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Abstract: Neurons communicate through complex chemical and electrophysiological signal patterns
to develop a tight information network. A physiological or pathological event cannot be explained
by signal communication mode. Therefore, dual-mode electrodes can simultaneously monitor the
chemical and electrophysiological signals in the brain. They have been invented as an essential tool
for brain science research and brain-computer interface (BCI) to obtain more important information
and capture the characteristics of the neural network. Electrochemical sensors are the most popular
methods for monitoring neurochemical levels in vivo. They are combined with neural microelectrodes
to record neural electrical activity. They simultaneously detect the neurochemical and electrical
activity of neurons in vivo using high spatial and temporal resolutions. This paper systematically
reviews the latest development of neural microelectrodes depending on electrode materials for
simultaneous in vivo electrochemical sensing and electrophysiological signal recording. This includes
carbon-based microelectrodes, silicon-based microelectrode arrays (MEAs), and ceramic-based MEAs,
focusing on the latest progress since 2018. In addition, the structure and interface design of various
types of neural microelectrodes have been comprehensively described and compared. This could be
the key to simultaneously detecting electrochemical and electrophysiological signals.

Keywords: neural microelectrodes; dual-mode; electrophysiological signal; in vivo electrochemical
sensing; neurotransmitter; brain-computer interface (BCI)

1. Introduction

Neurons are the basic structure and functional units of the nervous system, having
functions of sensing stimuli and conducting excitations [1]. Neurons communicate via
complex patterns of electrical and chemical signals [2]. Electrical signals are the ion concen-
tration change on both sides of the neuron cell membrane, leading to the rapid potential
change in nerve fibers [3]. Chemical communication is the process in which neurotrans-
mitters (NTs) and other neurochemicals are released into the synaptic gap from a nerve
cell. It is usually from the synaptic vesicles enriched in presynaptic cells, and then binds
to the receptors on the targeted postsynaptic cells [4]. Chemical signals are obtained by
monitoring the changes in the neurochemical levels. Neurons utilize these two communica-
tion patterns to maintain the operation of each region along with the interconnection of
the entire neural network. The generation and conduction of electrical activities in normal
brain physiological events are often regular and limited. When pathological events occur
in the brain, neurons are likely to have abnormal discharges such as epilepsy. Therefore,
deep brain stimulation (DBS) electrodes can regulate abnormal neural electrical activity
in the target area, advancing as an effective neural regulation technology [5]. In addition,
pathological events inside the brain are often accompanied by impaired neurotransmission,
such as synaptic plasticity defects and synaptic loss. These can manifest in abnormal
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neurotransmitters (NTs) and/or other neurochemicals levels in the brain. The lack of
abnormality of various neurotransmitters can cause multiple neurodegenerative diseases,
such as epilepsy, Parkinson’s disease, and Alzheimer’s disease. Moreover, cognitive decline
occurs due to cholinergic and glutamate deficiency. Additionally, there is a lack of synaptic
plasticity, inhibitory and excitatory neurotransmitter homeostasis disorders within epileptic
symptoms, neuropsychiatric monoamine neurotransmission, etc. [6–8].

We need to synchronously detect the electrophysiological and chemical signals in
the brain to decipher the mechanism of various physiological and pathological events
behind the complex interconnection of neural networks. With the development of the
brain–computer interface (BCI), different neural electrodes can detect the electrophysio-
logical activities of single or multiple neurons [9–13]. An interesting research direction is
their amperometric combination with in vivo electrochemical sensors to obtain dual-mode
detection neural electrodes [14,15]. The primary advantage of amperometry is that it can
directly determine a number of molecules by calculating peak area [16–18]. Neurons com-
municate with each other in both electrical and chemical aspects. Therefore, a high spatial
and temporal resolution of electrical and chemical dual-mode analysis technology can facil-
itate a better understanding of brain function. Moreover, it can highlight many potential
mechanisms of some nervous system diseases. Thus, the brain regions of interest can be
associated with behavioral variables to complement the information. Single detection mode
has been studied extensively [19]. For example, many experiments have improved the
electrochemical detection electrode of carbon fiber in vivo. Therefore, it is a better electro-
chemical detection electrode [20–22]. It is essential to obtain the interactive and cooperative
information between the two modes and understand the brain operation mechanism. Thus,
some researchers have begun researching and developing new dual-mode electrodes to
detect electrochemical and electrophysiological signals in vivo simultaneously. In 2008,
Barbosa et al., evaluated the available strategies for simultaneous electrochemical and elec-
trophysiological measurements in the brain using microelectrodes and MEAs, particularly
ceramic-based MEAs [23]. Mao et al., demonstrated the electrochemical biosensor devel-
opment for neurochemicals in vivo, especially enzyme electrochemical biosensors [24].
This paper systematically reviews the latest progress of neural microelectrodes depending
on electrode materials for in vivo electrochemical sensing and electrophysiological signal
recording, included carbon-based microelectrodes, silicon-based MEAs, and ceramic-based
MEAs, the latest progress since 2018. In addition, the structures and materials for different
neural microelectrodes were comprehensively described and differentiated.

2. Electrochemical Detection

Electrochemical technology can detect neurochemical substances. It differs from
traditional spectrophotometry, electrophoresis, liquid chromatography, and fluorescence
detection methods. Electrochemical technology can achieve accurate, rapid, and real-time
detection in vivo. Electrochemical detection utilizes microelectrodes or microprobes to
record the current generated by various neurochemicals at the corresponding oxidation
peak potential, thereby achieving chemical signal detection. It has high sensitivity, fast
response, and a high signal-to-noise ratio (SNR) [25–27].

