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Abstract: This work aims to describe the dielectric behaviors of four main tissues in the human
forearm using mathematical modelling, including fat, muscle, blood and bone. Multi-frequency
bioimpedance analysis (MF-BIA) was initially performed using the finite element method (FEM) with
a 3D forearm model to estimate impedance spectra from 10 kHz to 1 MHz, followed by a pilot study
involving two healthy subjects to characterize the response of actual forearm tissues from 1 kHz
to 349 kHz. Both the simulation and experimental results were fitted to a single-dispersion Cole
model (SDCM) and a multi-dispersion Cole model (MDCM) to determine the Cole parameters for
each tissue. Cole-type responses of both simulated and actual human forearms were observed. A
paired t-test based on the root mean squared error (RMSE) values indicated that both Cole models
performed comparably in fitting both simulated and measured bioimpedance data. However, MDCM
exhibited higher accuracy, with a correlation coefficient (R2) of 0.99 and 0.89, RMSE of 0.22 Ω
and 0.56 Ω, mean difference (mean ± standard deviation) of 0.00 ± 0.23 Ω and −0.28 ± 0.23 Ω,
and mean absolute error (MAE) of 0.0007 Ω and 0.2789 Ω for the real part and imaginary part
of impedance, respectively. Determining the electrical response of multi-tissues can be helpful in
developing physiological monitoring of an organ or a section of the human body through MF-BIA
and hemodynamic monitoring by filtering out the impedance contributions from the surrounding
tissues to blood-flow-induced impedance variations.

Keywords: multi-frequency bioimpedance analysis (MF-BIA); forearm; Cole model; dielectric properties;
finite element method

1. Introduction

Bioelectrical impedance analysis (BIA) is a non-invasive technique that originated in
the early 1930s and 1940s [1,2], involving the measurement of the electrical impedance
of a tissue region [3]. Bioimpedance measurement (BIM) provides information about
the physical and electrochemical processes in the tissue region and hence can be used
for monitoring physiological properties and variations [4]. BIA has been widely utilized
for body composition [5–8] and developed to track pulse wave propagation [9–12] and
estimate the arterial diameter change [13–16]. The fundamental principle of BIM is that
a small amount of alternating current is applied through the outer pair of electrodes
(current-carrying electrodes), and the voltage in response is measured through the same or
a different inner pair of electrodes (pick-up electrodes). The ratio of the output voltage to
the input current yields bioimpedance, reflecting the dielectric response of tissues during
the measurement. BIA is carried out as either single-frequency BIA (SF-BIA) or multi-
frequency BIA (MF-BIA). SF-BIA finds applications in impedance cardiography (ICG) [17]
and impedance plethysmography (IPG) [18]. MF-BIA is used in electrical impedance
tomography (EIT) for medical imaging diagnostics [19–21] and bioimpedance spectroscopy
(BIS), which can be used to identify the complex dielectric behaviors of human tissues [22].

Schwan [23] initially presented the frequency-dependent electrical parameters of
tissues in terms of conductivity and permittivity. The electrical behaviors of human tissues
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can be categorized into three dispersion regions: α-dispersion (10 Hz–10 kHz), β-dispersion
(10 kHz–100 MHz) and γ-dispersion (100 MHz–100 GHz) regions. Human tissues exhibit
complex dielectric behavior in β-dispersion region, which is generally described through
complex conductivity and permittivity. Cole and Cole [24,25] proposed an empirical model
to represent the complex dielectric behavior through distributed relaxation phenomenon,
resulting in the Cole–Cole relation:

ε(ω) = ε∞ +
ε0 − ε∞

1 + (jωτ)α (1)

where ε represents the complex dielectric constant, ε∞ is the dielectric constant at infinite
frequency, ε0 is the dielectric constant at zero frequency, ω is the angular frequency and
τ is a time constant. α is the coefficient of relaxation, which has a value between 0 and 1,
depending on the nature of the material. The parameter becomes smaller as the width of
the dispersion increases.

Another way of representing the Cole model is in the form of impedance expressed in
terms of complex permittivity and complex conductance:

Z(ω) = R∞ +
R0 − R∞

1 + (jωτ)α (2)

where R0 and R∞ are the resistance at zero and infinite frequency, respectively. Z(ω)
has a non-linear relationship with frequency, which generates a suppressed semi-circle in
the impedance plane. Equation (2) has been extensively used for single-dispersion Cole
modelling in MF-BIA. The Cole impedance model has been applied to BIA before and
after biceps exercise [26], uncovering noteworthy variations in impedance parameters that
provide insights into fatigue-induced tissue transformations. In another investigation,
the four-electrode technique was employed to assess electrical impedance within hepatic
tumors and the adjacent liver tissue. The outcomes reveal substantial disparities in conduc-
tivity between tumor and healthy tissue, presenting valuable implications for bioelectric
applications in tissue diagnosis and therapeutic interventions [27].

