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Abstract: This review focuses on electroencephalogram (EEG) acquisition and feedback technology
and its core elements, including the composition and principles of the acquisition devices, a wide
range of applications, and commonly used EEG signal classification algorithms. First, we describe
the construction of EEG acquisition and feedback devices encompassing EEG electrodes, signal
processing, and control and feedback systems, which collaborate to measure faint EEG signals from
the scalp, convert them into interpretable data, and accomplish practical applications using control
feedback systems. Subsequently, we examine the diverse applications of EEG acquisition and feedback
across various domains. In the medical field, EEG signals are employed for epilepsy diagnosis, brain
injury monitoring, and sleep disorder research. EEG acquisition has revealed associations between
brain functionality, cognition, and emotions, providing essential insights for psychologists and
neuroscientists. Brain–computer interface technology utilizes EEG signals for human–computer
interaction, driving innovation in the medical, engineering, and rehabilitation domains. Finally,
we introduce commonly used EEG signal classification algorithms. These classification tasks can
identify different cognitive states, emotional states, brain disorders, and brain–computer interface
control and promote further development and application of EEG technology. In conclusion, EEG
acquisition technology can deepen the understanding of EEG signals while simultaneously promoting
developments across multiple domains, such as medicine, science, and engineering.
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1. Introduction

The brain is the most advanced part of the nervous system and possesses immensely
powerful functions and complex structures. Electroencephalogram (EEG) is a significant
bioelectric signal produced by neural activity that reflects the physiological processes of
neurons in the brain and contains a wealth of brain activity information [1,2]. The signal
decoding of EEG acquisition devices and intelligent device control has become a hot topic
in contemporary neuroscience research [3,4].

Figure 1 shows the four prevalent classification methods pertaining to EEG acquisi-
tion devices. These methods include acquisition approach, device type, electrode type,
and application domain. The acquisition approaches are categorized into two types: sur-
face [5] and deep [6] EEG. Surface EEG involves the placement of electrodes on the scalp
to measure the electrical activity of the brain. Deep EEG refers to the use of intracranial
electrodes implanted within brain tissue to record brain signals. Classification by device
type includes traditional and wireless EEG devices. Traditional EEG devices employ con-
ventional electrode placements and require wired connections between the electrodes and
amplifiers or recording systems [7]. Wireless EEG devices utilize wireless transmission
technology, eliminating the need for wired connections and offering greater flexibility and
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convenience [8]. Regarding electrode type, the two categories are invasive and noninva-
sive electrodes. Noninvasive electrodes collect EEG signals through the scalp, offering
a relatively safe and surgery-free approach, thus having broader applications. Invasive
electrodes typically provide higher spatial resolution, enabling more accurate and fine-
grained EEG signal acquisition; however, they require surgical implantation, making them
riskier [9,10]. Finally, the application domain of EEG devices includes research-grade and
clinical EEG devices. Research-grade devices are employed for scientific investigations
and feature higher sampling rates, more channels, and increased precision. Clinical EEG
devices conform to clinical standards and are used for medical diagnosis, monitoring, and
treatment [11,12].
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Figure 1. Overview of the classification of EEG acquisition devices from perspectives of acquisition
method, device type, electrode type, application area. Reprinted with permission from [5]. Copyright
2016, The Neurodiagnostic Journal. Reprinted with permission from reference [6]. Copyright 2018,
ACS Applied Materials & Interfaces. Reprinted with permission from reference [7]. Copyright
2023, https://www.chem17.com/st377869/product_30998972.html (accessed on 29 August 2023).
Reprinted with permission from [8]. Copyright 2023, https://www.emotiv.com/epoc-x (accessed
on 29 August 2023). Reprinted with permission from [9]. Copyright 2023, ACS Applied Electronic
Materials. Reprinted with permission from [10]. Copyright 2022, Nano Letters. Reprinted with
permission from [11]. Copyright 2023, https://openbci.com (accessed on 29 August 2023). Reprinted
with permission from [12]. Copyright 2023, https://compumedicsneuroscan.com (accessed on 29
August 2023).

EEG acquisition and feedback devices can transform brainwave signals acquired from
the brain into command signals that can be understood by computers or other external
devices [13], enabling direct interaction between humans and machines. This empowers in-
dividuals to control computers and external devices through conscious thought, enhancing
the efficiency of tasks at work and in daily life.

With the advancement of neuroscience, computer technology, and signal processing,
EEG acquisition technology has undergone extensive research and application over the past
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few decades [14,15]. For instance, the Neuroscan EEG system is the most advanced and
widely used in the industry One of the EEG acquisition devices [12]. Additionally, Electrical
Geodesics (EGI) Inc. (Eugene, OR, USA), founded in 1992, has gained recognition for its
flagship product, GES400, which boasts two key features: compatibility with magnetic
resonance imaging (MRI) and the use of mesh electrodes [16]. Another noteworthy EEG
acquisition system is the NeuSen W, introduced by Changzhou Bori Kang Technology
Co., Ltd. (Changzhou, China). This wireless EEG collection device has been specifically
designed for applications in brain–computer interfaces (BCI) [17]. Moreover, in some
universities and research institutions, research and applications in the field of EEG systems
have become more profound and specialized. For example, under the leadership of Zhang
Wenchang, a research team at Tsinghua University has successfully integrated automatic
robot control technology with brain–computer interface (BCI) technology. This integration
has led to the development of an asynchronous BCI-shared control system based on
motor imagery. In experimental trials, participants were able to control a robotic arm
for navigating around obstacles and manipulating objects solely through motor imagery,
achieving an impressive accuracy rate of 80% [18].