The potentiostatic amperometric method is minimally affected by the change of ca-
pacitance current. Thus, it has superior time resolution and high sensitivity but has poor
selectivity. It is used for detecting known neurotransmitters in single cells. Different se-
lective coatings can be applied to block the interference factors on the electrode recording
site. Thus, it allows specific molecules to pass through the coatings and conduct electro-
chemical detection on the electrode surface. For instance, coating Nafion can repel anionic
interactions, enhance in vivo selectivity, and lead to interference and noise subtracted and
recognized [28]. Cyclic voltammetry (CV) synthesizes different analyte responses along the
potential axis. It is dependent on their electrochemical properties, leading to selectivity in
the measurement [29]. Therefore, fast-scan cyclic voltammetry (FSCV) can also be applied
with a high resolution of sub-second (hundreds of milliseconds). Its combination with
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carbon fiber electrodes enables high resolution and low tissue damage detection of neuro-
transmitters. However, FSCV is not entirely applicable to all the scenes. When multiple
target analytes detected simultaneously possess similar oxidation potential during a high
scanning rate, it is challenging to distinguish the results. In addition, a high scanning
rate can generate a sizeable capacitive current, which should be subtracted from CV to
determine a small Faraday current due to the oxidation or reduction of the target ana-
lyte. Elisa Castagnola et al., confirmed that the voltage reduction and oxidation peak of
dopamine (DA) and 5-hydroxytryptamine (5-HT) are distinguished by employing optimal
FSCV triangular waveform, having scan rates ≤ 700 V s−1 with potentials holding and
shifting at 0.4 V and 1 V [30]. Differential pulse voltammetry (DPV) combines the square
wave technique with linear sweep voltammetry. At a constant frequency, it employs a small
amplitude square wave (~25 mV) as a signal superimposing the slow linear potential slope.
The charging current is strongly discriminated, and the ratio of faradaic to charging current
is very large. Therefore, DPV is a voltammetry technology with high sensitivity. The
differential DPV current has a symmetrical volt-ampere peak, whose intensity is directly
proportional to the analyte concentration. Thus, it can synchronously detect the oxidation
potential of two compounds differing by more than 100 mV without interfering with each
other. Moreover, the selectivity of sensing specific substances is also optimized [31]. The
complex brain environment requires that microelectrodes have high sensitivity and the abil-
ity to resist interference effects. Electrodes should be selective, or people should distinguish
the signals of various neurochemical substances via different strategies to detect various
neurochemical substances. In addition, most of the existing electrochemical detection
electrodes can only be used for acute detection. Additional electrode design is required for
chronic detection with high time resolution and long-term stability in vivo [32].

3. Electrophysiological Signal Detection

Three types of neural electrodes are used to capture the electrophysiological activities
of neurons: non-invasive, semi-invasive and invasive. The non-invasive electrode is usually
a head-worn type, does not require surgery but has a poor spatial resolution, and can only
detect electroencephalography (EEG) signals. The semi-invasive electrode is implanted
between the skull and the cerebral cortex. It causes less tissue damage than the invasive
electrode, thereby measuring the electrocorticography (ECoG) signal. The major types of
neural electrode interfaces in brain are shown in Figure 1. The implanted nerve electrode
should pass through the cerebral cortex and enter the brain tissue. Therefore, there is a
significant requirement for the safety of the electrode and the surgical process. It requires
implantable electrodes of high spatial and temporal resolution for a single neuron to record
and modulate neural activity in a sub-millisecond [33]. The implantable electrodes were
gradually developed from single-channel to multi-channel recording from the metal mi-
crowire electrode [34] at the beginning to the Utah and Michigan electrodes [10,35,36] based
on silicon. It had excellent performance detecting electrophysiological signals or controlling
neural activities, including the deep brain stimulation (DBS) electrode mentioned above for
clinical treatment of psychomotor disorders. Moreover, it can capture local field potentials
(LFPs) through external cables connected to constantly developing DBS conductors [37].
The development trend of various types of electrodes on the time axis is in Figure 2.
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The electrode to detect neural electrical activity should have excellent electrochemical
properties, including high charge storage capacity and low electrode impedance. The
effective area of electrode sites can be increased by modifying the electrode surface to
decrease the impedance [47]. The electrode surface can also be modified using various
materials to achieve high-quality signal acquisition. These materials include metal or metal
compound materials such as platinum black [48], iridium oxide [49], and titanium nitride;
carbon materials such as carbon fibers and carbon nanotubes [50]; conductive polymer
materials such as PEDOT and other composite materials [51]. Many of them can improve
biocompatibility while enhancing electrochemical performance. Anti-inflammation coat-
ing [52] and neurotrophic factors coating [53] can also elevate biocompatibility. For example,
researchers studied a new electrode analog of the cochlear implant, polydimethylsilox-
ane (PDMS) filaments, to reduce any inflammation caused by the implant. It contains
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anti-inflammation/fibrosis dexamethasone (Dex) and is coated using hyaluronic acid (HA)
as the surface modifier. The PDMS filaments were prepared by mixing Dex into PDMS
containing poloxamer 188 (P188) in varying amounts as a drug release enhancer. The
results indicated that the filaments containing 5% Dex, 5% P188, and HA coatings were sig-
nificantly reduced by 51% in the fibroblast cell number. Moreover, the surface cell adhesion
was significantly decreased [54]. The elastic modulus of traditional nerve implant materials,
such as silicon and metal, is higher than the elastic modulus of brain tissue (silicon and
metal range from 50 to 200 Gpa, while nervous tissues are 3.15–10 kPa) [55]. Long-term
implantation of brain tissue will lead to continuous electrode cutting due to brain tissue
micromotion. Thus, it displaces the electrode interface, neurons, and glial scar [56]. These
will damage the body and affect the signal recording quality. Therefore, more flexible
implantable electrodes have been developed. Some are material-based electrodes com-
posed of biocompatible polymers such as polyimide and parylene [57]. Others are modified
with a layer of flexible materials, including hydrogel, on the original electrode surface [58].
Flexible electrode materials have lower bending stiffness than rigid electrode materials,
leading to better mechanical compliance. The implanted flexible electrode generates little
shear movement as the bending stiffness is closer to the nerve tissue, thereby reducing the
chronic immune response. Gilberto Filho et al., designed the 3D-printed molds to fabricate
a fully polymeric electrode depending on PEDOT:PSS:DMSO. The polymer-based electrode
has a mechanical strength similar to the brain. The conductive ink depending on PEDOT:
PSS: DMSO has a conductivity of 137 S/cm and a resistance of 180.7 ± 19.5 Ω. Therefore,
the immune response of the full polymeric electrode is completed after 21 days of implan-
tation. Thus, there is no significant change in the recorded signal quality. In addition, 3D
printing technology makes flexible electrode manufacturing more accessible and faster [59].
Many experiments have confirmed that these flexible materials can significantly elevate
the flexibility of electrodes, thereby enhancing their biocompatibility, decreasing biological
reactions, and enhancing long-term stable measurements of electrodes in vivo [60–62].