The application of MF-BIA for hemodynamic monitoring has been investigated by
several previous studies using computational simulation [28], tissue phantom experi-
ments [13,29] and human subject measurement [15]. The objective of this study is to present
a mathematical modelling approach where the dielectric properties of forearm tissues will
be identified through MF-BIA. In this study, the finite element method (FEM) was carried
out to simulate a 3D human forearm model with four tissue domains, including fat, muscle
and blood-filled artery (radial artery) and bones (radius and ulna), aiming to evaluate the
dielectric response and the electric field (E-field) distribution within individual tissues of
the forearm. Moreover, pilot experimentation was implemented with two healthy human
participants using MF-BIA at the forearm. Both simulated and measured impedance values
were fitted to the single-dispersion Cole model (SDCM) and the multi-dispersion Cole
model (MDCM) to elucidate tissue responses and dielectric relaxation in individual tissues.
The SDCM simplifies bioimpedance modeling, assuming a single relaxation time for all tis-
sues, while the MDCM offers more comprehensive representation by considering multiple
relaxation processes within tissues.

2. Methodology
2.1. Computational Simulation
2.1.1. 3D Human Forearm

A 3D model of the human forearm was designed in the HFSS design type in ANSYS
Electronics Desktop (2021 R2, ANSYS, Inc., Canonsburg, PA, USA), and FEM was applied
to perform electrical simulation, as shown in Figure 1. In this simulation, the model
encompassed five distinct tissue domains, mirroring the anatomical structure of the human
forearm [30,31]: skin, fat, muscle, blood and bone. Skin contributes significantly to overall
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impedance measurements due to its high impedance. However, the use of wet electrodes, a
common practice in BIA, was expected to mitigate the impedance effects of the outermost
skin layer. Consequently, the thin outer skin layer was assigned electrical properties
equivalent to those of fat tissue.
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Figure 1. Simulated 3D human forearm in ANSYS HFSS (longitudinal view).

The overall width of the cross-section of the human forearm model was 70 mm. The
fat and the muscle layers were modelled as concentric along the same axis. The dimension
in terms of thickness of the fat was from 3 to 6 mm and from 10 to 15 mm from muscle.
Additionally, a section was designated to emulate the radial artery, with a diameter of
2.35 mm, passing through both the fat and muscle domains [32–35]. The artery wall,
assigned muscle properties, formed the interface between muscle and blood. The bone
domain was subdivided into two main regions, namely radius, which was at the center
and thicker, and ulna, which was relatively at the periphery and smaller in terms of
cross-section.

Each tissue domain was assigned frequency-dependent material properties in the form
of bulk conductivity (σ) and relative permittivity (εr), based on the database developed by
Gabriel et al. [36–39].

2.1.2. BIM Setup

Four cylindrical electrodes were modelled to simulate the tetrapolar BIM. The outer
pair of electrodes was used as a current source, while the inner pair of electrodes were used
for measuring the resultant potential difference. A current excitation was applied to current-
carrying electrodes between 1 kHz and 1 MHz. The amplitude of the current was 1 mA in
accordance with the electrical safety limits identified by IEC 60,601 standards [40]. This
investigation focused on a significant portion of the β-dispersion frequency range relevant
to human tissue dielectric properties, including resistance and reactance. The electrodes
were chosen to be conductive by defining their material properties as those of copper. All
electrodes were designed to replicate the dimensions of dry Ag/AgCl electrodes, featuring
an 8 mm diameter with equidistant spacing of 20 mm.

To obtain the simulated impedance data, a non-model line was drawn between the
centers of the two pick-up (PU) electrodes. The real and imaginary parts of the complex
electric field (E-field) were separately exported at 0.1 mm intervals at each frequency. Next,
the real and imaginary parts of the potential difference were consequently calculated by

computing the approximate cumulative integral of the real part of the E-field (
→

Re(E)) and
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imaginary part of the E-field (
→

Im(E)) via the trapezoidal method using MATLAB (R2019a,
The MathWorks, Natick, MA, USA).

Re(U) =
∫ →

Re(E)·d
→
l (3)

Im(U) =
∫ →

Im(E)·d
→
l (4)

where d
→
l was the vector between two adjacent points (0.1 mm). Then, the real and

imaginary part of impedance “measured” by PU electrodes can be calculated by dividing
the potential difference by the amount of excitation current (I = 1 mA).