Generally, research on EEG acquisition and feedback technology has reached a rela-
tively mature stage, with various research institutions and companies applying it exten-
sively in the medical, military, entertainment, and other fields. There are many compre-
hensive research studies related to EEG acquisition and feedback devices. For instance, J.
Wang et al. have explored the latest classifications and future development directions of
flexible electrodes to facilitate the advancement of EEG electrode technology [19]. In the
realm of EEG classification algorithms, L. R. Quitadamo et al. have conducted a review
on support vector machine detection methods for human–machine interaction physio-
logical models based on EEG and EMG (electromyography) signals. EEG classification
algorithm reviews contribute significantly to researchers’ understanding of the current
status of EEG classification algorithms, optimization of research designs, enhancement of
algorithm performance, and addressing challenges within the field [20]. After conducting
the relevant research, it has been identified that there is a relative scarcity of comprehensive
reviews on the entire EEG acquisition and feedback system. Therefore, this paper provides
a comprehensive overview of the application and development of EEG technology, focusing
on aspects such as EEG signal acquisition and processing, applications of EEG technology,
and the utilization of EEG classification algorithms. Furthermore, the existing challenges
and technological bottlenecks in EEG technology are discussed, followed by a summary of
the trends and directions for the future development of EEG technology.

The following article will systematically investigate the application and development
of EEG acquisition technology in four main sections: “Section 2”, “Section 3”, “Section 4”
and “Section 5”.

2. The Acquisition and Processing of EEG Acquisition and Feedback Devices
2.1. The Acquisition and Feedback Principle of EEG Acquisition Devices

EEG acquisition devices serve as a data source for various EEG applications and
studies. As a precision testing instrument, it must ensure user safety while maintaining
high accuracy and a high common-mode rejection ratio (CMRR) of the system. Addition-
ally, efforts have been made to minimize the power consumption, size, and cost of the
system [1,21]. A complete EEG acquisition and feedback system typically comprises three
main parts: EEG signal acquisition, EEG signal processing, and control feedback, as shown
in Figure 2. The acquisition system first collects EEG signals using an EEG acquisition
device. After preprocessing steps such as artifact removal, feature extraction is performed,
and once the feature vector of the subject is obtained, it undergoes classification and recog-
nition. Finally, the recognized result is converted into corresponding control/feedback
instructions for the output [22].



Biosensors 2023, 13, 930 4 of 19

Biosensors 2023, 13, x FOR PEER REVIEW 4 of 20 
 

tion and recognition. Finally, the recognized result is converted into corresponding con-
trol/feedback instructions for the output [22]. 

 
Figure 2. The overall framework of an EEG real-time acquisition and monitoring system. 

2.2. Composition of EEG Signal Acquisition and Feedback Devices 
The components of the EEG acquisition system include EEG electrodes, prepro-

cessing circuits, analog-to-digital converters (ADC), and EEG signal control and feedback 
[23–26]. The EEG acquisition system must ensure high accuracy and low-noise meas-
urements while prioritizing user safety and comfort [27,28]. Each component plays a 
critical role in the system. The following section introduces the types of EEG electrodes 
used and provides an overview of each type. 

2.2.1. EEG Acquisition Electrode Type 
In the fields of medicine, neuroscience, psychology, and various brain signal re-

search domains, Ag/AgCl electrodes are widely regarded as one of the most commonly 
used EEG electrodes due to their excellent signal-to-noise ratio, reliability, stable signal 
quality, and cost-effectiveness. They serve as the standard against which the perfor-
mance of other electrode types is often compared. However, Ag/AgCl electrodes require 
the use of conductive gel, and the electrode preparation and application processes can be 
complex and time-consuming [29]. Therefore, to meet the diverse requirements of 
different application areas for EEG electrodes, there has been a proliferation of various 
types of EEG electrodes. These electrodes have emerged as alternatives to address the 
challenges associated with Ag/AgCl electrodes while catering to specific research needs. 
There are various classification methods for EEG acquisition electrodes. They can be di-
vided into two types according to their placement on the brain: non-invasive and inva-
sive [30,31], as shown in Figure 3a,b. Non-invasive uses electrodes placed on the scalp to 
collect EEG signals and achieves human–machine interaction through signal processing 
techniques. Invasive involves implanting electrodes into the cerebral cortex to obtain 
more accurate signals; however, it requires surgical procedures and carries higher risks. 