Many electrodes based on different materials have been developed. Table 1 summa-
rizes the overall characteristics of these electrode materials.

Table 1. A summary of various electrodes based on the electrode materials.

Electrode Material Electrical Property Type of Electrode Others Reference

PEDOT nanotube

Impedance:17 kΩ (before
implantation); 87 kΩ (after

implantation); 2.21 ± 0.7 MΩ
(6–8 days after implantation)

Si-based electrode;
PEDOT nanotube is

deposited on the
record sites

Targeting: barrel cortex [63]

PEDOT/PSS Conductivity: 155 S/cm;
Impedance:7.4 kΩ

3D print for Pure
Polymeric Electrode

Targeting: primary motor
cortex (M1);
HTU:12 dB

[59]

PEDOT film Impedance ≈ 20 kΩ (Φ30 µm);
Specific capacitance: 3.6 mF/cm2

PEDOT/CNT is
coated on the

Au sites
- [64]

PEDOT/LiClO4 Impedance: 9 kΩ (1250 µm2)
Single and

four-shank neural
probes; Au sites

- [65]

PPy nanotube Impedance: 80 kΩ (1250 µm2)
Eight-channel Si
substrate acute
probe; Au sites

- [66]

PPy/peptide Impedance: 500–1700 kΩ Michigan electrode;
Au sites

Targeting:
inferior colliculus or auditory

Cortex;
Coatings establish strong

connection with the
neural structure

[67]
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Table 1. Cont.

Electrode Material Electrical Property Type of Electrode Others Reference

PPy: PTSA
1:2 nanowire

Conductivity: 800 S/cm;
CIC:67.1 mC/cm2 at 50 mV/s PDMS substrate

Targeting: visual cortex for
normal and epileptic rat;
Yang’s modulus: 1.9 MPa

[68]

PPy/GO
Impedance: 26 kΩ (Φ50 µm);

Charge Capacity Density:
278.83 mC/cm2 at 50 mV/s

Silicon substrate
and Pt sites - [69]

PPy film

Impedance: 115 kΩ (Φ50 µm);
Charge Capacity

Density:190.98 mC/cm2 at
50 mV/s

Silicon substrate
and Pt sites - [69]

PPy/PSS Impedance: 30 kΩ (1250 µm2) - - [70]
PPy/SLPE Impedance: 390 kΩ (3900 µm2) - - [71]
AuPt alloy

nanoparticles Impedance: 230 kΩ (2870 µm2) Michigan electrode Targeting: lateral
globus pallidus [72,73]

AuNPs Impedance: 900 kΩ (2870 µm2) Michigan electrode SNR = 3.4 [73]

Pt Impedance: 5 kΩ (Φ33 µm);
CSC: 50–100 µC/cm2

Sixteen electrodes
of 33 µm-diameter

arranged in two
rows of 8 electrodes

- [74]

CNT/Au Impedance: 38 kΩ (Φ20 µm)
32 electrodes with

CNT/Au
composite

Targeting: motor cortex from
rat; cortical area V4

from monkey
[75]

CNT/PPy Impedance: 770 kΩ;
Capacitance: 755 mF/cm2 MEA

Targeting: motor cortex from
rat; cortical area V4

from monkey
[75]

TiN CIC: 4.45 mC/cm2 MEA - [76,77]
RGO fiber CIC: 14 mC/cm2 MEA Targeting: feline visual cortex [78]

PI Impedance: 59 kΩ (6400 µm2);
CSC: 154 µC/cm2

2 mm long array
with 14 TiN

square-shaped
microelectrodes

- [77]

4. Dual-Mode Neural Microelectrodes
4.1. Carbon-Based Neural Microelectrodes

Carbon is an attractive chronic implant material to minimize tissue damage [79].
This is because of its chemical inertness, biocompatibility, good electrical performance,
electrochemical stability, pure capacitive charge injection (no irreversible reactions and
byproducts), and rapid surface electrochemical kinetics. Carbon is often used as elec-
trode materials, including carbon fiber, carbon nanotube, glassy carbon, graphene, etc.
The electrochemical performance can be improved because of the porous channels con-
nected inside the carbon to enable the rapid migration of electrons and ions. Therefore,
carbon is a promising implantable neural electrode material for electrophysiological and
electrochemical dual-mode detection.

4.1.1. Carbon Fiber Microelectrodes (CFEs)

The diameter of carbon fibers utilized for neural microelectrodes is less than 10 µm.
It is suitable for implantation and causes less tissue damage than traditional electrodes.
Carbon fiber microelectrode is a valuable tool for in vivo detection of neurotransmitters.
This is because of its small size, high sensitivity, biocompatibility, and good electrochemical
properties [80,81]. Mao et al., have done much work and made some progress in the in situ
electrochemical detections of carbon fiber microelectrodes. They utilized the as-synthesized
vertically aligned carbon nanotube-sheathed carbon fibers (VACNT-CFs) as the microelec-
trode to detect ascorbate acid (AA) in vivo. Thus, it has high reproducibility and selectivity.
Microelectrodes with original VACNT-CFs electrode material are synthesized by assem-



