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Abstract: Surface functionalization and bioreceptor immobilization are critical processes in developing
a highly sensitive and selective biosensor. The silanization process with 3-aminopropyltriethoxysilane
(APTES) on oxide surfaces is frequently used for surface functionalization because of beneficial
characteristics such as its bifunctional nature and low cost. Optimizing the deposition process of the
APTES layer to obtain a monolayer is crucial to having a stable surface and effectively immobilizing
the bioreceptors, which leads to the improved repeatability and sensitivity of the biosensor. This
review provides an overview of APTES deposition methods, categorized into the solution-phase
and vapor-phase, and a comprehensive summary and guide for creating stable APTES monolayers
on oxide surfaces for biosensing applications. A brief explanation of APTES is introduced, and the
APTES deposition methods with their pre/post-treatments and characterization results are discussed.
Lastly, APTES deposition methods on nanoparticles used for biosensors are briefly described.
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1. Introduction

3-aminopropyltriethoxysilane (APTES) is an organosilane molecule that is frequently
used in silane-based functionalization processes that attach biomolecules to surfaces.
Organosilanes are silicon-based molecules that have a general formula of R′(CH2)nSi(OR)3,
where R′ is an organofunctional group and R is a hydrolyzable alkoxy group [1,2]. Vari-
ous organosilanes have been used for surface modification and functionalization, such as
3-aminopropyltriethoxysilane (APTES), 3-aminopropyltrimethoxysilane (APTMS), N-(2-
aminoethyl)-3-aminopropyltriethoxysilane (AEAPTES), N-(2-aminoethyl)-3-aminopropyltr-
imethoxysilane (AEAPTMS), N-(6-aminohexyl) aminomethyltriethoxysilane (AHAMTES),
3-aminopropyldimethylethoxysilane (APDMES), 3-mercaptopropyltrimethoxysilane (MPTMS),
glycidyloxypropyl-trimethoxysilane (GOPS), etc. Depending on the type of silane molecule
used, the surface after the silane treatment can be aminated (e.g., APTES, APTMS, AEAPTES,
AEAPTMS, and AHAMTES), thiolated (MPTMS) [3] or epoxy-group functionalized
(GOPS) [4].

Among all organosilanes, APTES is the most used silane molecule to functionalize
oxide surfaces [5–11]. Oxide surfaces are surfaces that have hydroxyl groups (-OH) bear-
ing high surface energy that can rapidly interact and form a covalent bond with silane
molecules [12–15]. Due to this strong covalent bond, bioreceptors can be chemically at-
tached to the silane layer via charge-to-charge interactions or bifunctional crosslinkers
without disrupting the silane structure [16,17]. The most extensively studied oxide surfaces
contain Si-OH and Me-OH (Me: metal) groups. Because of their morphologic versatility,
chemical stability, and physicochemical interfacial properties, oxide materials have been
used extensively in biosensor development [18].
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Biosensors are widely investigated and have been used in different areas such as envi-
ronmental monitoring, healthcare (e.g., diagnostics, and point of care monitoring), security,
food control, pharmaceuticals (e.g., drug discovery), and forensics. For environmental
monitoring, the use of nanomaterials based on oxides for gas sensing has been widely
exploited [19,20]. For example, metal oxide nanoparticles were used to absorb methane
gas which reacted with oxygen ions and caused a decrease in resistance and, hence, detec-
tion [21–23]. For healthcare applications, biosensors are used to detect the presence and/or
concentration of a biological analyte in complex biological media such as body fluids (e.g., blood,
saliva, and urine), cell culture media, food, and environmental samples. Such information
contributes to the formation of key medical decisions [4,24–30]. A typical biosensor consists of
three main parts: an interface functionalized with the bioreceptor where a specific biological
event takes place, a transducer that converts a biological event into a measurable signal,
and a detector that amplifies and processes the signal to be displayed. Bioreceptors can
be immobilized on the interface surface either physically (i.e., adsorption, encapsulation,
electrostatic, van der Waals, and hydrophobic interactions) or chemically (i.e., covalent
bonding, and crosslinking). There are different types of bioreceptors available, and they
can be generally classified into five major categories: (1) antibody/antigen [31–33], (2) en-
zymes [34–36], (3) nucleic acids (DNA, RNA) [37,38], (4) cells and cellular structures [39],
and (5) polymers [1,40–42]. However, most bioreceptors (except for polymers) cannot bind
to the sensor surface directly; therefore, the surface first needs to be coated with a metal
layer or covered with reactive molecules that provide binding sites for the bioreceptor. In
this scenario, APTES molecules serve as an intermediate layer linking the oxide surface to
bioreceptor molecules.

There are certain strategies that need to be followed to immobilize bioreceptors on
oxide surfaces such as a surface pre-treatment, intermediate layer coating, and surface
post-treatment processes. Prior to the surface pre-treatment steps, some native -OH groups
may exist on the oxide surface, while the number of -OH groups can be increased by
rehydroxylation [43]. Such hydroxylated surfaces have an increased number of attachment
points for APTES molecules. For biosensor performance, the formation of an APTES monolayer
is more desirable than the formation of a multilayer [9,10,44,45]. Thick layers of silane molecules
have a very fragile structure [8,44] and get washed away either in the presence of a buffer or
during various washing steps in an immunoassay process [5,10,45] leading to a nonuniform
and inhomogeneous surface [31]. Additionally, for some biosensors (e.g., evanescent field-
based sensors) whose response is affected by the depth of the detection layer, a thicker
APTES multilayer could limit the sensor performance. The depth of the detection layer
range of such sensors is from 50 to 200 nm [46–48] while an APTES multilayer thickness can
reach up to 140 nm [14]. Therefore, the thickness of the layers from the functionalization
steps, including the APTES and bioreceptor layers, could be beyond the detection layer
range with which a sensor could function properly to detect the target analytes reliably.

The formation of a stable APTES monolayer is an important step for immobilizing
bioreceptors well on an APTES-treated surface, otherwise the researchers developing
biosensors might have a challenge knowing whether their measured signal change comes
from the receptor/analyte binding or the unstable intermediate layer. This has a dramatic
effect, therefore, on the overall biosensor performance including the limit-of-detection,
stability, and reproducibility. However, the formation of a silane monolayer in most studies
has been based mostly on conviction rather than experimental proof [9]. The ideal condition
for obtaining monolayers of APTES on oxide surfaces is still unclear, and most studies
have obtained results through trial and error by changing the reaction conditions [8].
Although the stability, durability, and repeatability of the immobilization, retention of
antibody activity, and avoidance of nonspecific binding have been studied, it is uncertain
if a universally applicable surface functionalization protocol for oxide silanization can be
achieved [49]; therefore, researchers must determine the best silanization process for their
specific applications and structures. To do so, it is important to understand the silanization
processes that are reported to produce a monolayer of APTES with experimental proof.
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It is also important to understand the chemistry, conditions, and specific steps behind
the APTES monolayer formation process because these conditions affect the thickness
and roughness of the silane layer and the nature of the bonds created between the silane
molecules and the oxide surface [9,45].