2.2. Pilot Experimentation

The tetrapolar BIM was implemented on two healthy subjects (as listed in Table 1)
under the resting condition who were members of this research team. After consultation
with the institutional ethics committee, the scope of this investigation was deemed exempt
from ethics approval. As shown in Figure 2, four ECG gel electrodes (FIAB, Florence,
Italy) were placed along the radial artery near the wrist of the ventral forearm. The
electrode spacing was maintained at 20 mm, consistent with the computational simulation.
A commercially available Quadra® Electrical Impedance Spectroscopy device (Eliko®

technologies, Tallinn, Estonia) [41] was utilized for BIA at the Institute of Biomedical
Technologies (IBTec), Auckland University of Technology, New Zealand. The Quadra®

device is known to have reasonable accuracy, with a system accuracy of up to 0.1%, although
this accuracy may vary depending on the specific measurement and frequency range.

Table 1. Subject information.

Age Gender Height Weight Body Mass Index (BMI) Forearm Circumference of
Measured Region

Subject 1 32 Male 182 cm 110 kg 33.2 19.3 cm to 26.5 cm

Subject 2 27 Male 188 cm 103 kg 29.1 17.1 cm to 23.8 cm
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Figure 2. Experimental setup for BIA.

The reliability of the measurements was a crucial concern. Therefore, for each subject,
measurements were taken over a 10 s period to ensure the consistency of the obtained
spectra. This duration resulted in 10,000 samples of spectra for each frequency. From
these samples, an average spectrum was calculated for each subject, demonstrating the
measurement consistency in relation to changing conditions over time.

The Quadra® device provides a state-of-the-art platform for impedance spectroscopy,
offering a sampling rate of 1000 Hz, while yielding impedance spectra at 15 different
frequencies from 1 kHz to 349 kHz. In this study, we employed extrapolation techniques
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to extend the observed impedance response beyond the maximum frequency limit of the
Quadra® device, which operates up to 349 kHz. The rationale behind this approach is rooted
in the desire to obtain a more comprehensive understanding of impedance behaviors across
a broader frequency spectrum. Extrapolation in MF-BIA is a well-established technique
commonly employed to extend data beyond the measured range, estimate values between
measured data points, or fill in gaps within a specified range [42–44]. It allows for a more
thorough exploration of impedance characteristics, particularly in scenarios where the
measurement equipment has inherent frequency limitations.

A single shunt front-end with a 4-wire differential mode was employed with the
Quadra® device for this study. The Quadra® device interfaces V1.4 via its software, which
logs the impedance in terms of absolute value (|Z|) and phase angle (θ). Therefore, the real
and imaginary parts of measured impedance were calculated as follows:

Re(Z) = |Z|cos (
πθ

180
) (5)

Im(Z) = |Z|sin (
πθ

180
) (6)

2.3. Single and Multi-Dispersion Cole Lumped-Parameter Models

Equation (2) defines the impedance magnitude as a complex quantity and can be
rewritten by substituting the value of (j)α = cos

(
α π

2
)
+ jsin

(
α π

2
)
:

Z(ω) = R∞ +
R0 − R∞

1 + (ωτ)αcos
[
α π

2
]
+ i(ωτ)αsin

[
α π

2
] (7)

The real (Re(Z)) and the imaginary parts (Im(Z)) of impedance can be obtained as
follows:

Re(Z) = R∞ +
(R0 − R∞)

(
1 + (ωτ)αcos

[
α π

2
])

1 + 2(ωτ)αcos
[
α π

2
]
+ (ωτ)2α

(8)

Im(Z) = −j
(R0 − R∞)(ωτ)αsin

[
α π

2
]

1 + 2(ωτ)αcos
[
α π

2
]
+ (ωτ)2α

(9)

Equations (8) and (9) can be further combined to relate Im(Z) directly in terms of Re(Z)
so as to form an equation where Im (Z) is a function of Re(Z). To aid the understanding,
Re (Z) can be symbolized as ‘R’ and Im (Z) can be symbolized as ‘X’:

4X + 2cot
[

απ
2
]
(R0 − R∞) =

√
2cosec

[
απ
2
]
∗√

−4R2 + 4RR0 + R2
0 + 4RR∞ − 6R0R∞ + R2

∞ + cos[απ](−2R + R0 + R∞)2
(10)

