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Abstract: Recycling and revalorization of waste are currently essential for sustainable growth. Mill
scale, a waste product from steel production industries, which contains high levels of iron and
minimal impurities, is proposed in this study as the source to synthesize magnetite nanoparticles
(Fe3O4) for an enhancement of a lactate biosensor range. The synthesized Fe3O4 nanoparticles
were coated with polydopamine (PDA) to prevent aggregation and degradation, creating a stable
platform for immobilizing lactate oxidase enzyme (LOx) on their surfaces. The characterization of the
Fe3O4@PDA material was carried out using transmission electron microscopy (TEM), dynamic light
scattering (DLS), and measurement of the polydispersity index (PdI). The Fe3O4@PDA-LOx material
was then deposited on a screen-printed carbon electrode modified with Prussian blue (SPCE-PB)
for lactate detection. The biosensor exhibited a broad, dual linear concentration-response range,
one from 0.1 to 4.62 mM with a limit of detection of 0.32 mM and sensitivity of 1.54 µAmM−1cm−2,
and another one from 4.62 to 149.21 mM with a limit of detection of 6.31 mM and sensitivity of
0.08 µAmM−1cm−2. The dual-range concentration response of the biosensor makes it an ideal tool
for lactate determination in various applications, including sports medicine, clinical diagnosis, and
industrial bioprocessing.

Keywords: mill scale; magnetite nanoparticles; lactate biosensor; continuous monitoring;
broad-range detection; clinical diagnosis

1. Introduction

Steel is an essential material in our society; however, the steel industry is among
the three largest producers of carbon dioxide, a greenhouse gas that contributes to global
warming. The United Nations Climate Change Conference (COP21) held in Paris in De-
cember 2021 [1] reached a significant agreement to substantially reduce global greenhouse
emissions. To address this issue, the European Union (EU) has committed to reducing
greenhouse gas emissions by at least 40% by 2030, compared to 1990 levels, under its
broader 2030 climate and energy framework. This commitment is part of the EU’s initial
nationally determined contribution (NDC) under the Paris Agreement. Reducing green-
house gas emissions is crucial for mitigating the effects of climate change and preserving
the planet for future generations. While the steel industry is an important contributor to
our economy, it is essential to reduce carbon footprints and promote sustainable practices.

Therefore, steel-making companies cope with strong pressure to reduce CO2 emission
from this process plus the amount of residues that they produce. In the steel-making
process, due to high temperatures, the outer skin of products oxidizes to iron oxide. This
skin that can be easily removed is called mill scale. Mill scale is one of the waste materials
that is produced as a result of the hot rolling of steel in all steel companies. If not revalorized,
this waste ends up in landfills, requiring an enormous cost due to transportation and the
associated CO2 emission. The waste can also cause the leaching of some fractions of heavy
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metals, and present a continuous need to devote more land to landfills. Therefore, it is
crucial for steel-making companies to find ways to reuse and recycle mill scale. This can
include reprocessing it back into the steel-making process or using it as a raw material for
other industries.

Initially, steps have been taken to transform the waste into a valuable product, for
instance, through a carbothermic reduction into pure iron [2], or as a valuable additive
in cement mortars [3] or concrete [4–6]. Moreover, researchers have proposed using mill
scale in other applications with more added value. Mill scale has a high content of iron
and very low impurities. This makes it a good candidate for the production of iron oxide
pigments. Pigments are used in a wide variety of applications such as coating and con-
struction materials [7–12]. During the manufacturing process of pigments, the mill scale is
resized to nanosized particles. These nanoparticles present valuable properties that are now
considered to be of extreme interest due to their physicochemical properties. For instance,
Shahid et al. [13,14] used a coprecipitation method to obtain magnetite (Fe3O4) from the
mill scale. The obtained nanoparticles are valued as an Arsenic absorbent from water
due to the high surface area, which contributes to a greater absorption power, and Pre-
descu et al. [15] have recently introduced new methodologies to obtain superparamagnetic
nanoparticles. The properties of iron oxide nanoparticles, not only obtained from mill scale,
are valorized in many fields (i.e., magnetic resonance imaging (MRI), bio-separation, purifi-
cation, and biosensors) [16–20] due to their superparamagnetic properties at the nanoscale.
Besides magnetic characteristics, recently, Gao et al. [21] discovered that intrinsic enzymatic
properties could be assigned to the iron oxide nanoparticles broadening the range of appli-
cations, especially in the biosensor’s development [22–24] or in the enhancement of biogas
production [25].