The purpose of this review paper is to provide a comprehensive guide for creating
stable APTES monolayers based on the systematic analysis of research strategies developed
for APTES monolayer fabrication, and to highlight the importance of this process to a
broader research field. For that matter, in this review, we discuss the complex kinetics
of APTES grafting and summarize the processes used for APTES monolayer formation
confirmed with surface characterization parameters and detection results. We attempted
to include the factors that affect the APTES monolayer quality, such as the deposition
method, concentration of APTES, type of solvent used for the solution-phase deposition,
deposition time, temperature, water content, pH, and the drying/curing conditions of the
silane [11,44]. We have also included the stability of the APTES layer in a solution since
this might have an immense impact on the overall biosensor performance. In addition,
we briefly review the APTES deposition methods used for nanoparticles which have been
actively investigated for biosensing applications.

2. APTES: Different Modes of Interaction with The Oxide Surface

APTES has three functional reactive ethoxy groups and one amine group per one
silane molecule (Figure 1). The polymerization of APTES molecules on an oxide surface is
a very complex reaction involving three main steps: (1) hydrolysis (a hydroxyl group (-OH)
substitutes the ethoxy groups in an acidic, alkaline, or neutral medium); (2) condensation
(the formation of siloxane bonds (Si-O-Si)) (Figure 1); and (3) phase separation [8]. Due
to the four reactive groups in APTES molecules and the complex kinetics in the three
reaction steps, it is important to control and optimize the reaction conditions such as the
environmental humidity, solvent type, amount of water, pH, reaction temperature and time,
and silane concentration, to obtain a reproducibly smooth, stable, and high-density silane
layer [8,10,45].
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The quality of the silane surface, including its morphology, strongly depends on the
initial hydrolysis step, making it very critical [50]. The water content determines the number
of hydrolyzed groups during the hydrolysis step in the APTES molecule (hydrolysis of one,
two, or three ethoxy groups) [51]. Ethoxy groups are very reactive toward water, forming
silanol groups (Figure 1) [2]. In the absence of water or if the water content is too low, the
silanol formation could be incomplete [10,44,52,53]. The optimal water concentration was
suggested to be 0.15 mg of water in 100 mL of solvent [54], i.e., a water/silane ratio of
1.5 [8].

A condensation reaction can happen between two APTES molecules and/or between
the oxide surface and an APTES molecule [55]. As the result of the condensation reaction
between silanol groups on the APTES molecule and -OH groups on a pre-treated oxide
surface or between neighboring hydrolyzed APTES molecules, the formation of siloxane
bonds occurs (Figure 1A). Siloxane bonds can covalently attach the silane molecule to
the surface in different ways (Figure 1B). In addition, the silanol groups of different silane
molecules can interact with each other, thereby forming polymeric structures (Figure 1B(5–7)).
This happens in the presence of excess water molecules and can cause the uncontrolled
polymerization of aminosilanes [52,56–59], forming a polymer composed of polysiloxane,
which can be seen as white specks on the surface [60,61].

In the phase separation step, the reaction medium loses its homogeneity to form
more tangible polymeric structures [8]. Changing the temperature during APTES grafting
can increase the overall reaction rate and changing the pH of the medium can dictate
the different reaction kinetics. The amine group of the silane molecule is used to attach
bioreceptors to the surface (Figure 1A); however, it can also form a weak hydrogen bond
with the surface silanol group or with the silanol group of other silane molecules (Figure 1B).
The formation of hydrogen bonds can decrease the number of silane molecules that are
supposed to be covalently attached to the surface [62]. Additionally, the amine group
can catalyze the formation and hydrolysis of siloxane bonds intramolecularly via the
formation of stable five-membered cyclic intermediates (Figure 1B(4)) [44,61], and it can
react with water, causing the release of nitrogen oxides, which results in the degradation of
its reactivity [63].

In an ideal situation, the attachment of the bioreceptors on an oxide surface via silane
molecules should start with the hydrolysis of the silane molecules followed by condensation
without the formation of additional bonds or different reaction routes. To achieve this ideal
case, one must tune the reaction conditions based on their laboratory facilities. According
to the molecular structure, an APTES monolayer should have an average chain length of
∼5–10 Å [5,44,64,65], a 0.5–0.8 nm thickness [44,53,66–68], an average density of 2.1–4.2
molecules per nm2 [64,69] and a silanol group density of 5 per nm2 [43,50].

Due to the complex nature of APTES layer formation, great care should be taken
to validate such surfaces for biosensing experiments. After the APTES grafting step, a
post-deposition process (i.e., rinsing and baking) is usually performed to remove the
non-covalently attached silane molecules without affecting the covalently-bonded silane
molecules. The stability of the grafted APTES layer is another important aspect that needs
attention in sensing experiments [70]. During the stability study, an APTES-treated surface
is usually placed in a container with solution for an extended period (e.g., 1 to 24 h) to
monitor the APTES desorption over time (i.e., the removal of physiosorbed molecules).
Table 1 summarizes the methods used to inspect the APTES layer’s quality and stability.
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Table 1. List of methods used for inspecting and confirming APTES monolayer and/or multilayer
formation on oxide surfaces.

Method Name Brief Description Ref.

Ellipsometer Calculates the thickness of each layer formed on the
surface after each modification [10,44,65,70–72]

Contact angle measurement Quantitatively measures the wetting of a modified surface [10,14,44,65,70]

Atomic force microscopy Scans and acquires images of the modified surface,
estimating the surface roughness [10,14,45,65,71,73]

X-ray photoelectron spectroscopy (XPS)
Determines quantitative atomic composition and

chemistry of the surface; quantitative analysis of the
degradation process

[6,14,64,70,73,74]

Fluorescence microscopy Visualizes the reporter molecules: Alexa Fluor, FITC that
are specifically bound to the amine-modified surface [10,50,70,74–76]

IR spectroscopy
Measures absorption, emission, and reflection of the

modified surface and determines the functional groups in
molecules

[77–79]

Near-edge X-ray absorption fine structure
(NEXAFS)

Measures the absorption of an X-ray photon to analyze the
matter density of a layer [64]

Fourier transform infrared spectroscopy
(FTIR)

Identifies the chemical composition of the modified
surface [6,10,14,74,80]

Zeta potential Measures surface charges [81]

Electrochemical Measures the electronic transport at the electrode solution
interface [65,70,82]

Hydrolytic Stability test Identifies the stability of the APTES in the presence of
water/buffer [10,44,65,71,72]

Transmission Electron microscope
energy-dispersive X-ray spectroscopy

(TEM-EDX)

Identifies the morphology of the particles and performs
chemical characterization of the surface. [80,83]

3. Surface Preparation for APTES Deposition: Pre-Treatment Step

Before an APTES monolayer can be formed on an oxide surface, the surface must go
through pre-treatment steps to remove organic contaminants and activate the sur-face with
increased hydroxyl groups. Wet-chemical methods for the pre-treatment in-clude strongly
oxidizing and acidic media such as “piranha solution” (i.e., 70% sulfuric acid (H2SO4): 30%
hydrogen peroxide) [9,10,45,63,65,71] and hexavalent chromates in concentrated sulfuric
acid [84] which can both be used to successfully clean and hydroxylate the surface of
SiO2-based materials. Cleaning with 1:1 methanol/HCl removes the surface contaminants
most effectively compared to various detergents and provides a smooth and clean surface
for subsequent silane deposition [7,85]. The formation of silanol groups on SiO2-based
materials using such pre-treatment steps are confirmed with FTIR results [14]. For metal
oxide surfaces, an electrochemical passivation process called anodization is often used
to clean the surface and increase the thickness of the natural oxide layer on it. When
conducted in 1 M H2SO4 at various voltages, anodization can increase the number of -OH
groups on the surface [86]. The activation of metal oxide surfaces can also be performed
by placing them in a boiled 30% hydrogen peroxide solution for a certain period or by the
aforementioned piranha cleaning process [63,72,87].