The methodology for curve fitting involved selecting a general dielectric Cole model
with at least four parameters (R0, R∞, τ and α) to define the dielectric relaxation spread
within the frequency range of interest (i.e., from 1 kHz to 1 MHz). Furthermore, a mini-
mization cost function was implemented, based on the sum of squared errors between the
curve fit and simulation data, expressed as follows:

RMSE =

√√√√∑N
i=1

(
Ri

f it − Ri
sim

)2

N
+

√√√√∑N
i=1

(
Xi

f it − Xi
sim

)2

N
(11)

where RMSE is the root mean squared error; Ri
f it and Xi

f it refer to the R and X curve fit

data for ith sample, respectively; Ri
sim and Xi

sim refer to the R and X simulation data for
ith sample; and N is the number of samples (fitted data). The fitting algorithms were
implemented using MATLAB.
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Bone exhibited an almost constant conductivity of 0.02 S/m across the entire frequency
range of interest. Consequently, the contribution of the bone tissue domains was treated
as resistive. In contrast, each of the other three tissue domains was characterized using a
multi-dispersion Cole model, which serves as an advanced bioimpedance modeling frame-
work capable of accommodating the complex electrical responses exhibited by biological
tissues. Essentially, the multi-dispersion Cole model characterizes tissue impedance as a
combination of multiple relaxation times, providing it with the capacity to replicate a wide
spectrum of electrical behaviors. The final model chosen to represent the electrical response
of the forearm tissues was formulated as follows:

Z(ω) = Rbone +
R0 f − R∞ f

1 +
(

iωτf

)α f
+

R0m − R∞m

1 + (iωτm)
αm +

R0b − R∞b

1 + (iωτb)
αb

(12)

In Equation (12), the first term signifies the resistance of the bone tissues (representing
both the radius and ulna), while the second, third and fourth terms elucidate the dispersion
characteristics of the fat, muscle and blood tissue layers, respectively.

The evaluation of the correlation between simulated/measured impedance and the
fitted impedance involved several key metrics, including the determination coefficient (R2)
and the root mean square error (RMSE). To provide further insight into the accuracy of
the fitting process, we computed both the mean difference and standard deviation (SD),
which were subsequently visualized using Bland–Altman analysis. Furthermore, the mean
absolute error (MAE) was employed as an additional metric to assess fitting precision. In
order to determine any significant disparities in the goodness-of-fit measures, we conducted
a paired t-test, with a specific focus on RMSE, to compare the performance of the SDCM
and MDCM.

3. Results
3.1. Computational Simulation Analysis
3.1.1. E-Field Distribution

Figure 3 provides a visual representation of the simulated E-field distribution across
the entire 3D forearm model at a frequency of 1 kHz. This distribution of the E-field plays a
pivotal role in defining the path of current flow within the model. Notably, the maximum
E-field intensity is concentrated in the vicinity of the current-carrying electrodes, positioned
at the outer boundaries of the model. As one moves away from these electrodes, the E-field
gradually diminishes in magnitude within the surrounding regions.
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3.1.2. Fitting Results

Both the SDCM and the MDCM were employed to characterize the overall dielectric
dispersion exhibited by the combined tissue domains. Figure 4 presents a comparative view
of the simulated impedance values before and after fitting. It is noteworthy that the Re(Z),
displayed a decreasing trend with increasing frequency, corresponding to the heightened
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conductivity of human tissues at higher frequencies. The Nyquist plot, often referred to as
the Cole plot, provided insights into the Cole-type dielectric response, as evidenced by the
variations in Re(Z) and Im(Z) with frequency. Particularly, the major portion of the plots,
spanning from 10 kHz to 1 MHz, exhibited a semi-circular shape consistent with the Cole
model, signifying the bio-tissue behavior of the simulated 3D model. However, a deviation
from the Cole model became apparent at frequencies below 10 kHz. The estimated Cole
parameters are shown in Tables 2 and 3, respectively.
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Table 2. Estimated Cole parameters from the fit of simulation data using SDCM.

R0 R∞ α τ

89.50 60.02 0.6923 3.45 × 10−7

Table 3. Estimated Cole parameters from the fit of simulation data using the MDCM.