As shown in Figure 3c,d, micro-needle and finger-like non-invasive electrodes are 
two typical non-invasive EEG electrodes. Micro-needle non-invasive EEG electrodes 
represent an innovative brainwave electrode technology designed to achieve high-
er-quality EEG signal acquisition without compromising scalp integrity. Conventional 
EEG electrodes typically require adhesive gels or conductive pastes to attach to the scalp, 
which can lead to discomfort and skin sensitivity. Contrastingly, micro-needle 
non-invasive EEG electrodes employ micro-fine needle-like electrode tips that gently 
puncture the scalp, allowing for closer proximity to neurons, thereby enhancing signal 

Figure 2. The overall framework of an EEG real-time acquisition and monitoring system.

2.2. Composition of EEG Signal Acquisition and Feedback Devices

The components of the EEG acquisition system include EEG electrodes, preprocessing
circuits, analog-to-digital converters (ADC), and EEG signal control and feedback [23–26].
The EEG acquisition system must ensure high accuracy and low-noise measurements while
prioritizing user safety and comfort [27,28]. Each component plays a critical role in the
system. The following section introduces the types of EEG electrodes used and provides an
overview of each type.

2.2.1. EEG Acquisition Electrode Type

In the fields of medicine, neuroscience, psychology, and various brain signal research
domains, Ag/AgCl electrodes are widely regarded as one of the most commonly used
EEG electrodes due to their excellent signal-to-noise ratio, reliability, stable signal qual-
ity, and cost-effectiveness. They serve as the standard against which the performance
of other electrode types is often compared. However, Ag/AgCl electrodes require the
use of conductive gel, and the electrode preparation and application processes can be
complex and time-consuming [29]. Therefore, to meet the diverse requirements of different
application areas for EEG electrodes, there has been a proliferation of various types of
EEG electrodes. These electrodes have emerged as alternatives to address the challenges
associated with Ag/AgCl electrodes while catering to specific research needs. There are
various classification methods for EEG acquisition electrodes. They can be divided into
two types according to their placement on the brain: non-invasive and invasive [30,31],
as shown in Figure 3a,b. Non-invasive uses electrodes placed on the scalp to collect EEG
signals and achieves human–machine interaction through signal processing techniques.
Invasive involves implanting electrodes into the cerebral cortex to obtain more accurate
signals; however, it requires surgical procedures and carries higher risks.

As shown in Figure 3c,d, micro-needle and finger-like non-invasive electrodes are two
typical non-invasive EEG electrodes. Micro-needle non-invasive EEG electrodes represent
an innovative brainwave electrode technology designed to achieve higher-quality EEG
signal acquisition without compromising scalp integrity. Conventional EEG electrodes
typically require adhesive gels or conductive pastes to attach to the scalp, which can lead to
discomfort and skin sensitivity. Contrastingly, micro-needle non-invasive EEG electrodes
employ micro-fine needle-like electrode tips that gently puncture the scalp, allowing for
closer proximity to neurons, thereby enhancing signal quality [32–35]. Compared to tradi-
tional wet electrodes, finger-like EEG electrodes not only eliminate the discomfort or skin
sensitivity caused by adhesive gels or conductive pastes adhering to the scalp but also easily
penetrate hair, thereby enhancing the quality and accuracy of EEG signal acquisition. Addi-
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tionally, in contrast to needle-type non-invasive electrodes, finger-like EEG electrodes do
not puncture the scalp, making them relatively safer and more comfortable [36–39]. There-
fore, both micro-needle and finger-like non-invasive electrodes, through their structural
designs, enable direct contact with the scalp, effectively reduce the impedance between
the scalp and electrodes, and provide more stable and reliable EEG signals. Additionally,
compared with traditional electrodes, these two types of electrodes exert less pressure on
the scalp, alleviating discomfort during extended wear. Non-invasive EEG electrodes have
potential applications in fields such as neuroscience research, brain–computer interface
technology, and cognitive assessment. They offer researchers more accurate EEG signal
data, thus facilitating a deeper understanding of brain activity [32–39].
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Figure 3. Electrode types. (a) Non-invasive EEG electrodes. (b) Invasive EEG electrodes. (c) Micro-
needle dry electrode. Reprinted with permission from reference [32]. Copyright 2012, Sensors and
Actuators A: Physical. Reprinted with permission from reference [33]. Copyright 2017, Sensors and
Actuators B: Chemical. Reprinted with permission from reference [34]. Copyright 2015, Sensors and
Actuators A: Physical. Reprinted with permission from reference [35]. Copyright 2021, ACS Applied
Nano Materials. (d) Finger-type dry electrode. Reprinted with permission from reference [36].
Copyright 2018, Scientific reports. Reprinted with permission from reference [37]. Copyright 2020,
Scientific reports. Reprinted with permission from reference [38]. Copyright 2018, Scientific Reports.
Reprinted with permission from reference [39]. Copyright 2021, Sensors and Actuators A: Physical.
(e) Thin-film invasive EEG electrodes. Re-printed with permission from reference [40]. Copyright
2022, Advanced Functional Materials. Re-printed with permission from reference [41]. Copyright
2019, Nano Letters. Re-printed with permission from reference [6]. Copyright 2018, ACS Applied
Materials and Interfaces. Reprinted with permission from reference [42]. Copyright 2019, Journal of
Medical Internet Research. (f) Straight-beam invasive EEG electrodes. Reprinted with permission
from reference [10]. Copyright 2022, Nano Letters. Reprinted with permission from reference [43].
Copyright 2020, Science Advances. Reprinted with permission from reference [44]. Copyright 2019,
Nature Communications. Reprinted with permission from reference [45]. Copyright 2019, Neuron.
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Compared to invasive brain EEG electrodes, the fabrication process for micro-needle
and finger-like non-invasive EEG electrodes is relatively straightforward. For instance,
using 3D printing technology, the electrode models are initially designed with 3D modeling
software. Subsequently, the generated files are loaded into a 3D printer, which uses an
insulating flexible polymer to create the electrode’s structure. Finally, a layer of conduc-
tive metal is deposited on the flexible electrode surface to complete the EEG electrode
production [32]. Using photolithography techniques involves coating a clean substrate
with photosensitive photoresist, exposing the photoresist to define patterns, developing
to remove unwanted portions, and going through cleaning and baking steps to form the
desired microstructures. Finally, conductive metal is either coated or sputtered onto the mi-
crostructure [33–35]. Utilizing molding techniques, which is a common fabrication method,
involves steps such as preparing raw materials, designing, and manufacturing molds,
heating, loading, applying high pressure, curing through heating, or cooling, opening the
mold, trimming, and inspecting. Once the flexible finger-like structure is formed, a layer of
conductive metal is applied to its surface to create the EEG electrode [36,39].