Exposure of the oxide surfaces to a dry-cleaning process, such as oxygen plasma and
UV-ozone cleaning for a certain period (5–30 min), has also been used for surface cleaning
and activation [70,80]. For example, X-ray photoelectron spectroscopy (XPS) revealed an
increased number of -OH groups on oxygen plasma-treated surfaces relative to chemically-
treated surfaces [88]. The oxygen plasma activation formed sufficient hydroxyl moiety
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resulting in a reduced surface roughness and the improved formation of a homogeneous
layer [10,12,88].

Generally, after a sufficient cleaning and surface activation process, the oxide surface
becomes hydrophilic with a water contact angle (WCA) ranging from≤ 5 degrees [88] to 20–
30 degrees [70,75] and a surface roughness of 0.45 nm [65]. An increase in hydrophobicity
should be observed upon a silane layer deposition (with a WCA range of 40–65 degrees),
and the hydrophobicity usually varies depending on the APTES deposition method, surface
roughness, and compactness of the chemical chains on the surface [85,89]. The deposition
of APTES on oxide surfaces can be completed in two different ways: via a solution where
samples are dipped into the silane solution or via the vaporization of a silane solution
onto samples. The distinguishing factor between these two methods is whether or not the
APTES solution makes direct contact with the surface.

4. Solution-Phase APTES Deposition on Oxide Surfaces

Among other silane deposition methods, solution-phase deposition is the most popular
and easy to use. A solution-phase APTES deposition is performed by directly dipping the
sample into an APTES solution and incubating it for a certain time. To make an APTES
solution, APTES is dissolved in an anhydrous solvent (e.g., toluene, methanol, ethanol, or
acetone) with or without a small amount of water [10,90]. Based on a systematic analysis of
experimental procedures that mainly focused on creating an APTES monolayer, dissolving
APTES at a certain ratio and for a certain incubation time in toluene, methanol and acetic
acid produced a near-monolayer surface as compared to dissolving the APTES in ethanol.
Nevertheless, it was also shown that it is possible to remove the physiosorbed APTES
molecules from a multilayered surface such as those dissolved in ethanol by rinsing with
acetic acid, thereby creating a monolayered surface. After incubation, as a post-treatment
step, the sample was rinsed with an anhydrous solution or acetic acid to hydrolyze the
ethoxy group and remove the unbound APTES molecules from the sensor surface. The
surface was then baked at an elevated temperature (≥ 110 ◦C) for at least 30 min to cross-
link the APTES on the surface further and remove the residuals. Figure 2 illustrates the steps
used in the APTES grafting process based on studies which produced APTES monolayers
and confirmed their stability with hydrolytic stability tests.
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4.1. Anhydrous Solvent-Based APTES Deposition with Toluene

To avoid uncontrolled polymerization in the presence of water, the solution-
phase deposition of APTES is generally undertaken in an anhydrous solution. Out of
all the anhydrous solvents used for APTES deposition, toluene has been widely
used [5,10,44,45,53,63–65,71,86].

Meroni et al. showed the monolayer formation of APTES with 2 M APTES in a 150 µL
toluene solution on a TiO2 surface [64]. With 2 h of incubation under a dry N2 atmosphere
in an oven at 80 ◦C, the authors reported the successful formation of a monolayer of
APTES based on AFM topography with an RMS roughness of 0.75 nm. XPS results showed
a thickness of ∼5.3–6.5 Å, comparable to the monolayer thickness. According to the
XPS analysis, the APTES deposition on TiO2 resulted in 60% of free amine groups, and
the other 40% were suggested to be involved in hydrogen bonding or protonated. This
was also supported by FTIR results where peaks were observed for the free amine and
terminal amine groups cross-linked with silanol groups. Near-edge X-ray absorption fine
structure (NEXAFS) results supported the formation of a low-density monolayer with
APTES molecules for hydrocarbon groups (i.e., one or two Si-O-Ti bonds involving the
Si headgroup) tilted toward the surface and with no clear preferential orientation for N
groups (i.e., conformationally freer than the whole hydrocarbon chain).

Another research study showed that 100 mM of APTES in a 50 mL toluene solution
formed a monolayer of APTES on TiO2 [86]. The metal oxide-coated substrate was placed
in a sealed flask and immersed in the solution from 0.5 to 24 h. The reaction was carried
out in a temperature ranging from 25 to 90 ◦C. XPS data revealed that the deposition had
reached its saturation point after 1–2 h with 100 mM of APTES. After 10 h of incubation,
the TiO2 surface was completely covered with APTES multilayers, possibly due to vertical
polymerization or agglomeration. The authors concluded that incubations for more than
8 h between 0.01–10 mM of APTES and incubations for 8 h at 10 mM of APTES created a
stable monolayer without any tendency to form 3D networks.

Zhu et al. grafted APTES on silicon wafers by placing them in a sealed flask with
25 mL of toluene and 0.5 mL of APTES (1.98% APTES) at either 70 ◦C or 90 ◦C for 24 h [44].
The flask was constantly purged with N2 gas to control the humidity. Despite this, the
authors stated that ambient humidity (e.g., 20% in winter and 60% in summer) had an
immense impact on the APTES layer thickness. More humidity produced thicker and more
varied APTES layers based on ellipsometry measurements (23 Å) and WCA measurements
(32 degrees). In addition to the humidity, the prolonged incubation time (24 h) could
have also played a role in forming thicker APTES. From a hydrolytic stability test, the
authors found that the thickness decreased from 23 Å to 8 Å during 24 h of incubation in
water, confirming the APTES’ instability. A similar study with the same reaction conditions
(0.5 mL of APTES dissolved in 25 mL of toluene under N2 gas at 70 ◦C) resulted in a
monolayer formation at 3 h of incubation with an ellipsometry-confirmed thickness of 10 Å
and WCA 38–43 degrees; however, the APTES layer formed this way was not hydrolytically
stable [5].

Howarter et al. showed that prolonged incubation times of 24–74 h resulted in thicker
APTES layer formation, confirmed by ellipsometry measurements ranging between a
5–16.3 nm thickness [71]. The deposition of APTES, in this case, was conducted on silicon
wafers in a closed container (i.e., a toluene solution, and an APTES concentration range of
1–33%) backfilled with N2 gas. Based on the AFM surface roughness (0.53 nm), ellipsometry
(1.5 nm), WCA (60–68 degrees), and XPS measurements (C:N ratio of 5.5), the group
concluded that 1% APTES dissolved in toluene and incubated for 1 h created a thinner and
consistent APTES layer.

Studies conducted by Pasternack et al. confirmed that lower APTES concentrations
(0.1%) dissolved in toluene could create densely packed propyl chains on SiO2 when the
reaction was carried out at 70 ◦C for less than 1 h. This result was supported by ellipsometry
thickness results of 1.8 nm, an AFM surface roughness of 0.3 nm, and additional XPS data
on the presence of APTES-associated chemical bonds [53]. The authors concluded that
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this process produces 2–2.5 layers of APTES and reported a 50% degradation after 6 h of
incubation in water.