Rbone R0f R∞f αf τf R0m R∞m αm τm R0b R∞b αb τb

49.72 19.72 2.43 0.34 1.48 × 10−9 21.44 0.98 0.83 4.08 × 10−7 4.04 0.54 0.26 1.05 × 10−4

Then, the models describing the overall dielectric behavior can be written as follows:

Z(ω) = 60.02 +
29.48

1 +
(

j ∗ω ∗ 3.45 ∗ 10−7
)0.6923 (13)

Z(ω) = 49.72 +
17.29

1 + (iω ∗ 1.48× 10−9)
0.34 +

20.46

1 + (iω ∗ 4.08× 10−7)
0.83 +

3.5

1 + (iω ∗ 1.5× 10−4)
0.26 (14)

Figure 5a,b presents correlation plots (left) and Bland–Altman plots (right) compar-
ing raw simulated impedance with fitted impedance using the SDCM. For SDCM, Pear-
son’s correlation coefficients were 0.98 and 0.52, with RMSE values of 0.85 Ω and 1.75 Ω
for Re[Z] and Im[Z], respectively. Bland–Altman analysis revealed mean differences of
−0.06 ± 0.88 Ω and 1.13 ± 0.88 Ω Re[Z] and Im[Z], respectively, within ±1.96 SD limits
representing a 95% confidence interval. Additionally, MAE values were calculated, yielding
0.0588 Ω and 1.1303 Ω for Re[Z] and Im[Z], respectively.

According to Figure 5c,d, MDCM demonstrated higher R2 of 0.99 and 0.79 and lower
RMSE values of 0.39 Ω and 1.04 Ω Re[Z] and Im[Z], respectively. Bland–Altman analysis in-
dicated smaller mean differences between raw and fitted data, amounting to 0.00 ± 0.40 Ω
and 0.56 ± 0.40 Ω Re[Z] and Im[Z], respectively. Furthermore, MDCM exhibited reduced
MAE values of 0.0006 Ω and 0.5570 Ω Re[Z] and Im[Z], respectively. These results un-
derscore the superior performance of the MDCM approach in accurately modeling the
impedance data.
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3.2. Pilot Study
Measured Impedance

As shown in Figure 6, the two subjects exhibited similar impedance changes with
frequency, while the impedance ranges were different due to different forearm sizes and
proportions of tissues between individuals (see Table 1).
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First, the measured real part and imaginary part of impedance from two subjects were
fitted using both SDCM and MDCM. In contrast to the simulation setup, the measured
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impedance spectra were extrapolated and estimated across the entire frequency range of
interest (1 kHz to 1 MHz) due to the restricted measurement capabilities of the Quadra®

device. Figure 6 illustrates the complete dielectric responses of forearm tissues, spanning
from 1 kHz to 1 MHz, for two subjects. These responses are depicted with both solid
and dashed lines, corresponding to the fitting and estimation results obtained using two
different Cole models. In order to model the experimental observations of both subjects
in the MDCM, it was assumed that the effect of skin (skin–electrode polarization) was
countered by using gel electrodes. For the remainder of the tissues, Equation (12) was used
to represent other main tissue domains. The Cole parameters of each subject were thereby
estimated and tabulated in Tables 4 and 5, respectively.

Table 4. Estimated Cole parameters from the fit of experimental data using the single-dispersion Cole
model.

R0 R∞ α τ

Subject 1 75.29 56.32 0.54 4.00 × 10−6

Subject 2 56.59 35.18 0.64 2.73 × 10−6

Table 5. Estimated Cole parameters from the fit of experimental data using the multi-dispersion Cole
model.

Rbone R0f R∞f αf τf R0m R∞m αm τm R0b R∞b αb τb

Subject 1 57.98 25.51 16.09 0.65 7.29 × 10−5 24.50 15.82 0.67 6.91 × 10−5 3.54 0.62 0.62 1.63 × 10−4

Subject 2 38.83 25.59 12.30 0.72 2.32 × 10−4 26.80 14.59 0.88 3.91 × 10−5 2.86 0.53 0.66 6.28 × 10−4

Additionally, the overall Cole models for the two subjects were thereby demonstrated:

Zsubject1(ω) = 56.32 +
18.97

1 +
(

jω× 4.004× 10−6
)0.54 (15)

Zsubject2(ω) = 35.18 +
21.41

1 +
(

jω× 2.73× 10−6
)0.64 (16)

Zsubject1(ω) = 57.98 +
9.42

1 + (iω× 7.29× 10−5)
0.65 +

8.68

1 + (iω× 6.91× 10−5)
0.67 +

2.92

1 + (iω× 1.63× 10−4)
0.62 (17)

Zsubject2(ω) = 38.83 +
13.29

1 + (iω× 2.32× 10−4)
0.72 +

12.21

1 + (iω× 3.91× 10−5)
0.88 +

2.33

1 + (iω× 6.28× 10−4)
0.66 (18)

