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Abstract: We report on the electrochemical determination of one the most effective and widely
used chemotherapeutic, anti-inflammatory, and immunomodulator agents, methotrexate (MTX),
using low-cost, green, and facile one-pot prepared graphitic carbon nitride (g-CN ) nanosheets.
The g-CN nanosheets have been characterized utilizing Fourier transform infrared spectroscopy,
X-ray diffraction(XRD), scanning electron microscopy(SEM), and density functional theory (DFT).
In comparison to the bare carbon paste electrode (CPE), the g-CN -modified electrode showed
a spectacular enhancement in the electrochemical oxidation and detection abilities of MTX. The
proposed material exhibits very low limits of detection (12.45 nM) and quantification (41.5 nM), while
possessing a wide linear range of 0.22–1.11 µM and 1.11–27.03 µM under optimized conditions at pH
7.0. Due to the ease of preparation of g-CN, it can be adopted for the cost-effective detection of MTX
in industrial and clinical analyses.

Keywords: graphitic carbon nitride; electrochemical sensors; methotrexate; LOD; DFT

1. Introduction

Methotrexate (MTX) (N-(4-{[(2,4-diaminopteridin-6-yl) methyl] (methyl)amino}benzoyl)-
L-glutamic acid) is an antineoplastic [1,2] and immunomodulator [1,3,4] therapeutic agent.
MTX has a plethora of uses, such as treating a variety of cancers and inflammatory reac-
tions including breast cancer [5–7], lung cancer [8–10], leukemia [8,11,12], lymphoma [13–15],
and osteosarcoma [16]. In addition, it possesses high efficacy against some autoimmune
disorders, including rheumatoid arthritis [17,18], psoriasis [19], Crohn’s disease [20], and
sarcoidosis [21]. MTX possesses two main actions that depend on different mechanisms.
The anticancer, immunomodulatory, and anti-inflammatory reaction of MTX includes many
sub-mechanisms, such as the inhibition of dihydrofolate reductase which antagonizes folic
acid production in tumor cells and rapidly dividing lymphocytes, the inhibition of adenosine
intracellular catabolism (which is considered a potent anti-inflammatory mediator), the inhi-
bition of polyamine synthesis by inhibiting tetrahydrofolate and methylhydrofolate (which
are mediators for lymphotoxins in rheumatoid arthritis), and the synthesis of reactive oxygen
species that induce cell death in T-cells and suppress cytokine production [22].

The need to monitor MTX emerges from its narrow therapeutic index [23] and fatal
adverse effects that contradict its exceptional history of treatment and range of doses.
Its adverse effects include kidney toxicity [24,25], hepatotoxicity [26,27], bone marrow
suppression [28,29], tumor lysis syndrome [30], and increased risk of infection due to
suppression of immunity [31], which necessitates the therapeutic drug monitoring of MTX.
Until recently, techniques such as high-performance liquid chromatography, turbulent
flow liquid chromatography, and ultraviolet-visible absorption spectrometry have been
utilized to determine the concentration of MTX [32–35]. These approaches have limited
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practical platform use due to their difficult processes, high costs, and time-consuming
nature. In general, the electrochemical approach demonstrated outstanding real-time mea-
surement, cost-effectiveness, ease of use, and sensitivity in the detection of clinical samples,
which improved the practicality of the detection of MTX [36]. The electrochemical deter-
mination of MTX has been established in several studies. The materials explored include
metal oxides, carbon nanodots, carbon nanotubes, and different composites. However,
most of the reported platforms are either based on expensive materials or require very
tedious processing.

Herein, we demonstrate the effective use of graphitic carbon nitride (g-CN) as an
electrode modifier. In addition to being a low-cost material, g-CN can be synthesized
via environmentally friendly routes at large scales [37,38]. Moreover, g-CN has attracted
extensive attention for being the most stable carbon nitride allotrope [39]. Additionally,
it is thermally and chemically stable due to its high condensing temperature with high
electrocatalytic activity [39]. Hence, it is implemented in the fabrication of sensitive electro-
chemical sensors [40]. Motivated by those characteristics, we report on the use of g-CN to
analyze MTX electrochemically with a very low limit of detection (LOD) and very wide
range of linearity. Density functional theory (DFT) calculations were used to elucidate the
involved mechanism.