In the field of biosensors, the utilization of nanoparticles with their expansive surface
areas has proven instrumental in elevating the overall performance of these critical analyti-
cal tools. This enhanced performance is achieved through a twofold approach. Firstly, by
capitalizing on the large surface area of nanoparticles, researchers are able to effectively
immobilize a great number of bioreceptors, such as antibodies or enzymes, on the sensor
surface. This amplifies the sensor’s sensitivity and ability to precisely detect even the most
minuscule concentrations of target molecules, ultimately pushing the limits of detection
to new heights [26,27]. Moreover, the utilization of nanoparticles extends the range of
measurement capabilities, allowing biosensors to tackle a broader spectrum of analyte
concentrations [28]. The ability of biosensors to provide accurate measurements across
this wide concentration range has broadened their applications across diverse fields, from
medical diagnostics to environmental monitoring. Recently, the COVID pandemic has
emphasized the need to move to a more sustainable medicine, and the empowerment
of the patient is now considered a fundamental element of the follow-up procedure in
many illnesses. Therefore, the production of biosensors in a more sustainable way and
noninvasive monitoring, for instance, sweat monitoring of different metabolites such as
glucose [29,30], cortisol [31], ions [32,33], or lactate [34], has become increasingly important.

Lactate is one of these metabolites in which the expected concentration in sweat com-
pared to blood is extremely different and while the lactate sensors for blood are expected
to have high sensitivity, in sweat the requirement is to extend the range. Researchers are
focused on expanding the range of measurement while having a feasible wearable device.
Garcia et al. [35] already proposed a wide-range lactate sweat sensor based on lactate dehy-
drogenase to measure lactate, which requires a higher potential for measurements but the
system embedded a miniaturized fuel cell to generate the required power. Imani et al. [36]
presented a wearable sensing device for lactate monitoring based on a working electrode
functionalized with a biocompatible biocatalytic layer (lactate oxidase (LOx)-modified
Prussian blue), which enables a range of measurement up to 25 mM. Poletti et al. [37] drop-
casted a layer of Nafion on top of the functionalization of the sensor and a flux of sample
is created on top of the electrode to enhance the range of lactate monitoring up to 50 mM.
Pribil et al. [38] proposed a lactate biosensor based on Prussian blue that can continuously
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detect lactate concentrations up to 70 mM. Xuan et al. [39] proposed a new strategy for
monitoring sweat lactate while also preserving the biosensor response to changes in pH
and temperature by incorporating an outer layer composed of polymer, plasticizer, and
lipophilic salt onto the electrode surface. Even though these examples enhanced the range
of measurement of the state-of-the-art blood-designed lactate biosensors, which is around
1 mM [40–42], none of them used green manufacturing processes and most of them used
complex and non-environmentally friendly materials, such as carbon nanotubes [43], gold
nanoparticles [44], or polymers [45].

In this article, we propose a method to valorize mill scale in a high-added-value
application such as the level of lactate monitoring, which is a relevant parameter not only in
medical analysis or physical condition monitoring but also in the food industry, since lactate
level is correlated with the fermentation level and is an indication of freshness. This paper
presents a strategy to obtain iron oxide nanoparticles, which reduces the environmental
impact compared to conventional methods that use iron salts as precursors. Furthermore,
the utilization of iron oxide NPs in biosensor development allows the sensor to work in an
extended range, expanding the use of lactate sensors to new growing fields such as wearable
sweat sensing. The sensor’s sensitivity and limit of detection (LOD) were characterized,
and its performance was compared with and without nanoparticle incorporation. To the
best of our knowledge, this is the first sensor that incorporates mill-scale-produced iron
oxide nanoparticles to develop lactate oxidase-based biosensors and achieves a working
range exceeding 100 mM of lactate.