The performance of the fitting process was thoroughly assessed using correlation
and Bland–Altman plots, as visually depicted in Figure 7, for both subjects. The collective
results underscored a commendable level of accuracy achieved by both models in analyzing
the impedance data from the two subjects. Crucially, no significant disparities in fitting
quality were discerned between the two subjects.
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For SDCM, the analysis revealed an overall R2 of 0.99 for Re[Z], with a mean difference
between the measured raw and fitted values of 0.00 ± 0.26 Ω, signifying a strong fit. Both
the RMSE and MAE exhibited reasonable error magnitudes, measuring at 0.25 Ω and
0.0029 Ω, respectively. Similarly, the fitting accuracy for Im[Z] was well established with
an R2 of 0.92 and a mean difference of 0.00 ± 0.26 Ω, albeit with slightly higher RMSE and
MAE values of 0.28 and 0.0096 Ω, respectively.

In comparison, the MDCM outperformed SDCM, offering even more precise esti-
mations for all measured impedance data from both subjects. The overall R2 were an
impressive 1.00 for Re[Z], accompanied by a smaller mean difference between measured
raw and fitted values of 0.00 ± 0.06 Ω. RMSE and MAE values were consistent with high
accuracy, measuring at 0.06 Ω and 0.0007 Ω, respectively. Furthermore, Im[Z] demon-
strated a similar degree of accuracy, characterized by a R2 of 0.99 and a mean difference
of 0.00 ± 0.06 Ω, albeit with slightly higher RMSE and MAE values of 0.08 and 0.0008 Ω,
respectively.

4. Discussion
4.1. Simulation Analysis

In this study, we initially conducted an FEM simulation using ANSYS HFSS to gain
a deeper understanding of the E-field distribution within the entire forearm model. As
illustrated in Figure 3, the simulation results confirmed a higher E-field concentration
around the current-carrying electrodes, consistent with prior research findings [13,28].
Notably, it was found that resistive effects were predominant across the investigated
frequency range. An intriguing observation from the simulations was the presence of
Cole behavior above 10 kHz. However, an overlap between the dispersion regions was
noticed, indicating that the 3D forearm model did not exhibit the typical β-dispersion
behavior below 10 kHz, as commonly seen in the prototypical semi-circular Cole plots. This
deviation can be attributed to the overlapping α-dispersion and β-dispersion frequency
regions, as well as the dominant resistive behavior of blood. This discrepancy was a key
factor contributing to the lower fitting performance observed in the simulation study. To
enhance the fitting quality, we propose narrowing the fitting frequency range from 10 kHz
to 1 MHz.

4.2. Pilot Experimentation

Additionally, we conducted MF-BIA on two healthy subjects to corroborate the find-
ings obtained from the simulation. The Quadra® device is effective at its specified fre-
quencies, which showed a reasonable Cole-type dielectric response in the way of the
semi-circular shape of the major portion, while it was limited in its upper-frequency ca-
pability. To overcome this limitation and access impedance data spanning from 1 kHz
to 1 MHz, we turned to extrapolation methods. This extension of the frequency range
allowed us to gain insights into the behavior of biological tissues across a wider spectrum
to match the simulated frequency range and enhanced the accuracy and applicability of
our impedance analyses.

Consistent β-dispersion behaviors were observed in both subjects. In the comparison
of measured Re[Z] between subjects, subject 1 consistently displayed higher impedance
values across the measured frequency range, spanning approximately 76 Ω to 61 Ω, while
subject 2 exhibited impedance values ranging from 58 Ω to 42 Ω. These disparities in
impedance can be ascribed to variances in BMI and forearm circumference, as outlined
in Table 1. Subject 1, characterized by a higher BMI, likely possesses a larger volume
of radius and ulna bones and a higher proportion of body fat. This resulted in elevated
impedance values spanning from 1 kHz to 1 MHz, primarily attributed to the lower
electrical conductivity of bone cancellous (0.08 S/m), bone cortical (0.02 S/m) and fat tissue
(0.02 S/m). Conversely, subject 2 exhibited a broader impedance change range of 17 Ω,
possibly indicating a higher proportion of muscle tissue in the forearm. Muscle tissue
displays more significant conductivity variations, ranging from 0.3 S/m to 0.5 S/m between
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1 kHz and 1 MHz. However, it is vital to acknowledge that the measured impedance values
can be influenced by additional factors, including hydration levels and variations in other
tissue compositions, necessitating further investigation to comprehensively understand the
multifaceted nature of impedance differences.