2. Experimental
2.1. Materials

Urea was purchased from Alfa Aesar (Ward Hill, MA, USA) and was purified extra
through recrystallization in absolute ethyl alcohol. Ethylenediaminetetraacetic acid dis-
odium and polyvinylidene difluoride powder (PVDF) were also obtained from Alfa Aesar.
Sulfuric acid (H2SO4) and dimethylformamide (DMF) were purchased from Sigma-Aldrich
(Darmstadt, Germany). Hydrochloric acid (HCl) was purchased from Honeywell (Morris-
town, NJ, USA). Carbon black and graphite sheets with 0.3 mm thickness were obtained
from Xinruida, (Shanghai, China). All the materials used were reagents of analytical grade
without any further purification. Deionized water (DI) was prepared by an ultrapure water
system using Millipore Direct-Q3 with UV from Merck (Boston, MA, USA).

2.2. Synthesis of Graphitic Carbon Nitride

According to the procedure described in our prior publication [41], g-C3N4 nanosheets
were created using a simple one-pot method based on the thermal polymerization of urea.
Briefly, the extra-purified urea was poured into a porcelain crucible that had been lined with
commercial aluminum foil and then into the entire reaction pot. This system underwent
a 3-h, 550 ◦C air annealing process in a muffle furnace at a 10 ◦C/min heating rate. To
remove any excess ammonia, the obtained yellowish powder was ultrasonically dispersed
for 1 h in 0.1 M HNO3 at room temperature. The powders were then filtered, thoroughly
cleaned with distilled water, and dried at 80 ◦C.

2.3. Sensor Fabrication

By uniformly combining 1.0 g of graphite powder and 0.27 mL of paraffin oil in a small
mortar, the bare carbon paste electrode (CPE)was created. The paste was then carefully
packed into the electrode’s cavity. Before use, the CPE’s surface was polished on a fresh
piece of paper. Prior to scanning, the CPE was submerged in the supporting electrolyte.
The paste was emptied, renewed, and polished following each scan. By combining 1.0 g of
graphite with 15 mg of g-CN and homogenising the mixture for two minutes with a spatula,
the modified electrode was created. To create the paste, 0.27 mL of paraffin was also added
and mixed for 45 min. The paste was packed and regenerated as previously mentioned.
The characterization and computational procedures are included in the Supplementary
File. The procedure is summarized in Scheme 1.



Biosensors 2023, 13, 51 3 of 16

Biosensors 2023, 12, x FOR PEER REVIEW 3 of 16 
 

also added and mixed for 45 min. The paste was packed and regenerated as previously 
mentioned. The characterization and computational procedures are included in the sup-
plementary file. The procedure is summarized in Scheme 1. 

 
Scheme 1. Stepwise synthesis and testing of the sensor as well as the proposed mechanism of elec-
trochemical oxidation of Methotrexate (MTX). 

2.4. Analysis of Real Samples 
Plasma. Fresh plasma samples were provided for the tests by a healthy person. By 

adding 10 mL of the supernatant to 9 mL of pH 7 Britton–Robinson buffer (BRB), MTX 
stock solution concentration was obtained. The solution was then, without further pre-
treatment, transferred to an electrochemical cell for analysis. 

Methotrexate®. Five Methotrexate® 2.5 mg tablets were weighed and ground to pre-
pare a stock solution containing 1 mM of MTX. To 25.0 mL of ethanol, the calculated quan-
tity of the powder containing a specified amount of drug is added. Hence, 25.0 mL of 
ethanol was added to the flask and mixed with a vortex mortar to dissolve the added 
amount. After filtering the solution through 0.45-m filter paper, the 1 mM of MTX stock 
solution was prepared for further analysis. 

Urine. Fresh urine samples were taken from a healthy person prior to the experi-
ments. The desired concentration was achieved by adding various concentrations of MTX 
stock solution to 10 L of supernatant that had been spiked to 9 mL of pH 7 BRB. Without 
applying any additional pretreatment, the solution was transferred to an electrochemical 
cell for analysis. 