According to Gunda et al., a 1 h incubation of 2% APTES dissolved in toluene created a
layer with a thickness of 2.4 ± 1.4 nm (based on ellipsometry measurements) on the surface
of silicon wafers when the reaction was carried out at 100–120 ◦C. The authors reported
that the thickness was close to the reported thickness of a silane monolayer and that it had
a WCA of 63 degrees and an AFM surface roughness of 0.69 nm [10].

Interestingly, Yadav et al. reported that the incubation of silicon wafers in 1% APTES in
toluene resulted in two- and three-dimensional polymer networks at room temperature and
70 ◦C. The authors suggested that ambient humidity might cause such polymerization [65].

The desorption of APTES molecules from heat-treated APTES was found to be less
and slower compared to an APTES incubation at room temperature At higher temperatures,
the total amount of deposited silanes was less, but their structure was more uniform and
hydrolytically stable (both in water and a buffer) [45,71].

4.2. Anhydrous Solvent-Based APTES Deposition with Ethanol

In addition to toluene, ethanol has also been used as an anhydrous solvent for APTES
deposition.

Miranda et al. used 5% APTES in an anhydrous ethanol solution to treat a Si substrate
for 20 min at room temperature [7]. XPS studies revealed that, compared to a deposition in
toluene, the presence of N and C was three and two times greater, respectively, indicating
more than one monolayer of APTES. Based on the calculated C:N ratio, increasing the
APTES concentration and reaction time (from 20 to 60 min) did not significantly influence
the multilayer formation. The authors attributed this finding to the polar protic nature of
ethanol that can solvolyze the Si-O-Si bonds faster than the condensation reaction. After
deposition, the non-covalently attached APTES molecules were removed using 6% acetic
acid, effectively removing the multilayer and leaving the surface with an APTES monolayer,
as proved by AFM and XPS surface analysis.

Han et al. confirmed the formation of an APTES multilayer on a SiO2 surface when
samples were incubated in 5% APTES dissolved in an anhydrous ethanol for 20 min, 1 h,
3 h, and overnight at 50 ◦C [14]. The group showed that APTES tended to accumulate on
the surface, resulting in a non-uniform layer with increasing thicknesses: 10 nm (20 min),
32 nm (1 h), 75 nm (3 h), and 140 nm (20 h). After 20 h of incubation, an increase of nitrogen
up to 11.2% and of carbon up to 52.2% was observed from the XPS results, indicating a
thick APTES multilayer formation. Anhydrous acetic acid was used for the rinse step after
the deposition and 1 mM of acetic acid helped to activate the silane (i.e., forming a network
on the surface) and to rinse off the weakly bound APTES from the surface, resulting in a
thickness decrease from 140 nm to < 4 nm and decreases of nitrogen down to 5.1% and
carbon down to 36.6% from the XPS measurements. The authors concluded the importance
of acetic acid for forming the thinnest APTES layer.

One study determined the optimal concentration of APTES in a solution based on
protein immobilization (mouse IgG) on the surface [9]. The IgG was detected through
a reaction with a fluorescently labeled anti-mouse IgG antibody. Maximum plateau flu-
orescence signal values were obtained at ≥ 5% APTES dissolved in anhydrous ethanol.
The reaction was carried out at room temperature, and 60 min of incubation and 20 min
of a final cure at 120 ◦C were enough to reach the plateau. The authors also conducted
an APTES stability test by measuring the fluorescence signal from the IgG immobilized
surfaces over 2 months. They found that the fluorescence intensity remained the same for
almost 3 weeks, indicating that the APTES layer was stable
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4.3. Solution-Based APTES Deposition with Water Molecule Traces

As previously mentioned, the amount of water in a solution and native -OH groups on
an oxide substrate is critical in controlling the level of polymerization of silane molecules.
Some trace water can be added to the reaction solution, or it could be present in a solution,
such as in 95.6% ethanol with 4.4% water.

Dissolving APTES in methanol with some water traces resulted in forming an APTES
layer with 8.1 Å thickness based on spectroscopic ellipsometry measurements, which is
close to the thickness of a monolayer [65]. A 1:500 ratio of stock solution (i.e., 50% methanol,
47.5% APTES, and 2.5% nanopure water) in methanol was used to deposit a monolayer
of APTES. The thickness of the surface was retained by about 50–70% after the hydrolytic
stability test of a 60 min incubation in water. The desorption of APTES molecules from the
surface was negligible in buffer solutions such as PBS compared to water. The monolayer
formation was further supported by AFM surface roughness tests at 0.2 nm and WCA at
45–60 degrees.

Arnfinnsdottir et al. optimized the silanization of SiO2 on a functioning sensor through
the immobilization of proteins [49]. For the APTES deposition, the surface was incubated
in 1–4% of APTES dissolved either in aqueous 1 mM of acetic acid or in 95% ethanol. AFM
measurements produced a roughness of 0.1 nm for the APTES layer formed in the acetic
acid, which was constant with higher APTES concentrations and various incubation times
from 10 to 60 min. Based on the nanodomains formed after silanization, the authors con-
cluded that the acetic acid solvent did not promote extensive APTES self-polymerization.
A uniform layer could be formed with 1–2% of APTES with an incubation of 10–20 min.
Additionally, the surface roughness (0.1–0.6 nm) and nanodomain number and sizes in-
creased when the silanization was performed in 96% ethanol, indicating increased APTES
self-polymerization. The data on protein detection showed that using acetic acid as the
solvent in the silanization step generally yielded a higher protein binding capacity for
C-reactive protein (CRP) onto anti-CRP than using ethanol.

5. Vapor-Phase APTES Deposition on Oxide Surfaces

The alternative to solution-phase APTES deposition is depositing APTES in the vapor-
phase. Solution-phase deposition methods are generally preferred and have been more
heavily researched because of their simplicity, but vapor-phase deposition methods remove
the need for high-purity anhydrous solvents and offer more control over the deposition
environment [67]. As previously explained, an excess amount of water is not desirable for
APTES deposition; however, having a trace amount of water is important for hydrolysis of
the APTES ethoxy groups and promoting siloxane bond formation. It has been reported
that precise water content control when using anhydrous solvents is difficult because of
variations in ambient humidity [44]. This negative effect is not a factor with vapor-based
deposition, where solvents are not used. A vacuum or nitrogen purge can be used to
further remove any unwanted moisture in the air or on the deposition surface [71]. Figure 3
illustrates the typical vapor-phase APTES deposition process. Step one remains mostly the
same compared to the solution-phase methods, but in Steps two and three, the advantages
of the vapor-phase are clear: no anhydrous solvents are required, sealed chambers with
an optional vacuum are used to control the environment, and optional N2 purges remove
physisorbed molecules. Lastly, note that there are no manual processes such as soaking,
washing, and drying that can cause a variation in the film quality [66]. Vapor-phase
deposition methods can be placed into two different categories: chemical vapor deposition
(CVD) and molecular layer deposition (MLD), and both CVD and mLD have been used to
produce high-quality, repeatable APTES monolayers onto silicon oxide surfaces.