As shown in Figure 3e,f, thin-film invasive EEG electrodes and straight-beam invasive
EEG electrodes are two typical invasive EEG electrodes. A thin-film invasive brain elec-
trode is a specific type of invasive electrode that employs relatively thin materials, often
in the form of flexible films, for monitoring and recording brain neural activities. These
electrodes are designed to be more flexible in shape and structure, allowing them to adapt
better to the curves and topology of the brain surface [6,40–42]. Columnar invasive brain
electrodes resemble slender columns or needles. These electrodes are surgically implanted
into the brain tissue to capture the electrical activities of neurons. Their design aims to
provide more precise positional tracking and a higher spatiotemporal resolution, enabling
researchers to observe and analyze neural network activities in greater detail [10,43–45].
Furthermore, invasive brain electrodes capture neural electrical activity by inserting the
electrodes into the interior of the brain tissue. These can be employed for more detailed
recordings of specific brain regions, facilitating a deeper understanding of the interactions
between neural circuits and functional areas. In clinical settings, they find applications in
epilepsy surgery localization and monitoring, as well as in the research and treatment of
other neurological disorders. The manufacturing and implantation of invasive brain elec-
trodes present certain challenges, requiring advanced manufacturing techniques to ensure
their stability and reliability. Moreover, the implantation process requires highly skilled
technical operations and precise positioning to avoid damaging brain tissue. Nonetheless,
invasive brain electrodes, including thin-film and columnar variations, play a pivotal role in
providing key insights into neural activity and interactions by offering detailed recordings
and higher resolution. Thus, it is essential that the complexities of their production and
implantation a carefully addressed for successful integration into both research and clinical
applications [40–44,46].

For invasive EEG electrodes, due to the need to ensure both signal quality and the
safety of electrode penetration into the human body, the electrode fabrication process has
higher requirements. The production of thin-film invasive EEG electrodes mainly involves
preparing a flexible substrate (such as polyester film like PET or polyimide film like PI),
coating with conductive materials (Ag/AgCl or nanocarbon materials like carbon nan-
otubes or graphene), drying, electrode patterning, adding additional layers, encapsulation,
connection and wiring, testing, calibration, and finally packaging [40–42]. The fabrication
of straight-beam invasive EEG electrodes begins with processing the conductive material
(such as gold, silver, stainless steel, etc.) into the desired electrode shape, typically a slender
cylindrical form for penetration into brain tissue. An insulating material is then coated
onto the surface of the conductive material to ensure electrical conduction only at specific
locations. Next, tip design is carried out to ensure accurate electrode penetration into brain
tissue, requiring a sharp electrode tip design. Finally, encapsulation and protection are
performed to ensure the electrode’s safety and durability [44,45]. Additionally, in some
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studies, researchers apply materials like graphene to the conductive metal to enhance
electrode conductivity, thereby improving the quality of EEG signal acquisition [10].

In conclusion, brain electrodes play a crucial role in EEG data acquisition systems,
significantly influencing the quality of recorded brain signals. Therefore, the development
of comfortable and convenient wearable brain electrodes that can establish effective contact
with the skin or organ tissues is a pressing issue. With the advancement of various flexible
fabrication techniques, such as the assembly of complex 3D structures, it is anticipated that
the current challenges associated with brain electrodes will be effectively addressed [47–50].

2.2.2. Analog-to-Digital Conversion Circuit

In EEG signal acquisition, the ADC is the core component responsible for converting
analog voltage signals into digital form. The ADC performance significantly affects the
quality and accuracy of EEG signals [51].