3. Results and Discussion 
3.1. Morphological, Structural, Compositional, and Surface Characteristics of g-CN 

The morphology of the prepared g-CN nanosheets was investigated using Field 
emission scanning electron microscopy (FESEM) as shown in Figure 1A, revealing the for-
mation of layered nano-sheets. Additionally, the elemental composition of the nanosheets 
was investigated using Energy Dispersive X-Ray Analysis (EDX) analysis as shown in 
Figure 1B, demonstrating the coexistence of C, N, and O. The EDX mapping reveals the 
homogeneous distribution of the elements with no foreign elements detected, indicating 
the high purity of the fabricated 2D g-CN nanosheets. The crystal structure of the fabri-
cated g-CN nanosheets was elucidated via X-ray diffraction (XRD) analysis. The XRD 
spectra showed two diffraction peaks (Figure 1C). The peak at 13.3° can be indexed to the 

Scheme 1. Stepwise synthesis and testing of the sensor as well as the proposed mechanism of
electrochemical oxidation of Methotrexate (MTX).

2.4. Analysis of Real Samples

Plasma. Fresh plasma samples were provided for the tests by a healthy person. By
adding 10 mL of the supernatant to 9 mL of pH 7 Britton–Robinson buffer (BRB), MTX stock
solution concentration was obtained. The solution was then, without further pretreatment,
transferred to an electrochemical cell for analysis.

Methotrexate®. Five Methotrexate® 2.5 mg tablets were weighed and ground to pre-
pare a stock solution containing 1 mM of MTX. To 25.0 mL of ethanol, the calculated
quantity of the powder containing a specified amount of drug is added. Hence, 25.0 mL
of ethanol was added to the flask and mixed with a vortex mortar to dissolve the added
amount. After filtering the solution through 0.45-m filter paper, the 1 mM of MTX stock
solution was prepared for further analysis.

Urine. Fresh urine samples were taken from a healthy person prior to the experiments.
The desired concentration was achieved by adding various concentrations of MTX stock
solution to 10 L of supernatant that had been spiked to 9 mL of pH 7 BRB. Without
applying any additional pretreatment, the solution was transferred to an electrochemical
cell for analysis.

3. Results and Discussion
3.1. Morphological, Structural, Compositional, and Surface Characteristics of g-CN

The morphology of the prepared g-CN nanosheets was investigated using Field emis-
sion scanning electron microscopy (FESEM) as shown in Figure 1A, revealing the formation
of layered nano-sheets. Additionally, the elemental composition of the nanosheets was
investigated using Energy Dispersive X-Ray Analysis (EDX) analysis as shown in Figure 1B,
demonstrating the coexistence of C, N, and O. The EDX mapping reveals the homogeneous
distribution of the elements with no foreign elements detected, indicating the high purity of
the fabricated 2D g-CN nanosheets. The crystal structure of the fabricated g-CN nanosheets
was elucidated via X-ray diffraction (XRD) analysis. The XRD spectra showed two diffrac-
tion peaks (Figure 1C). The peak at 13.3◦ can be indexed to the (100) plan, which is a
characteristic of the interlayer stacking of conjugated aromatic systems [42,43] as indicated
by the interplanar distance (d-spacing) of the main peak of 3.25 Å. The second peak at 27.4◦