5.1. Chemical Vapor Deposition (CVD)

Yield Engineering Systems (YES) CVD equipment can precisely control deposition
parameters such as the reactant volume, reaction temperature, and deposition time, making
them ideal for APTES deposition. Although they are bulky and expensive, the deposition
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process is relatively simple. The oxide surface can be hydroxylated with plasma using
the YES system or a piranha solution beforehand. The APTES is stored in temperature-
controlled flasks where it is evaporated and introduced to the deposition chamber, which is
kept at 150 ◦C and a low pressure (0.5–500 Torr). Nitrogen purges have been used before the
deposition to dehydrate the surface or after deposition to remove physisorbed molecules.
Rather than dehydrate the surface, water vapor can also be introduced to hydrate it if so
desired. The deposition time using a YES system is short compared to other methods. In
the literature, YES CVD systems have been used to deposit monolayers of APTES using
processes with different steps [65,67,91].
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Zhang et al. utilized a dehydration purge to remove water from plasma-activated
oxide surfaces. The deposition chamber of a YES CVD system was evacuated to 5 Torr,
then filled with N2 to 500 Torr. Finally, they evacuated to 1 Torr [67]. Evaporated APTES
was then introduced for 5 min, raising the pressure to 2–3 Torr. Finally, to remove residual
silanes, the chamber was purged with three cycles of N2. Smooth monolayers of APTES
were verified using AFM and ellipsometry, with a thickness of 0.66 nm and a roughness of
0.152 nm. Additionally, the APTES was desirably hydrophobic with a WCA of 44 degrees.
Notably, neither the WCA nor the surface coverage was affected by the concentration of
APTES used, which is an advantage over solution-based methods. Using XPS, the stability
of the APTES layer was verified by measuring the presence of nitrogen before and after
prolonged exposure to a pH 10 buffer. After two hours, the APTES had lost 20% of its
nitrogen content, and after four hours, 30–35% had been lost, indicating that the deposited
monolayer was stable for an extended period.

Another piece of research utilizing YES CVD used plasma-activated oxide surfaces, but
instead of dehydrating them, they were hydrated with 500 L of water [65]. This preceded
the ten minute deposition of 500 L of APTES at 500 Torr, after which several nitrogen
purges were used to remove excess silane. With this process, smooth, hydrophobic APTES
monolayers were produced with a thickness of 0.42 nm, a roughness of 0.22 nm, and a
WCA of 40 degrees. When exposed to water for one hour to test the stability, 50–70% of the
APTES layer remained intact.

Saini et al. used YES CVD to deposit monolayers of APTES onto oxide surfaces that
were cleaned and hydroxylated with piranha solution without using hydration, dehydra-
tion, or N2 purges step [91]. An amount of 2 mL of APTES was introduced to the deposition
chamber for 30 min at a base pressure of 0.5 Torr. The APTES monolayers were smooth
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and hydrophobic with a thickness of 0.65 nm, a roughness of 0.239 nm, and a WCA of
44 degrees.

The CVD of APTES monolayers can also be completed without using bulky machines
or vacuums. In this case, samples are simply placed in a sealed container, and heat is
used to vaporize liquid APTES inside. For a monolayer deposition on an oxide surface,
Zhu et al. introduced nitrogen to a Schlenk flask in addition to 0.5 mL of APTES [44].
Deposition times of 24 and 48 h were tested, with two 24 h samples being completed at
70 and 90 ◦C and one 48 h sample completed at 90 ◦C. After the deposition, the samples
were rinsed twice with toluene, ethanol, and water and dried at 110 ◦C for 15 min. For
all three samples, a hydrophobic monolayer with a thickness between 0.5 and 0.6 nm was
produced. At a 24 h deposition time, when the temperature was increased to 90 ◦C, the
thickness decreased from 0.6 to 0.5 nm. At 90 ◦C, when the deposition time was doubled
from 24 to 48 h, the thickness remained at 0.5 nm, and the WCA increased from 50 to
51 degrees. The thickness of all three APTES layers was reduced to 0.3 nm after 24 h in
water. This thickness is indicative of a APTES sub-monolayer. This study also performed
a solution-based APTES method with toluene, but this did not produce a monolayer. It
was reported that the vapor-based method was less sensitive to variations in the reaction
environment.

5.2. Molecular Layer Deposition (MLD)

Molecular layer deposition (MLD) is a relatively new method for depositing thin films
of organic materials such as APTES. Generally, the distinguishing feature of mLD is the
use of two precursors and the sequential, non-overlapping introduction of them to the
deposition chamber. This pulsing of the two reactants forms self-limiting reactions on the
surface. These self-limiting reactions are what make mLD beneficial for APTES deposition
because they allow the process to be precisely controlled. Like YES CVD, there is some
variation in the details of mLD processes, for example, they can be undertaken with or
without high temperatures, a substrate dehydration, and nitrogen purges.

Liang et al. used an NCD Tech D100 mLD system to pulse H2O vapor and APTES
simultaneously for 5 s, producing APTES monolayers on oxide surfaces hydroxylated via
piranha solution [66]. The reaction temperature was 110 ◦C, nitrogen was used as the
carrier gas (50 sccm), and after deposition, the chamber was purged with nitrogen for 60
s. For 5, 10, and 20 pulses, the thickness and WCA results were very similar: 1–1.2 nm
and 55–61 degrees. After twelve hours in water, the APTES layer of all samples became a
monolayer with thicknesses between 0.7 and 0.8 nm, and the WCA decreased to between
34 and 47 degrees. Roughness measurements also indicated a smooth surface with a
roughness between 0.172 and 0.186 nm. The mLD process was compared to a thirty minute
ethanol solution-based process. Although it also created stable monolayers after hydrolysis,
the mLD process was ultimately preferred because the processing time was much shorter.
The produced APTES coverage was better, as verified by a 15.8% higher sensitivity when
using both processes to fabricate pH sensing devices.

Yuan et al. used only APTES as a precursor in their mLD process [68]. They simply
introduced 0.3 mL of APTES via an argon carrier gas (27 sccm) to a deposition chamber
containing the oxide surfaces, which were hydroxylated with oxygen plasma. A vacuum
was used to maintain a process pressure of 0.375 Torr during the deposition, which lasted
ten minutes. After deposition, the argon and APTES were removed, and the pressure was
reduced to 75 × 10−7 Torr. This post-deposition step was found to be vital for forming
stable APTES monolayers, as it allows for the removal of physisorbed molecules. When this
step was 24 h long, a hydrophobic monolayer was produced with a thickness of 0.71 nm
and a WCA of 63.9 degrees.

Table 2 summarizes all the referenced solution-phase and vapor-phase processes and
their monolayer characterization results.
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Table 2. APTES grafting methods and characterization results on oxide surfaces.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

TiO2 solution

- Photo-oxidation by
UV irradiation
through an
iron-halogenide
lamp

- 2 M of APTES in 150 L
Toluene at 80 ◦C for 2 h,
under a dry N2

- Sonication in
toluene for 15 min

- N2 dry

â WCA: 55 ± 5◦

â AFM surface roughness: 0.75 nm
â XPS thickness: ∼5.3–6.5 Å

[64]

TiO2 solution

- Anodization
(hydroxylation) in
1 M H2SO4 at 20 V
for 20 min

- 0.001, 0.01, 0.1, 1.0, 10, or
100 mM of APTES in
toluene (50 mL) at 25 ◦C,
50 ◦C, 70 ◦C or 90 ◦C in a
water bath for 0.5, 1, 3, 5,
8 or 24 h.

- Rinsed with
toluene, followed
by acetone and
ethanol,

- Bake at 70 ◦C

â Longer incubation times (>8 h) at lower APTES
concentrations (0.01-10 mM) formed an
optimal stable monolayer surface coverage.