2. Materials and Methods
2.1. Materials and Chemicals

Mill scale from CELSA Group (Castellbisbal, Spain) as a source of iron oxide, dopamine
hydrochloride, phosphate buffer saline (PBS) (10 mM, pH 7.4), citric buffer (10 mM, pH 5.5),
TRIS buffer solution (10 mM, pH 8.5), lactate oxidase (LOx) from Sorachim (Lausanne,
Switzerland), sodium hydroxide (NaOH 2M), potassium chloride (KCl 3M), DI water, and
hydrochloric acid (HCl). Biosensor systems were constructed based on a screen-printed
Prussian blue/carbon electrode (SPCE/PB) purchased from Metrohm DropSens (Oviedo,
Spain). The working electrode consisted of carbon/Prussian Blue (4 mm in diameter), while
Ag/AgCl and the carbon ring were the reference and counter electrodes, respectively.

2.2. Synthesis of Fe3O4 Nanoparticles

The synthesis of magnetite nanoparticles relied on the chemical co-precipitation tech-
nique. A total of 1 g of mill scale was dissolved in 20 mL of hydrochloric acid and stirred for
48 h on a magnetic stirrer. The obtained orange solution was diluted in 40 mL of deionized
water. After that, 50 mL of sodium hydroxide (2M) was added dropwise until the mixture
reached a pH of 10 to 11. The mixture was stirred under consistent temperature conditions,
and the synthesis was carried out in a nitrogen gas atmosphere to minimize oxygen levels
in the system. After 30 min, the system was cooled to room temperature, and the magnetite
precipitates were isolated and thoroughly washed from the solution using a magnet. Lastly,
the resulting black powder was dried at room temperature.

2.3. Synthesis of Fe3O4@PDA Nanoparticles

To form the Fe3O4@PDA system, 10 mg of magnetite nanoparticles obtained from the
previous step were mixed with 20 mL of TRIS buffer solution (10 mM, pH 8.5). The solution
was sonicated to homogeneity. Then, 10 mg of dopamine hydrochloride was added, and the
resulting solution was stirred for 24 h at room temperature on a magnetic stirrer while being
saturated with O2. After 24 h, the Fe3O4@PDA nanoparticles were collected by magnetic
decantation and washed with deionized water to remove any unreacted dopamine. The
resulting black powder was allowed to dry for 24 h at room temperature.
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2.4. Lactate Oxidase Immobilization on the Fe3O4@PDA Nanoparticles

Lactate oxidase was immobilized on the surface of Fe3O4@PDA nanoparticles using
an adsorption process, by adding 5 mg of the nanomaterial and 1 mg of lactate oxidase
to 1 mL of citric buffer (10 mM, pH 5.5). The newly obtained material was centrifuged at
15,000 rpm for 5 min to homogeneity. The immobilization of the material was performed
for an optimum time of 24 h at ambient temperature (25 ◦C, 50% RH). Once finished, the
material was magnetically decanted and washed with deionized water to remove any
unreacted excess enzyme molecules.

2.5. Fabrication of SPCE/Fe3O4@PDA-LOx Electrode

To fabricate the lactate biosensor system, 2 µL of the obtained Fe3O4@PDA-LOx
nanomaterial (6.5 mgmL−1) was deposited on the surface of the working electrode modified
with Prussian blue and allowed to dry at room temperature. The electrode surface was
then rinsed with deionized water to eliminate any excess or unbound enzyme molecules
that may have remained on the electrode surface. The biosensor system was stored in a
refrigerator at 4 ◦C when not in use.

To this end, the synthesis and polymerization of the Fe3O4@PDA material, immobi-
lization process, and electrode modification are illustrated schematically in Figure 1.
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Figure 1. Illustration depicting the step-by-step process involved in the preparation of the
lactate biosensor.

2.6. Physicochemical Analysis

Transmission electron microscopy (TEM) analysis was carried out using a Joel analyzer
(JEM-J1010) with a resolution of 0.45 nm and a maximum acceleration of 100 kV. To assess
the stability of the materials in a liquid solvent, zeta potential (ZP) and polydispersity
index (PdI) values were determined using a Zetasizer Nano ZS (Malvern Instruments Ltd.,
Malvern, UK) with a range of 0.6–6000 nm.