can be ascribed to the repeated in-plane heptazine units. In addition, High-Resolution
X-ray photoelectron spectroscopy (HR-XPS) analysis was used to determine the chemical
composition of the g-CN nanosheets. In consonance with the obtained EDX data, the
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HR-XPS survey spectrum (Figure S1a) confirms the presence of C, O, and N only, without
any impurities. The HR-XPS C 1s spectrum in Figure S1b exhibits two prominent peaks,
at 284.6 and 288.0 eV, that are attributed to C-N=C and C-single bond C, respectively. In
addition, Figure S1c depicts the HR-XPS N 1s spectrum, which can be decomposed into
four primary peaks. Pyridinic nitrogen (at 398 eV), which is connected to an aromatic ring
by a sp2-bond, replaced one carbon atom in the aromatic ring. As a result of this alteration,
the electronic characteristics of the graphite layer are improved, and the electrochemical
oxidation of the carbon surface is prevented. While the other, less distinct peaks at 399.1,
400.9, and 404.1 eV, respectively, are for tertiary nitrogen (N single bond C), amino nitrogen
(N single bond H), and nitrogen-oxide groups. It is noteworthy that the estimated nitrogen
content of the g-CN powder surpasses 12%. The HR-XPS O 1s spectrum in Figure S1d can
be deconvoluted into two sub-peaks at 532.6 and 531.81 eV, which are attributed to the
oxygen-carbon bond and adsorbed water molecules, with a ratio of 26.7:73.3, respectively.
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Figure 1. (A) Field emission scanning electron microscopy (FESEM) images with high and low mag-
nification, (B) Energy Dispersive X-Ray (EDX) spectra and elemental mapping, (C) X-ray diffraction
(XRD) spectra, (D) Brunauer-Emmett-Teller (BET) adsorption-desorption isotherm, and (E) pore size
distribution of the prepared graphitic carbon nitride (g-CN).

The nitrogen adsorption/desorption isotherm of the synthesized g-CN nanosheets
is shown in Figure 1D, demonstrating a typical IV type isotherm (mesoporous material)
with an H3 hysteresis loop (slit-like pores). The Brunauer-Emmett-Teller (BET) specific
surface area of the g-CN is 32.51 m2/g. In addition, the Barrett-Joyner-Halenda (BJH)
model was used to determine the total pore volume and average pore diameter, as shown
in Figure 1E. The calculated total pore volume and average pore diameter are 0.30 cm3/g
and 1.868, respectively.
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3.2. DFT Characterization of the g-CN

The structures of the MTX and g-CN bulk (Figure 2) were left to relax for geometry
optimization until reaching their lowest formation energy. To validate the structure of
g-CN, a theoretical XRD profile has been generated using a REFLEX module implemented
in Materials Studio software and compared to its experimental profile [44] (Figure 2e).
Both spectra showed the same peak positions with a dominant (002) plan. In addition, the
calculated (2.3 eV) and experimentally reported electronic band gaps (2.7 eV) [45] are very
similar. To build the most dominant surface, which is the (002) facet, a 2 × 2 × 2 supercell
of g-CN formed the 2D plane (Figure 2) after cleaving the bulk structure, then a vacuum
slap of 25 Å was formed to avoid the interactions between the atoms of the cleaved surface
and its periodic planes. For all calculations, DMOL3 module was used, and the gener-
alized gradient approximation (GGA) was applied with the Perdew−Burke−Ernzerhof
(PBE) exchange-correlation functional in the convergence criteria of 1.0 × 10−5 Ha, 0.002
Ha/Å and 0.005 Å for energy, force, and displacement tolerance, respectively, through a
Monkhorst−Pack k-point sampling of (2 × 2 × 2) [46]. As MTX has various functional
groups and all these groups could be available for adsorption on the g-CN surface, the
charge on each atom was calculated for both absorbent and adsorbate, as shown in Table 1.
As expected, it has been found that all functional groups (Oxygen and Nitrogen atoms)
of the MTX molecule have negative charges. However, the distribution of charge values
over the g-CN surface was negative for nitrogen atoms and positive for carbon atoms. The
difference in charges means that MTX cannot be adsorbed via its functional groups with
negative charges on the Nitrogen atoms, due to the repulsion between the similar charges.
As g-CN has the same type of carbon atoms in its structure, to determine which functional
group would be adsorbed, the adsorption energy was calculated for each possible case via
Equation (1) [46], as listed in Table 2 and depicted in Figure 3.

Eads = ETotal − Eg−CN − EMTX (1)

where Eads, Eg-CN, EMTX, and Etotal are the energy of the adsorbed molecule, the total energy
of the surface isolated, the total energy of the single adsorbate, and the total energy of the
adsorbate on the adsorbent, respectively.
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Figure 2. Structure of (a) MTX with identical positions of (1, 4), (2, 3), and (7, 8), (b) g-CN (Bulk), (c)
Facet (002) cleaved from the bulk g-CN, (d) surface (002) with vacuum slap, and (e) theoretical versus
experimental XRD spectra of g-CN.
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Table 1. The distribution of charges on each atom (position) in the MTX molecule.