â Different attachment modes of APTES
confirmed with XPS

[86]

SiO2 solution

- Piranha treatment
45 min

- Rinse with H2O
- Bake at 110 ◦C for

30 min

- 0.5 mL of APTES in
25 mL toluene inside
Schlenk flask under N2
purge at 70 ◦C for 24 h

- Rinse with toluene
(x2), ethanol (x2),
and water (x2)

- Bake at 110 ◦C for
15 min

â Thicker and more variable silane layers with
more moisture

â Ellipsometry: thickness 23 Å, after hydrolysis
8 Å

â WCA: 32◦

[44]

SiO2 Solution

- Piranha treatment
30 min

- Rinse with H2O
- Dry with N2 gas

- 1, 10, or 33% APTES in
toluene in a sealed vial
at 25 ◦C or 75 ◦C for 1,
24, or 72 h

- Rinse with toluene,
methanol, and
water

â AFM surface roughness: 0.53 nm (at 1%
APTES, 1 h incubation)

â Ellipsometry thickness: 1.5 nm
â WCA: 60–68◦

â Increasing the incubation time increased the
APTES film thickness

â Film quality did not show strong temperature
dependence for 1 h reaction

[71]
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Table 2. Cont.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

SiO2 Solution

- 1:1 hF/H2O
solution

- Standard SC1/SC2
RCA cleaning
method

- 0.1% solution of APTES
in toluene inside a dry
nitrogen-purged
glovebox at room
temperature, 50 ◦C, and
70 ◦C for 2 min-48 h

- Rinse with toluene
- Sonicate in toluene

for 5 min

â Higher temperatures exhibited denser packing
of the propyl chains

â More covalent bond formation between the
APTES molecules for treatment at 70 ◦C 49 min

â Surface thickness: 1.8 nm, 2–2.5 layers of
monolayer

â AFM surface roughness: 0.3 nm
â Hydrolytic stability: 50% degradation of the

films after 6 h

[53]

SiO2 Solution

- Piranha treatment
15 min

- Rinse with H2O
- Dry with N2 gas
- Oxygen plasma

10 min
- Rinse with H2O
- Dry with N2 gas
- Bake at 110 ◦C for

1 h

- 2% APTES in toluene at
100–120 ◦C for up to 12 h

- Rinse with toluene
- Bake at 110 ◦C for

1 h

â Monolayer of silane: 2% APTES, incubation for
1 h

â WCA: 63◦

â AFM surface roughness: 0.69 nm
[10]



Biosensors 2023, 13, 36 14 of 25

Table 2. Cont.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

SiO2 Solution

- 3:7 solution of
ethanol to 10 M
sodium hydroxide
for 30 min on an
orbital shaker

- Rinse with H2O
- Dry with N2 gas
- Piranha treatment

30 min
- Rinse with H2O
- Dry with N2 gas

- 1% APTES in toluene at
room temperature and at
70 ◦C

- 1/500 dilution of stock
solution (50% methanol,
47.5% APTES and 2.5%
nanopure water) in
methanol

- Rinsed with
toluene

- N2 dry
- Bake at 70 ◦C

30 min

â Two- and three-dimensional polymer networks
observed in toluene solutions at room
temperature and at 70 ◦C.

• Room T incubation: loss of APTES films
in the presence of both the buffer and
protein

• Spectroscopic ellipsometry thickness:
26 Å and 26.6 Å, respectively

• Hydrolytic stability: 21 h/8 Å and
1 h/3.7 Å, respectively

• AFM surface roughness:0.3 nm and
19.99 Å, respectively

â APTES monolayer was observed from
methanol-based stock solution.

• Spectroscopic ellipsometry thickness: 8 Å
• AFM surface roughness: 0.2 nm
• Hydrolytic stability: 1 h/3.7 Å; WCA:

45–60 ◦

[65]

SiO2 Solution

- Piranha treatment
1 h

- Rinse with H2O
- Bake 110 ◦C 30 min

- 0.5 mL APTES in 25 mL
toluene under N2 at
70 ◦C for 3 h

- Rinse with toluene
(2x times), ETOH
(2x times), and
water (2x times)

- Bake at 110 ◦C for
15 min

â Trace amount of water present in toluene and
on glassware was sufficient for the APTES
layers formation.

â Monolayer formation at 3 h: 10 Å thickness;
WCA: 38–43◦

â Hydrolytic stability: complete loss of attached
silane layers upon water immersion i.e., not
stable

â APTES layers prepared at longer silanization
times were thicker due to the formation of
multilayers: 19 h: 57 Å; WCA: 15–22◦

â Hydrolytic stability: complete loss of attached
silane layers upon water immersion

[5]
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Table 2. Cont.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

SiO2 Solution

- Sonication in
acetone 10 min,
acetone/ethanol
50/50 for 10 min

- Rinse with H2O
- Piranha treatment

15 min
- Rinse with H2O
- Dry with N2 gas
- UV-ozone cleaner

2 h

- 50 mM of APTES in
toluene immersion times
varying from 1 to 24 h at
90 ◦C and room
temperature

- Sonicated for
10 min in
anhydrous toluene

- N2 dry
- Bake at 90 ◦C for

2 h

â IR spectra analysis: amine terminal groups and
protonated amine groups were present after
APTES treatment

â WCA: 63–65◦

â Hydrolytic stability/AFM surface roughness:

• Room T incubation: loss of APTES films
in the presence of both the buffer and
protein solutions measured between
10 min and 12 h/3.14 nm, many
agglomerates

• 90 ◦C incubation: no significant
detachment/1.28 nm, no agglomerates

[45]

SiO2 Solution
- Plasma cleaning

2 min

- APTES (1–4%) in either
96% ethanol or 1 mM
acetic acid in deionized
water

- Incubated for 10–60 min

- NA

â AFM surface roughness:

• 1 mM acetic acid: 0.1 nm, did not
promote extensive APTES
self-polymerization, uniform coverage

• 96% ethanol: 0.08–0.55 nm for incubations
10–60 min,

â Silanization of ring resonator chips:

• 1 mM acetic acid: change in resonance
frequency was initially quick, followed by
a less rapid increase, after final rinse the
change was similar for all concentrations
of APTES (1–4%); monolayer

• 96% ethanol: smaller initial change,
followed by a more strongly
time-dependent increase, after final rinse
the change was proportional to
concentrations of APTES (1–4%);
multilayer

[49]
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Table 2. Cont.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

SiO2 Solution

- Piranha treatment
20min

- Rinse with H2O
- Dry with N2 gas

- 2–5% APTES in absolute
ethanol for 20 min at
room temperature

- Rinse with distilled
water

- N2 dry
- Bake 120 ◦C for

20 min

â Maximum plateau fluorescence signal values
were obtained for APTES concentration in
water equal to or greater than 2% (v/v), and
APTES concentration in ethanol equal to or
greater than 5% (v/v).

â 20-min incubation was optimal for the aqueous
APTES protocol and a 60-min incubation for
APTES in ethanol

[9]

SiO2 Solution

- 2% (w/v) SDS
treatment for
overnight

- Rinse with H2O
- Dry with N2 gas
- UV-ozone cleaner

10 min at 50 ◦C
- Immersion in

CH3OH/HCl (1:1)
mixture for 30 min
at room
temperature

- 1–10% of APTES in
ethanol for 20 min and
60 min

- Rinse with 6%
acetic acid for
20 min

â XPS: N was three times and C were two times
larger i.e., more than 1 monolayer of APTES.