2.7. Electrochemical Study

Electrochemical measurements were performed using the potentiostat (PalmSens,
Houten, The Netherlands), and tests were carried out with the dedicated PSTrace applica-
tion. For the measurements, the biosensor was immersed in 50 mL of the buffer solution.
Cyclic voltammetry (CV) was used to characterize the electrodes. To optimize the electro-
chemical conductivity, CV experiments were carried out in a mixture of 10 mM PBS (pH 7.4)
containing 3M KCl over the relevant potential range of −0.2 and +0.6 V with a scan rate of
20 mVs−1. Accordingly, chronoamperometry (CA) was used to assess the lactate response.
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CA experiments were conducted at a constant potential of −0.15 V by dissolving various
concentrations of lactate in a stirred solution of PBS (10 mM, pH 7.4). The background
current was allowed to stabilize for 200 s, and sequential injections of lactate were made
at 100 s intervals. The current after each lactate addition was measured and used for the
lactate calibration curves. All measurements were conducted under ambient temperature
conditions (25 ◦C, 50% RH).

3. Results and Discussion
3.1. Morphological Characterization of Fe3O4 and Fe3O4@PDA

Magnetite nanoparticles were coated with a polymeric layer, polydopamine, to mit-
igate challenges such as aggregation and degradation that arise when using magnetite
nanoparticles in biosensor applications. Dopamine, which draws inspiration from mus-
sel adhesive proteins, has gained significant attention due to its biocompatibility and
adhesive characteristics, attributed to its two phenolic hydroxyl groups that form stable
complexes with various molecules and materials, including magnetite nanoparticles. More-
over, dopamine can establish –COO–H3N– ion pairs through interaction with the carboxyl
groups on the Fe3O4 surface and, notably, it can undergo polymerization under basic
conditions, facilitating the creation of a well-defined polymeric shell [46–48].

Transmission electron microscopy (TEM) was employed to investigate the morpho-
logical structure of Fe3O4 and Fe3O4@PDA. As depicted in Figure 2A, the magnetite
nanoparticles exhibited a consistently spherical morphology with diameters in the range of
≈10 nm. The narrow size distribution of the nanoparticles indicates that they were well
synthesized and are suitable for further functionalization.
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Figure 2. Transmission electron microscopy (TEM) of (A) Fe3O4, and (B) Fe3O4@PDA.

The second TEM image (Figure 2B) illustrates the Fe3O4 nanoparticles after being
coated with a polydopamine layer. The magnetite nanoparticles appear to be surrounded
by a PDA layer unevenly, creating a matrix of an irregular shape. This observation indicates
that the formation process of the Fe3O4@PDA system was successful.

Figure 3 shows a particle size distribution histogram determined from the TEM
images showing the variation in the particle size for both nanoparticles with and without
polydopamine coating.

3.2. Colloidal Stability and Evaluation of Particle Size

Electrokinetic analysis was performed at a constant pH of 7.0 to determine the stability
of Fe3O4 and Fe3O4@PDA nanoparticles. To evaluate the effectiveness of the formation
of the Fe3O4@PDA system and its components, the zeta potential was determined (see
Table 1). The calculated zeta potential of (−29.8 mV) for Fe3O4 nanoparticles demonstrates
the significant stability of magnetite colloid within the solution. Following surface modi-
fications, there was a reduction in zeta potential to −17.3 mV for Fe3O4@PDA, implying



Biosensors 2023, 13, 957 6 of 14

that these modifications led to decreased electrostatic repulsions between the nanoparticles.
Nevertheless, it is worth noting that the obtained values of zeta potential, although lower,
still indicate a moderate level of stability for the materials in the studied solution.
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Table 1. Zeta potential, hydrodynamic particle diameter, and polydispersity index (PdI) values for
Fe3O4 and Fe3O4@PDA systems.

Sample Zeta Potential (mV) Average Size (nm) Polydispersity Index (PdI)

Fe3O4 −29.8 192.2 0.388
Fe3O4@PDA −17.3 463.7 0.469

Particle size analysis was conducted for the investigated system, and the outcomes are
presented in Table 1. When comparing them to bare magnetite nanoparticles, the presence
of a PDA coating significantly influences the hydrodynamic particle size. The successive
increase in the particle sizes across the materials indicates the successful execution of
the synthesis processes. The variation in size measurements acquired through dynamic
light scattering (DLS) and transmission electron microscopy (TEM) can be attributed to
the tendency of the material to agglomerate. Furthermore, the polydispersity index was
calculated using dynamic light scattering (DLS) to evaluate the uniformity of particle
dispersion. Results show that the index was found to be 0.388 and 0.469 for Fe3O4 and
Fe3O4@PDA, respectively.