Atom Charge (eV)
O1 −0.401
O2 −0.383
O3 −0.391
O4 −0.424
O5 −0.480
N6 −0.391
N7 −0.358
N8 −0.368

Table 2. Formation and adsorption energy for each position via DMOL3 module.

Species Formation Energy (eV) Adsorption Energy (Ea) (eV)
MTX (EAdsorbate) −43,221.7222 −
g-CN (EAdsorbent) −145,010.3784 −

Pos 1 (g-NC=O-MTX) −188,225.5043 6.59633
Pos 2 (g-NC=OH-MTX) −188,186.2121 45.8885

Pos 3 (g-NC=OH-MTX) &
(g-NC=O-MTX) same group −188,089.7114 142.3892

Pos 4 (g-NC=OH-MTX) &
(g-NC=O-MTX) different group −188,183.6613 48.4393

Pos 5 (g-NC=NH2-MTX) −188,236.3192 −4.2185
Pos 6 (g-CN =HO-MTX) −188,231.3822 0.7184

Pos 7 (g-CN =HNH-MTX) −188,231.1617 0.9390
Pos 8 (g-CN =H2N-MTX) −188,231.3344 0.7662

Before setting the possible scenarios for the adsorption of MTX on g-CN, the possibility
of adsorbing MTX via its central atoms was excluded due to the steric hindrance of its
neighboring groups [47]. The total energy of formation for the MTX structure alone was
found to be −43,221.72 eV, while for the (002) surface of g-CN, it was −145,010.37 eV. The
1–4 adsorption positions, where the oxygen atoms are attracted to the carbon atom of the
g-CN surface, are not favorable due to their high adsorption energy (Table 1). The same
is true for positions 6–8, where the hydrogen atoms of the hydroxyl group and amino
groups of the di-amino pyridine ring are attracted to the nitrogen atoms on the surface, and
their adsorption energy was found to be higher than position 5, where it shows the lowest
adsorption energy (Figure 4).

The mechanism of adsorbing the amino group through its Nitrogen atom on the g-CN
surface was due to the difference in the electronegativity between the two atoms, which
caused the development of partial negative charges (∂−) on the Nitrogen of the amino
group and partial positive charges (∂+) on the carbon atom of the g-CN, leading to the
attraction between them. However, the electronegativity difference between Hydrogen
and Nitrogen of the amino group was found to be 0.84 eV [48], which is higher than the
electronegativity difference between the Hydrogen atom and the Carbon atom on the g-CN
surface, which was 0.35 eV [48]. That difference enhanced the electrostatic force between
Hydrogen and Nitrogen atoms on the surface, reducing the bond between the Hydrogen
and the Nitrogen atoms in the Amino group. This bond breaking caused the release of an
electron, which could be the reason behind the higher current, as will be discussed later.
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3.3. Electrochemical Performance

For the purpose of sensing MTX in Britton–Robinson (BR) buffer at 7.0 pH using
0.10 mM of MTX, square wave voltammetry (SWV) was used to examine the electrochemi-
cal behavior of bare against g-CN nanosheets-modified CPE platforms. In the absence of
MTX, CPE there are no discernible anodic or cathodic peaks, indicating electrochemical
inactivity of the sensor platform within the working-potential window. The anodic oxi-
dation peak current of MTX on bare CPE was 13.61 µA at 0.78 V, which was dramatically
increased upon the use of g-CN, reaching 24.96 µA at 0.78 V and demonstrating the simple
oxidation of MTX. This means that the sensitive lower potential detection of MTX can
be accomplished using g-CN /CPE. The highest electrochemical activity toward MTX,
good conductivity, and a high rate of electron transfer have all been demonstrated for
15 mg of g-CN /CPE, as shown in Figure 5A. Upon the use of 5.0 × 10−3 M K3Fe(CN)6
in 0.10 M KCl and recording the current vs. voltage peak at different scan rates, the elec-
troactive surface area of the prepared g-N/CPE sensor platform was calculated from the
cyclic voltammograms using the Randles–Ševčík equation for a quasi-reversible reaction,
Equation (2) [49]:

IP = 2.65 × 105 n
3
2 AD

1
2 Cv

1
2 (2)

where A is the electrode electrochemical surface area, C is the concentration of the re-
dox probe, D is the diffusion coefficient, Ip is the peak current, and n is the number of
electrons involved in the electrochemical anodic oxidation. K3Fe(CN)6 has a D value of
7.6 × 10−6 cm2 s−1 [50]. The electrochemical surface area for bare CPE and g-CN /CPE
was calculated to be 31.67 cm2 and 0.0506 cm2, respectively, using the slopes of the Ip vs.
v1/2 plot and Equation (2).
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Figure 5. (A) Square-wave Voltammetry (SWV) of 1 × 10−4 M of MTX using bare carbon paste
electrode (CPE), 10 mg and 15 mg of g-CN in pH 7.0 Britton–Robinson buffer (BRB), and (B,C)
Electrochemical impedance spectroscopy (EIS) and Cyclic Voltammetry (CV) of bare CPE and g-CN
in 5.0 × 10−3 M K3Fe(CN)6 in 0.1 M KCl, respectively, utilizing bare CPE and g-CN.

A 1:1 solution of 5.0 × 10−3 M K3Fe(CN)6 in 0.1 M KCl was utilized to examine the
reaction kinetics, mass transport, and charge-transfer coefficient at the electrode surface
using electrochemical impedance spectroscopy (EIS), as shown in Figure 5B. This can be
accomplished via estimation of the charge-transfer resistance (RCT) at the surface of the
electrode from the diameter of the quasi-circle in the high-frequency window. A typical
Warburg-type equivalent circuit model can be obtained from the Nyquist plots. As a result,
when using the proposed g-CN to modify the CPE, the charge transfer is superior using
the bare CPE. When the bare CPE is modified with g-CN, the RCT drops dramatically from
4400 to 2616.2 Ω, which can be attributed to the large surface area and interactive nature of
g-CN that facilitates electron transfer. Additionally, Figure 5C shows a comparison between
the electrochemical activity of the bare CPE and the g-CN/CPE electrode in a 1:1 solution of
5.0 × 10−3 M K3Fe(CN)6 in 0.1 M KCl. The g-CN/CPE electrode has an anodic peak current
value that is nearly 1.5 times greater than that of bare CPE. Additionally, compared to the
bare CPE, the use of the g-CN/CPE significantly reduced the peak separation (Ep—Ep) from
0.34 to 0.21 V, indicating enhanced electron transfer. Therefore, g-CN has good conductivity,
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a high rate of electron transfer, and good catalytic activity toward the electrochemical
oxidation of MTX.

3.4. Effect of Scan Rate

The effect of scan rate on the electrochemical anodic oxidation of MTX on g-CN /CPE
is investigated using cyclic voltammetry, as shown in Figure 6. Upon increasing the scan
rate, the peak potential (Ep) is shifted into more positive values, indicating an irreversible
electrochemical behavior of MTX. A linear relationship is observed, and the measured
current is less than 0.5: Ip (µA) = 0.4941 mVs−1 + 0.5006 µA, R2 = 0.9996, which indicates a
diffusion-controlled process. Furthermore, the linear relationship between the peak current
(Ip) versus the square root of the scan rate (ν1/2) in the range of 0.010–0.250 V s−1. Ip (µA)
= 0.4941 mVs−1 + 0.5006 µA, R2 = 0.9996 also supports the idea that the anodic oxidation
process is diffusion-controlled.
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Figure 6. Cyclic voltammetry (CVs) of 0.10 mM MTX at pH 7.0 using the g-CN/CPE in the wide scan
rate (0.010–0.250 V s−1) in pH 7.0 BRB. Insets: (A) plot of the log peak current vs log scan rate, and
(B) plot of peak current vs the square root of the scan rate.