â increasing the APTES concentration and
reaction time did not significantly influence the
multilayer formation.

â 6% acetic acid effectively removed the APTES
multilayer, leaving the surface with a
monolayer APTES characteristic.

[7]

SiO2 Vapor (YES CVD)

- Washed with soap
and water,
2-propanol, and
acetone

- Dry with N2 gas
- Plasma clean-

ing/activation
- N2 purge

- APTES introduction at
150 ◦C for 5 min

- 3 cycles of N2 gas
purges

â Surface thickness: 0.66 ± 0.05 nm
â AFM surface roughness: 0.152 ± 0.005 nm
â WCA: 44◦

â Stability in pH 10 buffer:

• 20% nitrogen loss after 2 h

â 30–35% nitrogen loss after 4 h

[12]
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Table 2. Cont.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

SiO2 Vapor (YES CVD)

- Oxygen plasma
clean-
ing/activation for
10 min

- Surface hydration
with 500 L of water

- 500 L of APTES
introduced under
half-atmosphere N2 (500
Torr) at 150 ◦C for 10 min

- Several N2 purges

â Surface thickness: 0.42 ± 0.03 nm
â AFM surface roughness: 0.22 nm
â WCA: 40 ± 1◦

â Hydrolytic stability: 50–70% of APTES layer
retained after 1 h

[53]

SiO2 Vapor (YES CVD)

- Cleaned/
hydroxylated with
piranha solution at
85 ◦C for 30 min

- Dry with N2

- 2 mL of APTES
introduced at 150 ◦C for
30 min

- NA
â Surface thickness: 0.65 ± 0.04 nm
â AFM surface roughness: 0.239 nm
â WCA: 44 ± 2◦

[89]

SiO2 Vapor (CVD)

- Piranha solution
submersion for
45 min

- Water rinse
- Dry in an oven for

30 min at 110 ◦C

- Under N2 gas, 500 L of
APTES for 24 h at 70 and
90 ◦C and 48 h at 90 ◦C

- Rinse with toluene,
ethanol, and water

- Dry in 110 ◦C oven
for 15 min

â 24 h, 70 ◦C

• Surface thickness: 0.6 ± 0.1 nm

â 24 h, 90 ◦C

• Surface thickness: 0.5 ± 0.1 nm
• WCA: 50◦

â 48 h, 90 ◦C

• Surface thickness: 0.5 ± 0.1 nm
• WCA: 51◦

â All samples reduced to 0.3 nm thickness after
24 h in water, indicating a low-density
monolayer

[14]
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Table 2. Cont.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

SiO2 Vapor (MLD)

- Piranha solution
submersion for 30 s

- DI water rinse
- Dry with N2

- 5, 10, 25 sec APTES and
water vapor pulses with
N2 carrier gas at 50 sccm

- 60 s N2 purge
- Hydrolysis for 12 h

â Five pulses

• Surface thickness: 0.8 ± 0.1 nm
• WCA: 34 ± 1◦

• AFM surface roughness: 0.176 nm

â Ten pulses

• Surface thickness: 0.7 ± 0.1 nm
• WCA: 47 ± 2◦

• AFM surface roughness: 0.172 nm

â 20 pulses

• Surface thickness: 0.7 ± 0.1 nm
• WCA: 47 ± 1◦

â AFM surface roughness: 0.186 nm

[88]

SiO2 Vapor (MLD)

- 5 min acetone
ultrasonic bath

- 5 min IPA
ultrasonic bath

-
Cleaning/activation
with oxygen
plasma

- 300 L of APTES
introduced via argon
carrier gas at 27 sccm;
process pressure of 0.375
Torr and reaction time of
10 min

- Argon removed
and pressure
reduced to 75*10−7

Torr for 24 h

â Surface thickness: 0.71 nm
â WCA: 63.9◦ [66]
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6. APTES Deposition Process on Oxide Nanoparticle Surfaces

The chemical reaction between the APTES and oxide nanoparticles’ (NP) surface is
similar to the reaction with plain oxide surfaces. Coating the NPs with APTES permits
various improvements in the NPs functionalities such as an antibacterial effect, photo-
stability, and the attachment of other functional groups [15,92]. Most NPs coated with
APTES are used in applications such as for chemical sensors, cosmetic products (e.g., UV
scattering effect in sun cream), drug delivery, magnetic resonance imaging, and bioimag-
ing [15]. The formation of APTES on NP surfaces, for example, has been used to change
the agglomeration or physical properties of the particles.

In one study, Zinc Oxide (ZnO) NPs were coated with APTES dissolved in water
and toluene. The pH of the water was adjusted to an acidic or basic environment [92].
The condensation reaction rate of the silanol into siloxane (Si-O-Si) appeared to be very
dependent on the pH level. At an acidic pH, the hydrolysis process of silane is usually
activated, whereas, with a basic pH, both hydrolysis and condensation are activated. Acidic
and basic environment-based APTES deposition in that study was carried out by dispersing
the NPs in 50 mL of water (with an adjusted pH), followed by adding 1 mL of APTES and
stirring for 1 h. For a toluene-based APTES deposition, the NPs were dispersed in 200 mL of
toluene and stirred for 1 h under an argon flow. In all three cases, the APTES played a role
of an NP’s growth inhibitor, as confirmed by scanning electron microscope (SEM) images.
The amount of Si measured by an inductively coupled plasma (ICP) atomic emission
spectroscopy in the case of acidic and basic environments were 0.5 and 4.8%, respectively.
More impurities were observed on APTES-deposited NPs in a basic environment. The
amount of Si in the case of toluene was 0.3% due to the low water quantity present during
the experiment (i.e., the majority of water was chemisorbed and physisorbed on the surface
of the NPs).

The formation of more APTES monolayers on nanoparticles was proposed by Liu
et al., where good quality silane layers were formed when the reaction was carried out
at an elevated temperature using methanol/toluene mixed solvents [80]. The monolayer
formation was based on calculating the silane grafting densities using thermal gravimetric
analysis. The study revealed that the equilibrium adsorption capacity was 301.2 mg/g
for the highest grafting density during incubations at 70 ◦C using 2% APTES. Moreover,
the experimental grafting density was very close to the theoretically predicted APTES
monolayer density. Additionally, APTES grafting on Fe2O3 magnetic NPs can prevent
oxidative damage and play a role in the hydrophilicity or hydrophobicity of the NP surface,
which is important for further drug conjugation through terminal amine groups.

Karade et al. conducted a ninhydrin colorimetric assay to monitor the monolayer
formation through the quantification of the amine groups on the NPs [83]. The process was
based on a nucleophilic displacement reaction among the primary amines and ninhydrin,
where 1 g of Fe2O3 NPs were dispersed in 100 mL of a methanol/toluene mixture at a
1:1 ratio. The mixture was sonicated for 30 min, followed by heating at 95 ◦C until half
of the solution was evaporated. This procedure was repeated three times and 2% APTES
in 100 mL of methanol was used to cover the NPs surfaces with silane molecules. The
total calculated fractional monolayer coverage based on the ninhydrin assay on 1 NP was
96.6%. The FTIR and TEM-EDX spectra of the APTES-modified NPs showed the presence
of a stretching vibration of Fe-O-Si and the presence of Si, confirming the APTES coverage.
XPS results revealed the presence of Fe, O, C, and N, consistent with the development of
interlinking silane molecules on a NP’s surface.