First, ADC resolution is a crucial factor affecting the EEG signal acquisition quality [52].
A higher resolution allows the ADC to convert smaller voltage variations, thus improving
signal accuracy. The ADC sampling rate is another key parameter [53]. The sampling
rate determines the number of data points that the ADC acquires per second, and an
appropriate sampling rate must be selected for different types of EEG experiments to
satisfy the experimental requirements. Second, the noise level of the ADC is also a vital
factor influencing signal quality. Quantization and circuit noise in the ADC can reduce the
signal-to-noise ratio of the EEG signals [54]. Hence, low-noise ADCs must be employed,
and noise suppression techniques, such as differential output and filtering, should be
incorporated during the design process to enhance the signal quality. Furthermore, the
effect of power-supply noise must be considered for the ADC [55]. Since ADCs are sensitive
to power-supply noise; stable power supplies are required to minimize their influence
on signals. Moreover, the selection and positioning of the reference electrodes must be
considered to avoid the introduction of power-supply noise. Finally, factors such as power
consumption and size should also be considered for the ADC [56]. An ADC with a lower
power consumption is more reliable for prolonged data acquisition experiments, whereas a
smaller ADC is more suitable for portable devices.

In summary, ADC plays a crucial role in EEG acquisition devices. To obtain high-
quality EEG signals, factors such as ADC resolution, sampling rate, noise, power-supply
noise, reference electrodes, power consumption, and size must be considered [57–60]. As
shown in Figure 4, TI’s ADS1299 series is a low-noise 4, 6, and 8-channel, 24-bit ADC
chip designed for EEG and biopotential measurements. This series features programmable
gain amplifiers (PGA), internal references, and onboard oscillators that provide all the
essential features for EEG and ECG applications. With high integration and outstanding
performance, ADS1299 allows the construction of scalable medical instrument systems with
significantly reduced size, power consumption, and overall cost [61,62]. The ADSD1299
chip launched by XinDong ShenZhou is fully compatible with TI’s ADS1299 and func-
tionally compatible with ADS1298. The chip includes all the commonly used features
required for EEG and ECG applications. With its high integration and outstanding perfor-
mance, ADS1299 enables the creation of various scalable medical instrument systems while
significantly reducing their size, power consumption, and total cost [63].
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2.2.3. Preprocessing Circuit

During the recording of EEG signals, various noise and artifacts can interfere with the
signals, posing significant challenges for signal analysis and processing. Hence, prior to
EEG signal recording, preprocessing circuits are typically employed to enhance the signal
quality and accuracy by reducing noise and artifacts. Preprocessing circuits generally
comprise several main modules, including amplifiers, filters, and reference electrodes.
Amplifiers are responsible for increasing the amplitude of EEG signals, making them easier
to record [14]. Filters are used to eliminate noise and artifacts from the signals while
preserving the main frequency components of the EEG signals. Reference electrodes are
typically placed at specific locations on the scalp, away from the primary sources of brain
EEG signals. As a result, the potential of the reference electrode is considered as zero or a
known potential, used for calculating the potential differences at other electrodes [64,65].

The design of preprocessing circuits must consider multiple factors, such as the signal
frequency range, amplification gain, and reference electrode type [66–68]. Different types
of EEG experiments may require the use of distinct preprocessing circuits to fulfill specific
experimental requirements. For instance, Lin et al. [69] designed an analog amplification
circuit with a high relevance. The circuit employed an INA128 instrumentation amplifier as
a preamplifier, magnifying weak EEG signals by a factor of 1000, and exhibited high input
impedance and CMRR. Moreover, they used TL084 as a post-amplifier with a zero-offset
circuit to adjust weak EEG signals to a range of 0–5 V. They further applied an analog
low-pass filter to anti-alias EEG signals.

In conclusion, the preprocessing circuits play a crucial role in EEG signal acquisition.
They reduce interference from noise and artifacts, enhancing signal quality and accu-
racy. The design of preprocessing circuits should be flexibly chosen according to specific
requirements to meet the diverse needs of different types of EEG experiments.

2.2.4. Processor Circuit

In an EEG system, the processor circuit is a core component that enables real-time
processing and analysis of raw signals obtained from the EEG acquisition device, laying
the foundation for subsequent data-processing and research. Commonly used processor
circuits include a field-programmable gate array (FPGA), digital signal processors (DSP),
and central processing unit (CPU) [70].