3.5. Analytical Performance Validation

For the validation of the proposed sensing protocol, the approved International Con-
ference on Harmonization (ICH) guidelines for validating analytical methods were adopted
in our study [51,52]. Square-wave Voltammetry (SWV) scans using the g-CN /CPE in BRB
at pH 7.0 containing several dilutions of MTX were performed and analyzed. To achieve
linearity, accuracy, and precision, the calibration curve is constructed to account for the
practical range of MTX in the normal tablet concentration. The SWVs of these dilutions are
shown in Figure 7. At a scan rate of 0.1 V s−1, MTX shows two linear behaviors based on
its concentration in the BRB. In the range of 2.22 × 10−7 to 1.11 × 10−6 M, the regression
equation is Ip (µA) = 1.9713 C µM + 2.0488 µA, R2 = 0.9971, while in the range of 1.11 ×
10−6 to 27.03 × 10−6 M, the regression equation is Ip (µA) = 0.4872 C µM + 3.6038 µA, R2 =
0.9983. The main cause for the decrease in the slope of the second linear range at higher
concentrations is the increase in the required energy for anodic stripping in addition to
the Ohmic drop at such high levels of MTX. Additionally, this platform’s limit of detection
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(LOD) was calculated using the formula LOD = 3 SD/x, where SD is the standard deviation
of the peak currents of MTX oxidation for n trials (n = 5) and x is the slope of the calibration
curve. LOD was found to be 12.449 nM. Using the formula LOQ = 10 SD/x and the limit of
quantification (LOQ) was determined to be 41.496 nM.
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Figure 7. SWVs of several dilutions of MTX (27.03–0.22 µM) in pH 7.0 BRB using the g-CN/CPE
sensor at a scan rate of 0.1 V s−1. The inset demonstrates the plot of the peak current as a function of
concentrations in the range of (A) 0.22 × 10−6 to 1.109 × 10−6 and (B) 1.109 × 10–6 to 27.03 × 10−6 M.

3.6. Analytical Application
3.6.1. Analysis of Spiked Plasma Samples

Utilizing SWV at a scan rate of 0.1 V s−1, MTX shows two linear behaviors based on
its concentration in the BRB. In the range of 0.22 × 10−6 to 1.11 × 10−6 M, the regression
equation is Ip (µA) = 1.9840 C µM + 2.0266 µA, R2 = 0.9924, while in the range of 1.11 × 10−6

to 27.03 × 10−6 M, the regression equation is Ip (µA) = 0.5061 C µM + 3.6293 µA, R2 = 0.9990,
as shown in Figure 8.

3.6.2. Analysis of Methotrexate® Tablet

Utilizing SWV at a scan rate of 0.1 V s−1, MTX shows two linear behaviors based on
its concentration in the BRB. In the range of 0.11 × 10−6 to 1.11 × 10−6 M, the regression
equation is Ip (µA) = 2.0735 C µM + 2.0071 µA, R2 = 0.9907, while in the range of 1.11 × 10−6

to 13.16 × 10−6 M, the regression equation is Ip (µA) = 0.4872 C µM + 3.6038 µA, R2 = 0.9983,
as shown in Figure 8.

3.6.3. Analysis of Spiked Urine Samples

At a scan rate of 0.1 V s−1, MTX shows two linear behaviors based on its concentration
in the BRB. In the range of 0.22 × 10−6 to 1.11 × 10−6 M, the regression equation is Ip (µA)
= 1.9422 C µM + 2.0606 µA, R2 = 0.9995, while in the range of 1.11 × 10−6 to 13.16 × 10−6

M, the regression equation is Ip (µA) = 0.4969 C µM + 3.5521 µA, R2 = 0.9988.
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Figure 8. Square wave voltammogram for various concentrations of MTX in (A) spiked plasma
(0.22–27.03 µM), (B) MTX Tablet (0.11–13.16 µM), and (C) spiked urine (0.22–13.16) samples in pH 7.0
of BR buffer at the scan rate of 100 mV s−1 using g-CN/CPE. Inset (a) shows the calibration curve
of MTX with low concentrations of spiked plasma, tablets, and spiked urine. Inset (b) shows the
calibration curve of MTX with high concentratios of spiked plasma, tablets, and spiked urine samples
in pH 7 of BR buffer.