3.3. Electrochemical Study of SPCE-PB and SPCE-PB/Fe3O4@PDA-LOx-Modified Electrodes

For electrochemical characterization of the analyzed system, cyclic voltammograms
for the unmodified SPCE-PB and modified SPCE-PB/Fe3O4@PDA-LOx electrodes were
investigated in PBS (10 mM, pH 7.4) containing 3M KCl (Figure 4). The results revealed a
peak-to-peak separation of 101 and 161 mV for SPCE-PB and SPCE-PB/Fe3O4@PDA-LOx
electrodes, respectively. These values illustrate the irreversible behavior of [Fe(CN)6]3−/4−

at the electrodes under investigation. The deposition of the Fe3O4@PDA-LOx material
on the surface of SPCE-PB results in a significant increase in oxidation/reduction peaks.
Moreover, the redox peak current increased from −3.16 µA for the SPCE-PB electrode to
−22.17 µA for the modified SPCE-PB/Fe3O4@PDA-LOx electrode, suggesting a higher elec-
troactive surface area. The obtained results are in good agreement with the results reported
in the literature, indicating the fast electron transfer behavior of magnetite nanoparticle-
modified electrodes [49,50].
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Next, a voltammetric scan rate study was used to test the electrochemical activity of
both unmodified and modified electrodes. Figure 5 shows the CVs of SPCE-PB and SPCE-
PB/Fe3O4@PDA-LOx electrodes in PBS (10 mM, pH 7.4) containing 3M KCl at various
scan rates (10–100 mV s−1). As shown in Figure 5A, the CV of the unmodified SPCE-PB
electrode exhibits a pair of well-defined peaks at Ered = 0.24 V, which can be ascribed to the
redox transition of PB. The effect of various scan rates on the electrochemical properties
of the SPCE-PB/Fe3O4@PDA-LOx electrode is depicted in Figure 5C. The redox current
exhibited a rise with the increasing scan rate, ranging from 10 to 100 mV s−1. The shape of
the CV indicates that there are no other additional redox processes, confirming a single-
electron transition. The relationship between current (Ip) and the square root of the scan
rate (V1/2) (Figure 5B,D) serves as an important diagnostic criterion when employing cyclic
voltammetry to determine the nature of the reaction mechanism. The results firmly suggest
that the redox reaction of LOx on the electrode surface conforms to a quasi-reversible
diffusion-controlled electrochemical operation.

The response of SPCE-PB/ Fe3O4@PDA-LOx to lactate can be described by
Equations (1)–(3):

Lactate + O2
LOx→ Pyruvate + H2O2 (1)

H2O2 + PBred → PBox + OH− (2)

PBox → PBred + e− (3)

Lactate was oxidized by LOx to generate pyruvate and hydrogen peroxide (H2O2) as
the subproduct, which is then detected through Prussian blue (PB) as the redox mediator.
Firstly, the PB layer is activated at a constant potential and is then electrochemically reduced
from its original oxidized state (PBox) to reduction (PBred). Following this, the PB reduction
is subsequently oxidized back to PB oxidize in the presence of hydrogen peroxide, leading
to detection. The oxidation of the mediator releases an electron that can be detected
by the electrode, generating an electrochemical signal that is proportional to the lactate
concentration. Figure 6 illustrates the enzymatic reactions taking place at the surface of the
working electrode developed in this work.
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Electrochemical investigations were performed to characterize the response of the
SPCE-PB/Fe3O4@PDA-LOx electrode. Cyclic voltammograms (CVs) were obtained by
immersing the sensor in a 10 mM phosphate buffer solution (pH 7.4) without lactate and in
the presence of lactate, ranging from −0.2 V to +0.6 V, at a scan rate of 20 mV s−1. Upon
addition of lactic acid (to a final concentration of 100 mM), there was an enhancement of the
anodic peak current concomitant with a decrease in the cathodic peak current (Figure 7A).
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The correlation between peak current and lactate concentration is presented in
Figure 7B. The curve illustrates that the voltammetric response approached saturation as
the lactate concentration exceeded 100 mM. The current issue is that the production of
hydrogen peroxide by the oxidase has reached a point where it is inhibiting the enzymatic
activity of LOx. Despite the reduced amount, the quantity obtained is still sufficient for con-
tinuous monitoring of lactate concentrations over an extended period, particularly in cases
where lactate levels are high. To tune the linear range, improvements can be made in the
fabrication of the lactate sensor. This could involve using different polymeric membranes
and/or stabilizing agents to regulate the diffusion of the analyte through the biosensor,
which can enhance the operational stability of the enzyme [51]. Freeman et al. [52] pro-
posed the addition of cellulose acetate on the surface of the working electrode, creating a
diffusion-limited layer. While this layer effectively slowed the diffusion and extended the
sensor’s linear range to higher concentrations, the sensor was only capable of detecting
lactate concentrations up to 30 mM, and the resulting reduction in current density limited
its overall sensitivity.