An FPGA processor circuit is preferred because of its high speed, flexibility, and
reconfigurability. It can execute various digital signal processing tasks at the hardware
circuit level, including digital filtering, spectral analysis, waveform analysis, and time-
frequency analysis [71]. Additionally, the FPGA can implement parallel computations for
various algorithms, thus improving processing efficiency. The DSP circuit is a specialized
microprocessor used for digital signal processing. Compared with traditional general-
purpose microprocessors, they offer higher computation speeds and stronger real-time
processing capabilities. DSP is commonly employed for implementing signal processing
algorithms such as digital filtering, power spectrum estimation, frequency analysis, and
time-frequency analysis [72]. Currently, manufacturers such as TI, ADI, and NXP have
introduced various DSP chips for EEG signal processing. CPU processor circuits can also
be used for EEG signal processing. Compared to FPGA and DSP, CPUs have a slower
processing speed, but they possess greater versatility and larger storage capacity. Hence,
CPUs are typically used to implement complex algorithms and data-processing tasks
such as neural networks and machine learning [73,74]. For example, the HiCCE-128 EEG
acquisition system designed by Mannatunga et al. [75] supports EEG decoding by running
EEG processing programs on a front-end processor. Similarly, the multimedia control
system designed by Shyu et al. [76] utilizes an FPGA chip as the processor to achieve EEG
acquisition and decoding functions, enhancing the system’s portability. Praženica et al. [77]
compared the performance and cost of DSP and FPGA implementations for ECG signal
processing in their research and recommended selecting the appropriate processor for
different application scenarios.
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In conclusion, the processor circuit plays a crucial role in EEG signal acquisition and
processing. Different types of processor circuits have their own advantages and limitations,
and their selection should be based on actual requirements and application scenarios.

2.2.5. EEG Signal Control and Feedback

After acquiring the EEG signals, online preprocessing is performed, including eye-
blink artifact removal, feature extraction, and pattern classification. Subsequently, the
classification results are sent via serial communication to a motion control module based
on the DSP TMS32 chip. This module is responsible for controlling specific mechanisms
to initiate motion and achieve real-time control of the mechanism through EEG signals.
Finally, feedback from the participant, such as pressure, vibration, and temperature signals,
is utilized to assess the motion structure status, enabling closed-loop control [78–81]. This
process is depicted in Figure 2, which illustrates a flowchart of the control feedback system.

The integration of EEG acquisition systems with control feedback systems has immense
potential in various applications. This technology can be useful in the medical field, such
as offering EEG-based biofeedback therapy to individuals with impaired self-regulation
and treating neurological disorders [82]. Moreover, it can be applied to control intelligent
devices, such as smart helmets. For example, when wearers experience fatigue, distraction,
or fainting, a control feedback system can swiftly detect these anomalies and provide timely
alerts or prompts, thereby avoiding potential hazards [83,84]. Furthermore, a combination
of EEG acquisition systems and control feedback systems can be employed in domains
such as smart homes and intelligent transportation, enabling more accurate and convenient
control methods [85–89]. In summary, with the continuous advancement of technology, the
integration of EEG acquisition and control feedback systems is expected to find widespread
applications in an increasing array of domains.

3. Application of EEG Acquisition and Feedback System
3.1. Emotional Recognition

Scientists have classified brainwave signals into different types based on their fre-
quency fluctuations. These waves, in descending order of frequency, are beta, alpha, theta,
and delta waves, as shown in Figure 5 [90–93]. These waves represent the primary com-
ponents of brainwave activity and can provide insights into various aspects of human
consciousness, behavior, and thoughts. For instance, brain wave signals with frequencies
ranging from 0 to 4 Hz are referred to as delta waves. They are prominent when individ-
uals are in a deep-sleep state. Brainwave signals in the range of 4 to 8 Hz are known as
theta waves. When individuals are in a sleep state, but not deep sleep, theta waves can
be detected, indicating a semi-awake state. Brainwave signals in the range of 8–13 Hz
are called alpha waves. These waves are observed when the brain is actively engaged in
problem solving or deep thinking, reflecting a state of relaxation and inner contemplation.
Finally, brainwave signals with frequencies between 13 and 30 Hz are called beta waves.
They appear when individuals engage in social interactions, communicate with others, or
actively participate in certain daily life activities [94–96].
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3.2. Movement Assistance System