Significantly, the magnitudes of the measured impedance spectra were notably smaller
compared to the simulation results, a finding consistent with the expected disparities be-
tween the 3D forearm model and real human tissues. In light of this, we have consolidated
further disparities between the simulation setup and actual measurements in Table 6. While
replicating the intricacies of the human forearm precisely in simulation presents challenges,
our simplified model has nevertheless yielded valuable insights into the E-field distribution
within the tissues. Furthermore, both the simulation and pilot study confirm the Cole-type
behaviors exhibited by forearm tissues under BIM.

Table 6. Comparison between simulation and forearm measurements.

Computational Simulation Pilot Study

Skin–electrode contact interface
No contribution of the electrode interface
(polarization) was considered in the
overall measurements.

The measurement device and the gel electrodes
provided an appropriate compensation for the
skin–electrode interface.

Size of electrodes
The electrodes had the same
cross-sectional contact dimensions to the
dry electrode (diameter = 8 mm).

The gel electrolyte between Ag/AgCl electrode
and the skin provided a larger contact area.

Tissues

Only four tissues were constructed (i.e.,
fat, muscle, bone and blood). All
modelled tissue domains were relatively
uniform with bulk dielectric properties.

The anatomy of the forearm (dimension and
proportion) was different between each subject.
Other tissues contributed to the overall BIM,
such as tender, vein, nerve, etc.

4.3. Electrical Modelling

In this study, a two-stage methodology was adopted to model and analyze the MF-
BIA response from the computational simulation and pilot experimentation to estimate
the impedance contribution from each tissue domain, giving insights into not only the
resistance contribution of each tissue, but also the other Cole dispersion parameters.

Tables 7 and 8 offer a comprehensive overview of the performance of both models
throughout the various investigations conducted in this study. Initially, a broader frequency
range spanning from 1 kHz to 1 MHz was simulated. However, as previously discussed,
anomalies were observed, particularly a derivative below 10 kHz, which adversely affected
the fitting performance of both models. Despite the previous validation of the Quadra®

device in prior studies [15,29], we identified abnormal measurements above 179 kHz,
prompting the removal of these abnormal data points from the fitting process. To address
the limitation imposed by the measured frequency range of the Quadra® device, we
undertook the estimation of the complete response, allowing us to gain further insights
and a more comprehensive understanding of the dielectric behaviors of the human forearm
across the frequency spectrum from 1 kHz to 1 MHz.

Compared with the Im[Z], both models showed better estimation in Re[Z], a phe-
nomenon influenced by various factors. In the context of biological tissues, the resistive
component (real part) of impedance normally dominates over the capacitive component
(imaginary part) at lower frequencies, associated with the flow of ions or current through
tissues. Conversely, the capacitive behavior is related to the accumulation and discharge of
charge in cell membranes, which becomes more prominent at higher frequencies. Addi-
tionally, Re[Z] is often easier to model accurately since it is relatively straightforward to
represent with the Cole model framework. On the other hand, the imaginary part involves
capacitance and inductance, which may require more complex models to capture accurately.
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Table 7. Summary of statistical analysis of proposed electrical models for the real part of impedance.

Correlation Analysis Bland–Altman Analysis
Mean Absolute

Error [Ω]R2 RMSE [Ω] Mean
Difference [Ω] SD [Ω]

Simulation
SDCM 0.98 0.85 −0.06 0.88 0.0588

MDCM 0.99 0.39 0.00 0.40 0.0006

Pilot Study
SDCM 0.99 0.25 0.00 0.26 0.0029

MDCM 1.00 0.06 0.00 0.06 0.0007

Mean of all SDCM 0.98 0.55 −0.03 0.57 0.0308

Mean of all MDCM 0.99 0.22 0.00 0.23 0.0007

Table 8. Summary of statistical analysis of proposed electrical models for the imaginary part of
impedance.

Correlation Analysis Bland–Altman Analysis
Mean Absolute

Error [Ω]R2 RMSE [Ω] Mean
Difference [Ω] SD [Ω]

Simulation
SDCM 0.54 1.75 1.13 0.88 1.1303

MDCM 0.79 1.04 0.56 0.40 0.5570

Pilot Study
SDCM 0.92 0.28 0.00 0.26 0.0096

MDCM 0.99 0.08 0.00 0.06 0.0008

Mean of all SDCM 0.73 1.01 0.56 0.57 0.5699

Mean of all MDCM 0.89 0.56 0.28 0.23 0.2789

The MDCM consistently exhibited superior accuracy across multiple evaluation met-
rics, including R2, EMSE, MAE, mean difference and SD, when compared to the SDCM.
These findings underscore the robustness of the MDCM in representing the complex dielec-
tric properties of various tissues, both in the context of simulated and measured impedance
values. Every tissue domain experiences a different dispersion phenomenon and hence may
not be accurately described using the SDCM. More importantly, the MDCM can describe
and estimate the Cole parameters of each tissue, thereby isolating the behavior of a single
tissue of interest from the overall MF-BIA.