Biosensors 2023, 13, 59 7 of 25

bling VACNT-CFs into capillaries. Carbon nanotubes (CNTs) can significantly promote
AA oxidation (ca. −50 mV) at low potential, opening up a new way for selective AA
detection. Experiments indicate that the oxidation potential of AA is well separated from
the oxidation potential of other electrochemical active substances. Therefore, the developed
electrode has fast electron transfer kinetics for AA electrochemical oxidation. Even if other
electrically active substances (e.g., dopamine and 5-hydroxytryptamine) coexist in the rat
brain, they can also be used for highly selective and repetitive real-time AA monitoring [82].
They also used platinized vertically aligned carbon nanotube (VACNT)-sheathed carbon
fibers (Pt/VACNT-CFs) as the electrodes to detect the dynamic change of O2 in vivo. The
VACNT-CFs are developed by the pyrolysis of iron phthalocyanine (FePc) on the surface
of CFs, then through electrochemical deposition of platinum nanoparticles to synthesize
Pt/VACNT-CFs. Platinum (Pt) is the most active metal for the electrochemical reduction of
O2 because it facilitates O2 removal via a four-electron process to produce water. CNTs are
heterogeneous porous Pt catalyst scaffolds and can prevent electrochemical dissolution and
separation. The microelectrode designed and manufactured by combining VACNT CFs
with Pt demonstrates a new method for monitoring O2 in vivo without forming toxic H2O2
intermediates [83]. Mao et al., have developed various strategies to improve the electrode
to inhibit the adsorption of biomolecules in the brain on the implanted microelectrode
surface during electrochemical detection. These include designing the polymer monomer
EDOT-PC (amphoteric choline phosphate functionalized ethylene dioxythiophene) and
polymerizing it on the microelectrode surface via electrochemical polymerization. This
forms a PEDOT-PC ultrathin film using a cell membrane-like structure. A thin PEDOT-
PC film is formed due to the self-limitation of electrochemical polymerization at the PC
end, which ensures the rapid mass transfer of the substance for film detection. Therefore,
PEDOT-PC modified microelectrode can effectively resist the non-specific adsorption of
proteins and maintain the detection sensitivity of the electrode. PEDOT-PC modified
CFE was utilized to accurately monitor DA release during KCl stimulation and electrical
stimulation in the rat brain. Another example of avoiding the non-specific adsorption of
proteins on the electrode surface is designing the covering CFE with leukocyte membranes
(LMs). Leukocytes facilitate immune function in the body and can promote the immune
evasion of nanoparticles. We found that these decorated CFEs controlled their electrochem-
ical reactivity and indicated significant resistance to non-specific protein adsorption by
layering LMs on the surface of CFE, thus extending the life of implanted CFEs [84]. During
the in situ analysis, solving the critical problem of protein adsorption of microelectrodes
in vivo through various strategies will build the foundation for deciphering the molecular
mechanism of brain neurochemistry.

Many strategies have also emerged to elevate the selectivity of microelectrodes for
neurochemicals. Aptamers are short, synthetic single-stranded nucleic acids, specifically
identifying multiple targets with high affinity. The combination of molecular recognition
properties of aptamers with implantable electrochemical platforms will enhance selectivity
for molecular detection. Using a positively charged coating, pretreating the electrode
surface can load the aptamer to the CFE surface by electrostatic interaction. However, this
binding is easily destroyed by an ionic effect and exhibits low stability in the physiological
environment. Mao et al., have demonstrated a new surface functionalization strategy. This
assembles the aptamer cholesterol amphiphilic molecule over the alkyl chain functional-
ized CFE. The aptamer can be effectively fixed on the CFE surface with the help of the
non-covalent cholesterol alkyl chain interaction. The results indicate that this strategy
greatly improves the selectivity of DA detection in rat brains. Compared with the bare
carbon fiber electrode, the modified electrode selectivity to DA is increased three times [85].
Enzymatic modification of microelectrodes can improve the selectivity of microelectrodes
to neurochemicals. Matias Regiart et al., developed a highly selective and sensitive nanos-
tructure biosensor to simultaneously determine lactic acid and glucose in rat brains. It
was based on carbon fiber microelectrode (CFM) modified by nanoporous gold (NPG)
with the dynamic hydrogen bubble template (DHBT) method. Platinum nanoparticles
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(PtNPs) electrodeposited on NPG films can enhance the sensitivity of H2O2 detection and
electrocatalytic performance. The nanostructure microelectrode platform was modified
using immobilizing glucose (GOx) and lactate (LOx) oxidases. Therefore, the electrode
has a high sensitivity to H2O2 (5.96 A M−1 cm−2) at 0.36 V vs. Ag/AgCl. The linear
range was from 0.2 to 200 µM, and the LOD was 10 nM. Moreover, the basic extracellular
concentrations of lactic acid and glucose were also determined in vivo [86].

In electrophysiological detection, a carbon fiber electrode array (CFEA) becomes
a substitute for metal wire or silicon probe. The carbon fibers are thinner and more
flexible than commonly used metal wires and silicon, with a lower immune response after
implantation. Grigori Guitchounts et al., designed the 64-channel CFEA and the batch
preparation method of recording sites. The tip was prepared using sulfuric acid etching
to enhance the surface area and was modified with PEDOT-TFB. This led to the same tip
impedance reducing from 4.84 ± 0.68 to 0.17 ± 0.86 MΩ. The recording in the cortex of
rats establishes the feasibility of recording neural signals with this method [87].

