability and can
continuously monitor Aβ deposition in complex brain environments. Most probes can
image Aβ in the brain for more than 60 min. They reveal the form and structural changes
in the existence of Aβ in the brain, providing assistance for the pathological study of AD.
But these works are still in the basic research stage and cannot be used for AD detection
in humans. According to the main structure, these fluorescent probes are divided into
four categories (curcumin, coumarin, BODIPY, and DCM) in this paper. With the rapid
development of fluorescent probes and biosensing in recent years, these luminescent groups
will also shine in the field of biosensing.

Despite significant advances in tracking Aβ dyes in vivo in recent years, there are
still major challenges: (1) NIR II has a high tissue penetration, and the design of NIR II
probes is necessary; (2) It tries to balance the lipophilicity and hydrophilicity of the dye
as much as possible, so that it maintains a low fluorescence background while crossing
the blood–brain barrier; (3) Researchers should develop a reliable integrated probe for
diagnosis and treatment, which can detect Aβ while disassembling the generated Aβ. In
summary, this mini-review summarizes the excellent reports of most probes in this field,
and it is foreseeable that small molecule fluorescent probes for in vivo detection of Aβ will
attract increasing attention and be greatly developed. We hope that the design strategy of
Aβ probes can provide some guidance for the subsequent development of similar probes.
At the same time, it is also hoped that these probes will be helpful to the pathological study
of AD.
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