Following an adjustment of the settings, the biosensing system’s analytical response
was analyzed through chronoamperometry, in which varying amounts of lactate were
sequentially injected and continuously stirred into PBS (pH 7.4). An optimum applied
potential of −0.15 V was chosen based on the onset potential for electro-oxidation of lac-
tate by the fabricated biosensor, obtained during cyclic voltammetry studies to run the
amperometry experiment since this potential produced a better change in the measured
signal and, therefore, more sensitivity of response. Also, this low applied potential could
reduce interfering signals from other electroactive species in the sample, increase sensitiv-
ity, and produce a longer electrode lifespan. The analytical performance of the prepared
Fe3O4@PDA-LOx biosensor was assessed by evaluating its response to lactate concentra-
tions varying from 0.1 to 149.21 mM (Figure 8A). It is observed that with increasing lactate
concentration the current changed, indicating good activity with efficient mass transport
and fast electron transfer properties. According to the corresponding calibration plot,
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see Figure 8B, the sensor response displayed two linear concentration ranges: one from
0.1 to 4.62 mM with a correlation coefficient of 0.9962 and sensitivity of 1.54 µAmM−1cm−2,
and another from 4.62 to 149.21 mM with a correlation coefficient of 0.9971 and sensitivity
of 0.08 µAmM−1cm−2. The presence of two linear ranges in the lactate response of the
biosensor can be explained by the interaction between the increased analyte concentration
and the limited amount of LOx present in the biosensor. When the lactate concentration is
low, there are sufficient active enzyme sites available for rapid substrate conversion, leading
to a strong and linear current response. However, as the lactate concentration increases, the
enzyme becomes saturated and unable to keep up with the rate of substrate conversion,
resulting in a decrease in the number of active enzyme sites. This leads to a decrease
in the current response and slower reaction kinetics, which in turn results in a decrease
in sensitivity towards higher lactate concentrations [53]. Shitanda et al. [54] developed
a screen-printed sensor by employing grafted MgO-templated carbon (GMgOC) as the
working electrode material to achieve stable immobilization of enzymes containing amino
groups and mediators. Nonetheless, the outcomes of their study validated the correlation
between lactate concentrations ranging from 1 to 50 mM by applying a potential of +0.1 V.
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resulting calibration curve (n = 3).

The linear regression parameters that were obtained from correlating the lactate
concentration with the analytical signal for catalysis were utilized to determine the limit of
detection (LOD). The limit of detection of the SPCE-PB/Fe3O4@PDA-LOx electrode was
calculated as 0.32 mM for lactate concentrations ranging from 0.1 to 4.62 mM, and 6.31 mM
for concentrations ranging from 4.62 to 149.21 mM, using the following equation:

LOD = 3× SD
m

(4)

where SD is the standard deviation of the current value, and m is the slope of the calibration
curve [55].

From an analytical standpoint, lactate concentration in sweat is approximately 10 times
higher than in blood. During a progressive, incremental exercise test, blood lactate concen-
tration typically ranges from 8 to 10 mM, while during intense exercise it can increase to
15–25 mM [56]. Contrarily, in sweat, the lactate concentration can increase from 10 mM to
over 100 mM with increased exercise intensity [57]. The dual linear concentration-response
ranges observed in the sensor make it highly versatile and suitable for lactate determination
in a wide range of sample types, regardless of their lactate content. The lower concentration
range, spanning from 0.1 to 4.62 mM, enables the detection of low levels of lactate, making
it invaluable for samples with potentially low lactate concentrations, such as biological
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fluids: blood, sweat, urine, and cell cultures for lactate production monitoring. Conversely,
the higher concentration range of 4.62 to 149.21 mM is advantageous for samples with
high lactate content, such as those found in muscle tissue during intense exercise or in
fermentation processes. This range ensures accurate and precise quantification of lactate
concentration, even at high levels.