To rigorously evaluate these models, we conducted statistical comparisons (a paired
t-test) based on the RMSE of their respective fits to the data. The results of our statistical
analysis indicated that there was no significant difference between the SDCM and MDCM
(p = 0.1055 for Re[Z], 0.0913 for Im[Z]) based on the RMSE measure, suggesting that both
Cole models performed comparably in fitting both simulated and measured bioimpedance
data, and there was no compelling evidence to favor one over the other in terms of goodness
of fit. The overall performance was promising, which can be helpful in physiologically
monitoring an organ or a section of the human body through MF-BIA applications, such
as electrical impedance tomography (EIT). Furthermore, it can help improve the accuracy
of existing methods, like impedance cardiography (ICG) for hemodynamic monitoring
by filtering out the impedance contributions from the surrounding tissues to blood-flow-
induced impedance variations.

4.4. Limitation

This study provides a better insight and understanding in multi-tissue Cole model-
ing, encompassing simulations and measurements from two subjects. Nevertheless, it is
imperative to acknowledge that the outcomes, whether stemming from simulations or
experiments, are contingent on specific assumptions, including the assumption of constant
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tissue properties and simplified geometric representations, while facilitating the study,
may introduce inherent limitations, necessitating thoughtful consideration during result
interpretation.

It is vital to delineate the disparities between the simulated 3D forearm and the actual
anatomical structure. Consequently, several potential limitations merit attention, and future
efforts should aim to address them comprehensively. The omission of the skin layer in this
study was a deliberate simplification aimed at reducing model complexity. This decision
was grounded in the assumption that the use of wet electrodes predominantly mitigates the
effects of skin–electrode polarization. Moreover, dynamic factors such as blood flow, which
significantly influence the dielectric response of the human forearm, were not considered
in this study. The focus was primarily on modeling the distinct compositional responses of
muscle, fat, bone and blood-filled artery domains, isolating the blood contribution from the
overall measurements.

A promising trajectory for future refinement entails the enhancement of the simulated
3D forearm model geometry. Subsequent research endeavors could enrich this model
by incorporating additional tissue components and refining the geometric representation
to more faithfully replicate the intricate forearm structures observed in human subjects.
Furthermore, expanding the subject pool in future experiments and harnessing advanced
imaging technologies, like ultrasound and magnetic resonance imaging (MRI), could prove
instrumental in obtaining comprehensive data regarding tissue proportions within subjects’
forearms. This approach holds the potential to yield profound insights into the influences
of various tissue types and their proportions on BIA.

More importantly, the mathematical models employed in this study exhibited imper-
fect fitting for Im[Z]. To address these differences in fitting performance, it is expected to
fine-tune the models by employing more sophisticated modeling techniques or to explore
alternative models that can better capture the behavior of both Re[Z] and Im[Z], such as the
non-linear least-squares fitting technique, which enables the extraction of double-dispersion
Cole impedance parameters without relying on direct impedance or phase information [45].
Additionally, fractional calculus has been applied to model biological systems, providing
accurate yet concise representations [46,47]. Another notable research effort introduced a
novel parametric-in-time approach for electrical impedance spectroscopy, tailored for time-
varying impedance systems. This approach was validated through in situ measurements
of in vivo myocardial impedance and offers valuable insights into periodic time-varying
behaviors [48]. Additionally, improving the accuracy of impedance measurements and
reducing noise can also lead to better estimation results for both components of impedance.

5. Conclusions

This study has delved into MF-BIA with a multifaceted approach, encompassing com-
putational simulations and real measurements of forearm impedance. We have elucidated
the capabilities and limitations of both SDCM and MDCM in characterizing the electrical
properties of forearm tissues. Leveraging extrapolation techniques, we extended the fre-
quency range of BIM, facilitating a more comprehensive understanding of tissue behavior.
Our investigation also shed light on the influence of factors such as BMI, forearm circum-
ference and tissue composition on impedance data, further underscoring the complexity of
bioimpedance phenomena. Notably, the MDCM emerged as a superior modeling approach,
offering enhanced precision in estimating impedance parameters. While this investigation
marks significant progress, further analysis and refinements remain imperative to fully
unlock the potential benefits of the MF-BIA methodology over existing BIA techniques.
Ultimately, these efforts hold the promise of standardizing and enhancing the current
applications of MF-BIA, paving the way for its broader adoption and impact in diverse
fields.
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