In the field of movement assistance, EEG data collection plays a significant role in
aiding patients with movement disorders or disabilities in rehabilitation training and ac-
complishing activities of daily living [79,97–101], as shown in Figure 6. Basic tasks may
pose challenges for individuals with disabilities in the context of daily activities. By in-
tegrating EEG technology with external devices, assistive tools can be developed to aid
these individuals in accomplishing daily tasks, such as communication assistance or text
input. As shown in Figure 6a,b, Marcel F. Hinss et al. utilized a brain EEG acquisition and
feedback system to assess the psychological states of individuals, promptly identifying
those experiencing suboptimal psychological states among professionals, thereby reducing
the occurrence of issues and accidents [79]. Francis R. Willett et al. developed a speech-
to-text brain–computer interface system. With the assistance of this system, participants
who could no longer speak clearly due to muscle atrophy achieved a 23.8%-word error
rate on a vocabulary of 125,000 words, demonstrating effective language communication
outcomes [97]. Furthermore, through the control of robotic arms, it is also possible to assist
individuals in tasks involving the transportation of goods and the grasping of objects. As
in Figure 6c,d. Iason Batzianoulis et al. achieved control of a robotic arm and subsequently
the manipulation and transportation of objects using a brain EEG acquisition and feedback
system [98]. Similarly, A Bolu Ajiboye et al. proposed a brain EEG control and feedback sys-
tem that restores limb movements for quadriplegic patients through coordinated electrical
stimulation of surrounding muscles and nerves, known as functional electrical stimulation
(FES). This enables them to perform simple everyday tasks like grasping a cup [99]. Within
rehabilitation training, BCI technology enables individuals with movement impairments
to utilize their EEG signals to control external devices such as prosthetics or wheelchairs.
Through training, patients can learn to employ specific EEG patterns to execute movements,
assisting them in regaining partial limb functionality or improving their daily activities.
As shown in Figure 6e,f. Miao et al. collected, analyzed, and classified the EEG signals of
stroke patients using a brain EEG acquisition and feedback system. They utilized virtual
limbs and functional electrical stimulation (FES) as feedback mechanisms to improve or
restore upper limb mobility in stroke patients [100]. Henri Lorach et al. established a brain
EEG acquisition and feedback system to restore communication between the brain and
spinal cord regions in patients with spinal cord injuries. This, in turn, enabled chronic limb
paralysis patients to regain the ability to stand and walk naturally [101]. In the context of
monitoring movement recovery, EEG is employed to track changes in the brain activity
of individuals undergoing rehabilitation training. This aids rehabilitation professionals
in understanding the progress of patient recovery and in adapting rehabilitation plans
based on EEG signal variations. Overall, the application of EEG technology in medical
rehabilitation and mobility assistance has the potential to significantly enhance the quality
of life of individuals with movement disorders or disabilities. Although the application
of EEG acquisition systems in motion-assistive systems shows great promise, they also
face challenges such as EEG signal noise and interference, complex EEG signal decoding,
real-time system performance, and stability. However, with ongoing technological advance-
ments and in-depth research, the application of EEG acquisition systems in motion-assistive
systems will continue to advance, providing hope and assistance for individuals requiring
motion assistance.
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4. Data Analysis and Machine Learning in EEG Research
4.1. Common Data Analysis Methods

EEG classification algorithms are designed to analyze and categorize EEG data based
on specific patterns or features. These algorithms are crucial for understanding and in-
terpreting the brain’s electrical activity [102–105]. Several commonly used EEG classifi-
cation algorithms include support vector machines (SVM), K-nearest neighbors (KNN),
random forests, convolutional neural networks (CNN), and recurrent neural networks
(RNN) [106–113].

4.2. Application of Machine Learning in EEG Research

In the classification of EEG signals, support vector machine (SVM) is employed to
identify different brain states or events by extracting features from EEG signals and training
models. SVM aims to find the optimal decision boundary that maximizes the margin be-
tween different categories. It enhances classification performance through suitable feature
extraction, data preprocessing, and cross-validation. SVM plays a crucial role in applica-
tions such as neuroscience research and brain–computer interfaces. As shown in Figure 7a,
linear discriminant analysis (LDA) was employed to reduce the feature dimensionality [106].
It calculates low-dimensional feature vectors that possess information and discrimination
capabilities and is subsequently utilized as input for the SVM classifier. Across 12 experi-
mental studies closely related to clinical applications, this algorithm achieved satisfactory
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results, with the highest accuracy ranging from 96.25% to 100%. Wijayanto et al. [107]
introduced a complexity analysis method for an EEG-based epilepsy detection system
using the Higuchi fractal dimension (HFD) for feature extraction. The system integrates an
SVM for epilepsy signal classification, as shown in Figure 7b. This approach can be used to
predict seizure occurrence, thereby reducing the risk of seizures in patients with epilepsy.
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In the classification of EEG signals, the application principles of artificial neural net-
works (ANNs) encompass several steps, including data preprocessing, feature extraction,
the construction of an appropriate neural network architecture, learning mapping relation-
ships from training data, evaluating performance using validation data, and ultimately
applying the trained model to classify brain states or events in new data. This approach
effectively extracts valuable information from EEG signals, contributing to applications in
fields such as neuroscience research and brain–computer interfaces. As shown in Figure 7c,
the researchers have introduced an efficient multi-scale convolutional neural network (MS-
CNN). This network excels in extracting features from EEG signals across multiple scales
for motor imagery (MI) classification. The model achieves an average classification accuracy
of 93.74%, surpassing the current state-of-the-art EEG-based MI classification models. The
proposed algorithm effectively addresses the limitations of existing CNN-based EEG-MI
classification models, resulting in a significant improvement in classification accuracy [108].
As shown in Figure 7d, a neural network feature fusion algorithm is proposed by combining
CNN with long short-term memory networks (LSTM). Briefly, spatial features were ex-
tracted using a CNN, whereas temporal features were captured using LSTM. Subsequently,
all features were combined to enhance classification accuracy. The algorithm achieved an
average accuracy of 87.68% [109]. Therefore, this feature fusion neural network effectively
enhances the accuracy of motor imagery EEG, offering new insights for feature extraction
and classification research on motor imagery-based brain–computer interfaces.