The performance of the lactate biosensor proposed in this study was evaluated and
compared with similar devices reported by the scientific literature (Table 2). However, due
to the significant differences in the manufacturing processes, it is challenging to make a
direct comparison between the biosensors.

Table 2. Comparison of analytic performance for lactate detection through amperometric techniques.

Electrode Modification Solvent Linear Range
(mM)

Sensitivity
(µAmM−1cm−2)

Potential
Studied (V) Ref.

SPCE-PB/Fe3O4@PDA-LOx PBS (pH 7.4) 0.1–4.62
4.62–149.21

1.54
0.08 −0.15 This work

SPE-PB/LOx + GO-Ch Artificial sweat
(pH 4.7) 1–50 0.39 +0.0 [37]

SPE/GA-LDH/AuNPs-ERGO-PAH PBS (pH 7.5) 0.5–3 1.08 +0.5 [40]
Printed AgNPs/BSA-LOx PBS (pH 7.4) 1–20 0.26 +0.65 [58]

SPCE/Graphene/PB/PVA-SbQ-LOx PBS (pH 7.4) 0.25–5 1.64 −0.1 [59]
Au/CNT/b2LOxS/PEI-

PEGDGE/CA
Artificial sweat

(pH 5.4) 0.5–20 0.41 +0.15 [60]

Acronyms: SPCE: screen-printed carbon electrode; PB: Prussian blue; PDA: polydopamine; LOx: lactate oxidase;
GO: graphene oxide; Ch: chitosan; GA: glutaraldehyde; LDH: lactate dehydrogenase; NPs: nanoparticles;
PAH: poly(allylamine) hydrochloride; BSA: bovine serum albumin; PVA-SbQ: poly(vinyl alcohol)-bearing styryl
pyridinium groups; CNT: carbon nanotubes; b2LOxS: DET-type engineered LOx; PEI: polyethylenimine; PEGDGE:
poly(ethylene glycol) diglycidyl ether; CA: cellulose acetate.

Nonetheless, the biosensor developed in this study demonstrated exceptional sensitiv-
ity across a broad linear range, utilizing a low potential value. The excellent performance
of the biosensor can be attributed to the utilization of magnetite nanoparticles synthesized
from raw mill scale. These nanoparticles exhibited unique physicochemical properties,
which contributed to the sensitivity and specificity of the biosensor. The promising results
obtained from this study suggest that synthesized magnetite nanoparticles are an excellent
candidate for monitoring lactate levels in a wide range. To end this, the biosensor devel-
oped in this study can provide a low-cost and efficient method for monitoring lactate levels
and the use of waste materials, such as mill scale, in the synthesis of nanoparticles to reduce
the environmental impact of nanoparticle production.

4. Conclusions

In this work, we have presented a new and innovative method to valorize mill scale in
a high-added-value application such as the enhancement of a biosensor for lactate level
monitoring. It runs at a very low applied potential (−0.15 V), which minimizes inter-
fering signals from other electroactive species and increases sensitivity, leading to more
reliable and efficient lactate sensing. The biosensor showed the ability to detect lactate
in two distinct linear concentration ranges, one from 0.1 to 4.62 mM, with a limit of de-
tection of 0.32 mM, and another one from 4.62 to 149.21 mM with a limit of detection of
6.31 mM, a range that expanded the current state-of-the-art electrochemical biosensors by
50% and enables the use of these sensors in such wearable applications for lactate moni-
toring in sweat. The proposed lactate oxidase-based biosensor exhibited good sensitivity
in both concentration ranges, with a value of 1.54 µAmM−1cm−2 for the lower range, and
0.08 µAmM−1cm−2 for the higher range. This dual-range concentration response of the
biosensor makes it a valuable tool for lactate determination in various applications, includ-
ing sports medicine, clinical diagnosis, and industrial bioprocessing. The novel method
introduced in this study represents a significant advancement in sustainable and environ-
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mentally friendly approaches to biosensor development. However, various analyses can
be conducted to enhance the optimization of the sensor. These may include assessing the
sensor’s performance with real samples, implementing continuous monitoring applications
for point-of-care measurements, and exploring utility in the food industry.
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