Depending on the excellent performance of carbon fiber microelectrode to detect
neurochemical substances in vivo, Mao et al., integrated the carbon fiber microelectrode
with the electrophysiological detection electrode to synthesize an integrated dual-mode
microelectrode (IDMME). This supports real-time recording of AA and electrical signals
in vivo. The electrochemical detection electrode has been manufactured from carbon fiber
modified with carbon nanotubes. Moreover, the glass microcapillary electrode is manu-
factured from fiber-filled borosilicate glass tubing, having an inner diameter of 0.68 mm
and an outer diameter of 1.5 mm. It is used as the electrophysiological recording channel
for single-unit brain recording. The experimental setup diagram is depicted in Figure 3.
These two independent technologies do not interfere. The experiment demonstrates that
the current has a linear relation with AA concentration within the 0 to 1200 µM range
(γ = 0.972). The investigation also explored that the amperometric method did not produce
residual artifacts on adjacent electrophysiological records. Thus, the feasibility of IDMMEs
to selectively monitor the level of AA and single-unit electrical signals is established in vivo.
The final results revealed that the increase of cortical ascorbate level in the early stage of
ischemia was parallel to the significant reduction of single unit activity. The inverse changes
in ascorbate level and single unit activity designate a complex neurochemical process dur-
ing the acute phase of global cerebral ischemia. Additionally, the increase in AA and the
decrease in neural activity can be induced by brain acidosis, hypoxia depolarization, and
several injuries after global cerebral ischemia/perfusion [88].

Patel et al., fabricated a 16-channel array electrode using a carbon fiber substrate and
coated Parylene C. In addition to being an insulating layer, its good flexibility also reduces
the electrode’s footprint, thereby increasing the biocompatibility of the electrode interface.
The detection sites of electrophysiology and electrochemistry use the same electrode mate-
rial. The manufacturing process of the flexible array is displayed in Figure 4a. We used
laser ablation for selective re-exposure on the carbon fiber surface for functionalization. The
experimenter explored the impedance and in vitro dopamine detection experiments from
the carbon fiber array electrode. This helped optimize tip treatment conditions of 50 µm
in length, thereby plasma graying the probe. Then, the electrode array was implanted
into the rat nucleus accumbens for one month to detect chronic electrophysiology and DA
signaling. Experimental results showed DA release on eleven channels in vivo, and on the
same day, unit activity was detected on seven channels. The entire array was sliced 78 days
after implantation without any significant movement of the electrodes. The histological
experiment revealed minimal tissue damage (Figure 4b), and we quantified the density
of neurons around the electrodes. The results indicated that the density within the first
100 µm was almost indistinguishable from a normal brain after more than 10 weeks of
implantation [89].
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Figure 3. The schematic diagram of the experimental setup for simultaneous monitoring of AA and
electrophysiological activity in vivo.

4.1.2. Graphene-Based Microelectrodes

Graphene-based nanomaterials are utilized in many microelectrode designs due to
their high conductivity, excellent flexibility, and biocompatibility, thus forming a stable
electrode–nerve interface [90–92]. In addition, the optical transparency of the graphene
interface enables neural electrodes to have a multimodal approach. Moreover, the electric
layer is compatible with other microfluidic or optical manipulation ports. These multi-
modalities can provide a next-generation interface for neural network research with high-
fidelity activity patterns. Farida Veliev et al., performed in vitro detection of spontaneous
hippocampal neuron activity using a millimeter-size PDMS fluid chamber based on in situ
grown graphene sensors. Various experiments have established the reliability of detecting
neural activity [82]. Bao et al., developed a flexible, stretchable neurochemical biosensor
based on NeuroString. They embedded a laser-induced graphene nanofiber network
into an elastomer matrix. The NeuroString sensor can detect the dynamics of multiple
neurotransmitters in the brain and gut in real time. The sensor has a high level of flexibility
and stretchability similar to tissue, thereby maintaining the distinctive electrochemical
properties of nanomaterials [93]. Due to the excellent properties of graphene, it can be used
to design dual-mode detection microelectrodes for electrophysiology and electrochemistry
in vivo.
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4.1.3. Glassy Carbon (GC) Microelectrodes

Surabhi Nimbalkar et al., proposed a glassy carbon microelectrode with capacitive
behavior. It can sustain over 3.5 billion bi-phasic pulse cycles at a charge density of
0.25 mC/cm2, with a high charge storage capacity (CSC). These probes can maintain
stability to avoid long-range electrical stimulation corrosion by applying a novel two-step
double-sided mode transfer method with GC structure. GC nerve probes are fabricated
from a homogeneous material and encapsulated on the flexible film polyimide substrate.
Therefore, the excellent electrochemical stability of GC materials was utilized, which
improved the biocompatibility of film devices. The novel fabrication is not involved
with the intermediate metal deposition process. These probes have a high signal-to-noise
ratio (>16) of electrical signal recording and real-time high-resolution neurotransmitter
detection within the same platform. It was shown by FIB cross-section characterization and
SEM images that the GC microstructure had strong adhesion to the top insulating layer
and the bottom substrate layer with that of the hydroxyl and carbonyl covalent bonds.
This is confirmed by extensive in vivo and in vitro experiments based on the highest
reported CSC (61.4 ± 6.9 mC/cm2) and high-resolution DA detection at 10 nM levels
within uncoated neural probes [79]. Figure 5 depicts the GC neural probe and sensory
evoked potentials caused by the bi-phasic stimulation pulses. These were recorded by the
ECoG microelectrode array and in vitro dopamine detection.
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Elisa Castagnola et al. [94] developed a 4-channel intracortical glassy carbon (GC)
MEA over a flexible substrate to detect neural activity and dopamine at four different
brain locations. The microfabrication technology is ameliorated by an extra augment
layer to enable brain penetration. For example, a thicker layer of polyimide was coated
on the insulation layer to improve the penetration of the device. Genki Ogata et al.,
proposed a drug-tracking system composed of a glassy microelectrode and a microsensor.
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The microsensor was made of boron-doped diamond for tracking pharmacokinetics and
detecting the neuronal local field potentials in the rat brain [95].