Table 3 shows the electrochemical detection of various MTX concentrations using the
conventional addition method. The recovery rates for MTX detection in dosage form and
plasma samples show that the suggested platform has good precision, as could also be seen
in Figure 8. The experimental results show that the sensor platform has excellent potential
for the detection of MTX in both the dosage form and in urine or plasma samples.

3.7. Interference Studies

The presence of ascorbic acid, which is regarded as an abundant molecule in the
human body, was used to evaluate the selectivity of the suggested sensor platform to MTX.
The use of the g-CN -modified electrode assisted in the peak differentiation of ascorbic
acid peak. A square wave voltammogram of 50µM ascorbic acid (matching the highest
level in plasma) [53] and 0.1 mM MTX showed distinct and spaced-out oxidation square
wave voltammogram peaks at 0.2145 and 0.7805, respectively, at a scan rate of 100 mV s−1

(see Figure 9).
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Table 3. Application of SWV for the determination of MTX in plasma, urine, and dosage form.

Pharmaceutical Formulations Amount Added (µM) Amount Found (µM) Recovery%

Methotrexate®(2.5 MG/TAB)

0.11 0.12 104.99
0.66 0.67 100.61
0.88 0.83 93.84
1.11 1.14 102.43
4.42 4.42 99.80
6.62 6.66 100.55
10.99 10.76 97.94
13.16 13.33 101.29

Mean ± S.D. 4.74 ± 0.05
0.22 0.23 101.34
0.44 0.44 99.98
0.67 0.66 99.10
0.89 0.89 100.07
1.11 1.11 100.25
6.62 6.88 103.95
8.81 9.05 102.75
10.99 10.49 95.47

Plasma

27.03 27.09 100.24
Mean ± S.D. 6.32 ± 0.09

0.22 0.22 100.26
0.44 0.44 100.12
0.67 0.68 101.46
0.89 0.87 97.41
1.11 1.12 101.12
1.10 1.20 109.08
2.22 2.09 94.23
6.62 6.57 99.14
10.99 11.25 102.38

Urine

13.16 12.98 98.65
Mean ± S.D. 3.74 ± 0.05
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4. Comparison to Previous Studies

Due to the importance of monitoring MTX, it was extensively studied in the literature
as shown in Table 4. In comparison to previous studies, our method showed outstanding
linearity and LOD, while also being less expensive than other techniques.

Table 4. Comparison between previous literature and our findings.

Method Electrode Modifier pH LWR LOD Application Ref.

CV/EIS GCE

Quaternary amine
functionalized multi-wall

carbon nanotubes
(q-MWNTs)

5.0 0.022 to
44.01 µM 0.44 pM Injection/tablet/

urine/sample [35]

CV/EIS
acetylene black
paste electrode

(ABPE)

acetylene black (AB) with
stearyl trimethyl

ammonium bromide
(STAB)

6.0 0.005 µM to
7.0 µM 3.07 nM Serum [33]

CV/DPV GCE
cerium-doped ZnO

nanoflowers
(Ce-ZnO/GCE)

7.0 0.01 to 500 µM 2.3 nM Injection/spiked
blood [54]

CV/SWV SPE Au/MWNTs-ZnO/SPE 4.5 0.02 to 1.00 µM 10 nM whole blood
samples [55]

CV/SWV ITO (indium
tin oxide)

biopolymers extracted
from babassu

mesocarp (BM)
3.5 0.5 to 5 0 µM 0.59 µM - [56]

CV/SWV/EIS g-CN CPE 7.0
0.22 × to 1.11
µM and 1.11 to

27.03
12.45 nM Tablet/urine/

sample This study

5. Conclusions

In conclusion, this study demonstrates the preparation of g-CN for the detection and
determination of MTX in buffer, spiked plasma, urine samples, and dosage form. The
g-CN /CPE sensor platform showed the highest cost-efficiency among other published
counterparts. In addition, DFT calculations helped to elucidate the oxidation mechanism.
The proposed material showed limits of detection and quantification of 12.45 and 41.5 nM,
respectively, while possessing a wide linear range of 0.22–1.11 µM and 1.11–27.03 µM under
optimized conditions at pH 7.0, revealing the spectacular potential of the investigated
sensor for use in a plethora of electrochemical applications.
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