A summary of the APTES deposition processes on oxide NPs is presented in Table 3.
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Table 3. APTES grafting methods and characterization results on NP’s surface.

Oxide Surface Solution vs Vapor
Phase Deposition Surface Pre-Treatment APTES Deposition Post-Treatment APTES Monolayer Characterization Results Ref.

Fe2O3 NPs Solution - NA

- NP’s dispersed in water
(100 mL) and then APTES (0.2
or 2 mL) was added, stirring at
30 or 70 ◦C.

- NP’s dispersed 100 mL in
methanol, APTES (0.2 or 2 mL)
was added, stirring at 30 or
70 ◦C under N2.

- Rinse with ethanol
- Rotary evaporation

dry
- Bake 60 ◦C for 24 h

â Thermal gravimetric analysis: estimation of
silane grafting densities (Dg); at 70 ◦C: Dg
increased within the first 1h incubation for
0.2 and 2% APTES; at 30 ◦C: Dg increase was
dependent on APTES concentration

â The use of different solvents does not change
the kinetics of the silanization process, the
degree of silanization depended greatly on
the reaction conditions

[80]

ZnO NPs Solution

- ZnO NPs were dispersed
into distilled water
(50 mL, pH 6.5), stirred
for 1 h

- 1 mL of APTES was added
(under Ar flow for toluene)

- pH was increased to 9.7 (or 10.8)
and after a few minutes was
stabilized to 8.9–9.2 (or
10.4–10.6) for the acid/base
condition, stirred for 24 h
(under Ar flow for 15 h for
toluene)

- Filtration, rinse with
alcohol and acetone.

- Bake at 60 ◦C under a
vacuum

â XRD and SEM: APTES coating plays a role in
growth inhibitor of NPs

â Acid process: fast grafting controlled by the
condensation process.

â Basic process, the starting concentration of
silane is an important parameter in
controlling the silica contents and the
grafting.

â Toluene process, the grafting is controlled by
the amount of water on the ZnO
nanoparticle surface.

â Photostable NPs

[92]

- Dispersed into anhydrous
toluene (200 mL) under
argon flow, stirred for 1 h

- Filtration, rinse with
toluene

- Bake at 110 ◦C for 2 h

Fe2O3 NPs Solution

- Rinse with methanol and
water in the presence of a
permanent magnet

- Dry in a vacuum
desiccator

- NP’s dispersed 100 mL in
methanol, 2% APTES, shaking
24 h at 70 ◦C

- Rinse with methanol
and water in the
presence of a
permanent magnet

- Dry in a vacuum
desiccator

â FTIR analysis: coverage with silane, presence
of amine groups, conjugation to a drug

â Ninhydrin colorimetric assay: fractional
monolayer coverage 96.6%

â XPS analysis: interlinking silane molecules
on the NP surface

[83]
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7. Conclusions

The chemical structure of an APTES molecule (i.e., with four reactive groups) makes
any interaction with an interface surface multidirectional and interchangeable (with intra-
and inter-layer modes of coupling), incorporating both covalent and noncovalent (hydrogen
bonds) binding. Due to the continuous bond–breaking–bond–reforming horizontal and
vertical rearrangement of the siloxane groups, the formation of polymerized multilayers
can be observed, which greatly affects the biosensor performance. In most cases, the
possible formation of such multilayers and their instability in a reaction solution (e.g.,
a buffer, or biological media) is underestimated in the various biosensor development
processes. Moreover, the same deposition methods carried out in different laboratories do
not guarantee a repeatability of the APTES monolayer formation. This is because varied
conditions, such as the environmental humidity, affect the APTES’ monolayer formation;
therefore, the careful surface characterization and validation for a specified laboratory
setup are important to determine the optimal APTES deposition process.

Solution-phase deposition on oxide surfaces and nanoparticles can be completed by
dissolving APTES both in anhydrous solutions (e.g., toluene, ethanol, and methanol) and
solutions with trace water molecules (e.g., ethanol, methanol, and acetic acid). The presence
of some adsorbed water on the surface or in the APTES solvent was found to be important
for initiating a hydrolysis reaction during the APTES formation process. Incubations at an
elevated temperature (e.g., 50–120 ◦C) promote the formation of stable covalent siloxane
bonds while disrupting hydrogen bonds. The solution-phase deposition methods create
a multilayer on an oxide surface with a different thickness. More concentrated APTES
solutions (>2%) result in a thick multilayer formation, whereas less concentrated solutions
result in thinner APTES layers; therefore, a rinse step is required to remove most of the
physisorbed silane molecules to obtain an APTES monolayer. The major limitation and
challenge of solution-phase APTES deposition is that one must control the environmental
humidity during the reaction process, as humidity has been shown to greatly affect the
thickness of the layer in addition to maintaining the anhydrous condition for solutions. To
create the most stable monolayer using the solution-phase deposition, it is suggested to
initially deposit a thin APTES layer (i.e., with a thickness equivalent to 2–2.5 APTES layers)
followed by the removal of physisorbed, weakly-bound silane molecules from the surface
through rinsing. The hydrolytic stability test suggests conducting measurements within
approximately 1–6 h for efficient detection.

Although it has been used less frequently, the vapor-phase deposition of APTES offers
some advantages over a solution-phase approach. Because the amount of water in the
deposition environment should be tightly controlled, using a vacuum is desirable as it
can negate environmental factors such as the humidity and remove the need for perfectly
anhydrous solutions. Not only can water be removed entirely via the vacuum, but special
equipment can also be used to introduce a precise volume of water vapor to the deposition
chamber, and controlled nitrogen purges can be used to remove excess silane. These
benefits are taken better advantage of when using YES CVD and mLD, which generally
include more expensive and sophisticated equipment. Both methods have been used to
create reproducibly smooth and stable monolayers at shorter deposition times. YES CVD
does not require lengthy post-treatment steps and it only takes 5–30 min to produce high-
quality monolayers, while mLD processes have required hours-long post-treatment steps to
remove non-covalently bonded APTES. Additionally, YES CVD offers some flexibility in the
process steps since monolayers can be produced with or without hydration, de-hydration,
or nitrogen purges. CVD without specialized equipment can be used to create high-quality
monolayers, although the reaction time can be in the range of 24–48 h, and it requires a
rinse process to remove any loosely bound multilayers. With that, the water content is
not quite as easily controlled, but with nitrogen purges and a properly sealed container,
the effects of humidity variation can be curtailed, and there is still the added benefit of
avoiding anhydrous solutions which may not be perfectly pure. The main limitation and
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challenge of using a vapor-phase deposition of APTES is the unavailability of sophisticated
lab equipment used to control the deposition process.

When comparing the two methods for producing APTES monolayers on oxide surfaces,
namely, the solution-phase and vapor-phase deposition methods, vapor-phase deposition
is better for reproducing results in different lab environments; however, for a lab without
such specialized equipment, solution-phase methods or CVD processes without specialized
equipment can still be used to achieve an APTES monolayer on an oxide surface for
biosensing applications. To confirm the formation of an APTES monolayer, characteristics
such as an APTES layer thickness in the range of 0.5–0.8 nm, a WCA range of 40–68
degrees, a surface roughness at 0.2–0.75 nm, and/or a quantitative atomic composition of
the modified surface using XPS or FTIR can be used. For reliable and repeatable results,
stability tests in a solution after the deposition are highly recommended to establish the
period at which an APTES modified surface remains stable.
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