4.1.4. Diamond Microelectrodes

MEAs made entirely of diamond with the single material microelectromechanical
system concept (SMM) have successfully been fabricated [96]. They completed the elec-
trophysiological and electrochemical experiments in vivo and in vitro, respectively. Chan
et al., designed a novel polycrystalline diamond (poly-C)-based microprobe using an un-
doped poly-C as its support material. Young’s modulus was in the compatible range of
400–1000 GPa. The poly-C resistivity of boron-doped was about 10−3 Ω·cm. Thus, it was
utilized as an electrode material to provide a stable interface for chemical and electrical sig-
nal detection for neural research. The probe has eight poly-C electrode detection sites with a
2~150 µm diameter, and the electrode capacitance was approximately 87 µF/cm2. The mini-
mum detectable concentration of norepinephrine is about 10 nM. It has been implanted into
the auditory cortex region of guinea pig brains for in vivo neural studies, with a recording
signal amplitude of 30–40 µV and a 1 ms duration [97]. Diamond has good biocompatibility,
chemical inertness, low double-layer capacitance, and other characteristics. However, its
high hardness is not conducive to being used as an implant to a certain extent. Fan et al.,
demonstrate a pliable microelectrode probe fabricated of a diamond. The microelectrode
comprises a polycrystalline boron-doped diamond (BDD) probe supported on a flexible
Parylene C substrate through multiple channels (Figure 6). A wafer manufacturing method
is developed and ameliorated for utilizing the growth side of the BDD thin film instead
of the nucleation side as the sensing surface. In comparison, the growth side had a lower
background current and broader water potential window [88]. In addition, the modification
of nanodiamond to carbon fiber electrodes to enhance the electrochemical performance and
electrochemical sensing of the electrode has been proposed by Maryam A. Hejazi et al. [15].
The researchers developed a new method for preseeding carbon fibers using covalently
bound nanodiamonds before diamond growth to protect carbon fibers during chemical
vapor deposition. The covalent bonding of nanodiamonds is realized by grafting aromatic
amines to connect nanodiamonds with carbon fiber surfaces. Thus, it reduces the difficulty
of coating diamonds on carbon fibers in the past. This composite microelectrode can record
the action potential of individual neurons, delivering effective electrical stimulation pulses
and providing good dopamine electrochemical detection ability.
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4.2. Silicon-Based Microelectrode Array

In the 1970s, Wise et al., reported that the first silicon-based microprobes were fabri-
cated on a rigid silicon substrate with lithography. It could precisely control the electrode
spacing to 10 to 20 µm or larger. Moreover, the diameter of the electrode tip could be as
small as 2 µm [36]. Silicon microprobe electrodes have excellent processability of silicon.
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Thus, silicon-based micromachining technology has emerged as one of the main tools for
manufacturing neural MEAs using microscale accuracy and high reproducibility. Cai et al.,
developed a microelectrode array whose detection site arrangement matched the shape
and position of rat dorsal periaqueductal gray (dPAG) through the microelectromechanical
system (MEMS) technology. The detection performance was ameliorated by depositing
platinum-black NPs. It could detect the electrophysiological signal of dPAG of pre- and post-
activity neurons for free-behaving rats exposed to 2-methyl-2-thiazoline (2-MT), an effective
analog of predator odor [98]. Cai et al., designed an MEA to study 5-HT deficiency-induced
insomnia on the dorsal rap nucleus (DRN) and hippocampus neurons in rats. This enabled
the simultaneous detection of DRN and hippocampus electrophysiological activities at a
long distance [99]. Figure 7 depicts the design and fabrication of MEA.
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Another common way to form a needle tip array through MEMS technology is on the
silicon substrate. The tip is coated with platinum-black, iridium oxide, or other materials
to conduct electricity. The electrode column is insulated using a Parylene C layer with
good biocompatibility or directly developing the Parylene into a flexible microelectrode ar-
ray [100,101]. Silicon microarray electrodes can fulfill the needs of most electrophysiological
records and have been successfully deployed in many neuroscience applications [102,103].
In addition, silicon can be used as the sensor matrix material for neurochemical signals in
the brain. Thus, silicon microprobe is used to realize dual-mode detection of electrophysiol-
ogy and electrochemistry. Electrical and neurochemical activities can be correlated by using
the same equipment [104]. M.D. Johnson et al. [105] developed a neural probe based on a
Michigan silicon-substrate probe. It was formed on silicon using a planar process for simul-
taneously detecting neurochemical and electrophysiological signals in rats. The array had
a single handle with seven platinum and seven iridium microelectrode sites. The platinum
sites on each array were plated with platinum-black and electropolymerized with Nafion.
It increases dopamine sensitivity by 74%, reduces the sensitivity of common interfering
substances by at least 89%, and monitors neural activity within adjacent iridium sites.

Furthermore, neural probes for non-human primates have been designed as brain
research tools. Cai et al. [106] developed a low-cost silicon-based 16-bit implantable MEA
chip by standard lithography technology for in vivo testing. The array was 25 mm long
(Figure 8a). The ion exchange resin Nafion was coated dropwise on the probe tip to increase
the selectivity of DA detection of platinum sites. Moreover, platinum-black nanoparticles
were plated onto the bare microelectrode to lower impedance and enhance the ratio of
signal to noise. Then, continuous high-quality electrophysiological and electrochemical
signals were determined in different regions from the monkey’s cortex to the striatum.
Compared with 1.52 MΩ before modification, the average microelectrode impedance de-
creased to 0.026 MΩ at 1 kHz (Figure 8b). The implanted MEA microelectrode was attached
to the electrophysiological recording system. The spikes, LFPs, and currents were recorded
during the sequential insertion and retrieval of the probe (Figure 8c,d). It has been possible
to acquire high-quality dual-mode signals in monkey brains. However, it is still cumber-
some and inefficient to implement because a combination of electrodes and commercial
instruments is involved in the experiment. The acquisition of both signals cannot be com-
pleted using a single device. Therefore, Cai et al. [107] developed an integrated system for
synchronous monitoring of nerve spikes and DA activity inside non-human primate brains.
The system integrates implantable sensors, dual-function heads, and low-noise detection
instruments. Then, they performed synchronized recordings of electrophysiological signals
and DA in monkeys. The result indicated that the system typically had an input impedance
level of 5.1 GΩ, an input-referred noise level of only about 3 µVRMS, and a DA detection
sensitivity of 14.075 pA/µM. Therefore, it could detect electrophysiological signals and DA
without interfering with each other.