Random forests (RF) is a powerful ensemble learning algorithm widely applied in the
classification of EEG signals. This method begins by extracting features from EEG signal
data and then constructs multiple decision trees. These decision trees are combined through
a voting mechanism to identify different brain states or events. Each decision tree is built
based on random samples and features using a bootstrap sampling approach, thereby
enhancing model diversity and robustness. Through the voting mechanism, random forests
effectively handle complex EEG signal data, improve classification accuracy, and play a
crucial role in fields such as neuroscience research, brain–computer interfaces, and clinical
applications, while also exhibiting strong generalization capabilities. As shown in Figure 7e,
researchers have employed a random forest classifier to construct a brain–computer in-
terface (BCI) model for predicting mental states like concentration and meditation. The
analysis and results of this model indicate an accuracy rate of 75% when utilizing the
aforementioned approach. This model has been further validated in the internet of things
(IoT) domain, showcasing its applicability in home automation applications [110]. As
shown in Figure 7f, researchers conducted tests on athletes’ competitive states using a
random forest (RF) monitoring model. Experimental results indicate that, compared to the
support vector machine (SVM) classification model, the RF model achieves a classification
accuracy exceeding 90%. The overall classification accuracy stands at 89.74%, surpassing
that of SVM. This study offers valuable insights into monitoring athletes’ competitive states,
aiding them in real-time adjustments of their performance levels [111].

The k-nearest neighbors algorithm (k-NN) is employed in the classification of EEG
signals by measuring the distances between test data points and the nearest neighbors in the
training dataset. The class of a test data point is then determined through a majority voting
decision. Key steps in this method include data preprocessing, feature extraction, the selec-
tion of an appropriate k-value, distance metrics, classification decisions, and performance
evaluation. While k-NN is simple and easy to understand, it performs well in applications
with small datasets and high interpretability requirements. It can be used for EEG signal
classification to identify different brain states or events. As shown in Figure 7g, binary
classification of guilty and innocent classes was carried out using the k-Nearest Neighbors
(k-NN) classifier. To validate the deception detection system, each subject underwent
5-fold cross-validation. Among the three parameter sets, the classification accuracy reached
96.7%. This validation underscores the practicality of the classification model in binary
classification tasks [112]. As shown in Figure 7h, the proposed multi-channel rhythm-
specific features and subspace K-nearest neighbor (SS KNN) method achieved classification
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accuracies ranging from 93.5% to 99.8% across various emotional states. Compared to
previous works, this represents an effective emotion detection approach. Furthermore, the
evaluation results indicate that the gamma rhythm, in conjunction with the sub-space KNN,
outperforms other EEG rhythms in terms of accuracy [113].

These algorithms have been widely applied across various research and application
scenarios, and have achieved notable success. The selection of the most suitable algorithm
depends on the specific dataset and task requirements. For smaller datasets and simpler
classification tasks, traditional machine learning algorithms such as SVM and RF are
often sufficient [114–117]. However, for large-scale datasets and complex classification
tasks, deep-learning algorithms such as CNNs and LSTM may offer more advantages. In
practical applications, experimenting with different algorithms and model architectures,
often utilizing techniques such as cross-validation, helps to identify optimal algorithmic
combination [118–121].

5. Conclusions and Perspectives

Electroencephalography (EEG) data collection technology has evolved significantly,
redefining our understanding of the intricate dynamics of the human brain. This technol-
ogy involves capturing electrical activity produced by neurons using electrodes placed
on the scalp. Over time, EEG data collection has transcended conventional neurological
research, finding applications across diverse domains and paving the way for transfor-
mative advancements. Recent years have witnessed remarkable advances in EEG data
collection systems to enhance the precision, efficiency, and practicality of brain research.
Innovations in electrode design, signal processing methodologies, and integration with
complementary technologies have substantially improved the quality and reliability of
acquired data [32,38,41]. High-density EEG systems coupled with 3D electrode config-
urations have unlocked finer spatial resolutions, providing unprecedented insights into
cerebral activity. The emergence of various electrode modalities including dry electrodes
and flexible arrays has contributed to increased participant comfort during EEG recordings.
Non-invasive alternatives, such as micro-needle and finger-type electrodes, have emerged,
minimizing invasiveness and ensuring a more user-centered experience [34–37].

The future of EEG data collection is promising and multifaceted. Its applications
extend beyond traditional research, spanning healthcare, brain–computer interfaces (BCIs),
cognitive augmentation, and neuropsychological assessments. The fusion of EEG with
artificial intelligence, machine learning, and advanced data analytics is poised to reveal
novel dimensions of brain function, leading to more precise diagnostics and tailored inter-
ventions for neurological disorders [106–113]. Furthermore, the synergy of EEG technology
with other biometric data, such as eye tracking and heart rate variability, promises a holistic
comprehension of cognitive and emotional states. This multidimensional approach holds
the potential to revolutionize areas such as mental health diagnosis, neurofeedback, and
brain-controlled devices. Nonetheless, challenges remain, including the need for enhanced
noise mitigation techniques, standardization of data collection protocols, and addressing
current limitations of EEGs in capturing deep-seated brain structures. Persistent research
efforts and interdisciplinary collaborations will be pivotal in overcoming these challenges
and refining EEG data collection technology [64].

In summary, EEG data collection technology has reshaped neuroscience and several
other fields, empowering researchers to delve into the enigmatic realm of the human mind.
As advancements continue and diverse fields converge, the horizon for EEG technology
appears rich with possibilities and promising deeper insights into the complexities of
cerebral function.
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