The excellent properties of silicon-based MEAs provide new means for mechanism
research and disease treatment [108]. Some studies have demonstrated that the disorder of
excitatory glutamate-mediated neurotransmitters could be the primary cause of temporal
lobe epilepsy (TLE). Cai et al. [109] designed a silicon-based MEA for simultaneously
detecting neuroelectrophysiology and the neurotransmitter glutamate (Glu). They modified
the electrophysiological recording site using platinum nanoparticles (PtNP) to reduce
impedance and improve the SNR. Moreover, they also changed the glutamate oxidase
enzyme (Gluox) by glutaraldehyde crosslinking at the glutamate detection site and plated
m-phenylenediamine (mPD). The electrode structure and site distribution are demonstrated
in Figure 9. Glutamate is oxidized and releases H2O2 under the catalysis of Gluox. mPD
membranes effectively restrain the diffusion of AA, DA and 5-HT to the inner layers but
permit H2O2 to penetrate. After it spreads to the PtNP layer, the H2O2 molecule is oxidized
at the optimum voltage (0.6 V), releasing two electrons. The detected electrochemical
current can reveal the glutamate concentration around the neuron since the electronic
number is directly proportional to the glutamic molecular weight. The dual-mode MEA
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was implanted into the hippocampus of anesthetized TLE and normal rats. This helped
investigate the spatial and temporal characteristics of glutamate efflux in the hippocampus
Cornu Ammon 1 (CA1) of TLE rat seizures, non-seizures, and the differences in neural
activity between TLE and normal rats. The experimental results indicated that the MEA
probe showed excellent electrical performance (resistance is 14.2 ± 1.3 kΩ, SNR ≥ 4),
sensitivity (6.276 ± 0.102 pA/µM), linearity (R = 0.9986) and selectivity (97.82%) while
detecting glutamate in brain extracellular fluid. Simultaneously, the researchers observed
that the nerve peak discharge during the seizure was denser and more regular than before.
The amplitude of LFPs increased nearly three times, and the discharge power during the
seizure changed more strongly. Glutamate concentration elevated with the increase of the
neuron discharge frequency and LFP power.
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average impedance is down from 1.52 to 0.026 MΩ at 1 kHz. (c) The MEA probe was attached to the
recording system to detect Spikes and LFPs. (d) Ch7 was used to record the amperometric I-T graph
during the sequential insertion and retrieval of the neural probe.

Parkinson’s disease (PD) could be involved in the basal ganglion circuit. It consists
of the substantia nigra (SN), striatum, subthalamic nucleus (STN), globus pallidus (GPi),
cortex, etc. Deep brain stimulation (DBS) for STN and GPi is one of the most effective ways
to treat dyskinesia symptoms. However, some researchers showed that different stimulation
frequencies lead to different treatment outcomes. The mechanism of Parkinson’s disease,
DA monitoring, and spike discharges under deep brain stimulation in rats with Parkinson’s
disease was investigated. Therefore, Cai et al. [108] made an MEA with a length of 7 mm, a
width of 250 µm, and a site modified with platinum nano-particles and reduced graphene
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oxide nanocomposites (Pt/rGO) by electroplating. It monitors DA concentration and nerve
spike discharge in the caudate-putamen (CPU) of Parkinson’s disease rats in real-time.
After DBS was applied to the medial pallidum (GPi) side of the PD rats, the electrode
array detected a significant elevation in DA concentration in bilateral CPUs. The average
increment of DA on the same side was 7.33 µM. The increment of DA on the comparison
side was 2.2 times higher. The average amplitude of nerve spikes in both CPUs was
reduced by more than 10%. The spike discharge rate was reduced by 65% (ipsilateral)
and 51% (contralateral). It could be observed that DBS plays a vital role in regulating DA
concentration, peak discharge, and the power of bilateral CPUs. In addition, the same
side change of dual mode signal is more significant than the side. These results provide
us with new detection and stimulation techniques to decipher the potential mechanism of
Parkinson’s disease. Specific neuron discharge and DA neurotransmitters during STN-DBS
were detected by further research. Similar spike-wave and DA concentration changes
were detected when the simulation frequency ranged from 10 to 350 Hz. Moreover, it
showed the highest spike-wave discharge frequency and DA concentration at around
100Hz of the stimulation frequency. Stimulation dramatically regulated patterns of MSNs,
whereas FSI did not. Thus, the diverse neural spike wave modes have a distinct part
in PD animals [110]. Silicon-based microelectrode arrays can regulate neural activity by
controlling the release of neurochemicals from the coating of the microelectrode array
sites and directly applying electrical stimulation to the corresponding neurons. This is an
exciting function. For instance, Du et al. [111] developed a new double-layer conductive
polymer/acid functionalized carbon nanotube microelectrode coating. It is applied to
the classic Neuronexus 16 channel in vivo MEA. Moreover, it can load and electrically
release the neurochemical 6,7-dinitroquinoline-2,3-dione (DNQX). DNQX is a 2-amino-
3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propionic acid (AMPA) receptor antagonist. AMPA
receptor-mediated rapid excitability transfer directly affects neural network activities as it
participates in generating action potentials. Therefore, releasing AMPA receptor antagonist
DNQX triggered by electricity from the microelectrode coating could regulate the activity
of neurons. The electrode coating prepared by this double-layer method had an inner
layer of PEDOT/fCNT and an outer layer of PPy/fCNT/DNQX. The former enhances the
impedance increase due to drug loading on the coating. In contrast, the latter is designed
to improve drug loading. In addition, the mechanical stability of the double-layer coating
can withstand surgical insertion and repeated in vivo drug release. The illustration of the
synthesis of dual-layer film and the bilayer coating scheme on MEA in vivo is shown in
Figure 10.
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Cai et al. [112] designed a modified MEA with single-walled carbon nanotubes/PEDOT:
PSS nanocomposites to optimize the electrochemical and electrical performance of MEA.
Poly (3,4-ethylene dioxythiophene)/polystyrene sulfonate (PEDOT: PSS) has a porous
structure with good adhesion. It has been widely used for electrophysiological signals and
electrochemical detection [113–115]. Carbon nanotubes (CNTs) have also been used for
modifying electrodes due to their excellent electrochemical performance, biocompatibility,
and chemical stability [75,116]. Carbon nanotubes are embedded in PEDOT: PSS to enhance
the conductivity, biocompatibility, and stability of MEA. The modified electrode had an
electrical performance of 16.20 ± 1.68 kΩ low impedance and −27.76 ± 0.82◦ small phase
delay, which enabled MEA to detect spikes with high SNR (>3). Regarding the electrochem-
ical performance of dopamine detection, it showed low oxidation potential, high sensitivity,
and a wide linear range.
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4.3. Ceramic-Based MEAs

The ceramic material is robust and easy to implant. It is a good material for use as an
implantable microelectrode and an insulator used as a substrate for novel microelectrodes
for reducing crosstalk between adjacent detecting sites [117]. GA Gerhardt et al. [118]
developed a ceramic-based MEA by photolithography. The recording sites and connecting
wires were made of platinum, and a polyimide coating insulated the connecting wires. A
1 cm-long microelectrode is cut from the wafer, gradually thinning with a tip of 2–5 µm.
The schematic diagram of the multi-site ceramic-based microelectrode and the photograph
of the tip is shown in Figure 11. Electrochemical detection of hydrogen peroxide and
dopamine demonstrated that the selectivity, sensitivity, and response characteristics of the
electrode surpass the previous silicon electrodes. This is the first demonstration of a micro-
electrode array manufactured by the ceramic substrate. The data support the hypothesis
that these microelectrode arrays could be available for diverse electrophysiological and neu-
rochemical detection. Through continuous exploration, GA Gerhardt et al. [119] proposed
a new method for measuring extracellular γ-aminobutyric acid (GABA) and glutamate
in vivo using ceramic-based MEA. This was also a new method to quantify GABA levels
in vivo. A dual-enzyme reaction system used ceramic-based MEA consisting of GABA
enzyme and glutamate oxidase (GluOx) to quantify GABA and glutamate. The endogenous
glutamate was subtracted from the mixed signal of GABA and glutamate to develop pure
GABA concentrations. Preliminary research in vivo and in vitro manifested that the novel
MEA manufacturing could be a feasible tool for the joint determination of GABA and
glutamate within the central nervous system (CNS). Nuno R. Ferreira et al. [120] designed
the nanocomposite sensors. They comprised carbon fiber microelectrodes disposed of with
nafion, carbon nanotubes, and ceramic-based microelectrode biosensor arrays. Those could
detect ascorbate and glutamate in the brain with high temporal and spatial resolution
and chemical sensitivity, as shown in Figure 12a. The nanocomposite sensor indicates the
electrocatalytic characteristics of ascorbate oxidation. Compared with Ag/AgCl, it has
a negative shift from +0.20 V to −0.05 V with a significant increase in the electroactive
surface area. The glutamate sensor arrays revealed a high sensitivity of 5.3 ± 0.8 pA µM−1,
a low LOD of 204 ± 32 nM, and a high selectivity against primary interfering substances.
The dynamic interaction of ascorbate and glutamate was revealed by real-time and simulta-
neous detection in the hippocampus of anesthetized rats after local stimulation using KCl
or glutamate.
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Anita A. Disney et al. [121] developed a ceramic-based multi-site recording array
using photolithography. This contains two electrochemical detecting sites designed for
parallel channel or reference (300 µm× 15 µm) with two electrophysiological detecting sites
(15 µm× 15 µm). The recording location circuit and photolithographic mask are represented
in Figure 12b. This system allows the simultaneous recording of in vivo electrochemical
and electrophysiological signals. Non-concurrent in vivo detection of extracellular choline
concentration and LFPs were used to demonstrate the natural movement between various
arousal states in animals.

5. Conclusions

Effective collection and analysis of spike sequence data with chemical signals from
multiple sites of the electrode array could help researchers analyze how neuronal groups
collaborate and determine the function of specific brain regions. The reliable dual-mode
electrode arrays for electrophysiological and electrochemical detection possess biomedical
applications. We could study the relationship between neuroelectric and neurochemical
activities and understand the correlation between different neuronal activities. Furthermore,
synchronous recording from multiple neurons can assess the relationship between patterns
of group behavior and activity, perception, cognition and sensory process patterns.

The appearance of MEMS improves the reproducibility and standardization of silicon-
based electrode manufacturing. However, it cannot be used on flexible electrodes. Although
rigid-material-based electrode has good stability and processability, their damage to tissues
cannot be ignored. The flexible-material-based electrode is a significant direction of our
efforts. Continuous improvement is required in chronic stability for flexible-material-based
electrodes, interface compatibility with multiple structures, and multi-mode detection. It
is easy to choose materials that meet one or several properties. However, the tradeoffs
in other aspects of electrode performance are often unavoidable. For instance, many
experiments have established that carbon fiber electrode is an excellent electrochemical
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sensing tool. However, its fabrication process should be further programmed to promote
the repeatability and stability of the electrode. Flexible electrodes significantly reduce
the damage to organisms and the occurrence of immune rejection. However, whether
most flexible electrodes can support long-term in vivo, chronic, and stable acquisition of
signals remains to be investigated. Each part of the brain has its function but is connected
through the signal pathway. Specific requirements are put forward for the hardware design
and manufacturing process of electrodes to simultaneously monitor the electrochemical
and electrophysiological signals in different brain regions. The appearance of dual-mode
electrodes and the continuous optimization of their performance provide a powerful tool
to study brain function, the mechanism behind physiological and pathological events, and
the treatment of nervous system diseases through external intervention.
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