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Abstract: The detection of cancer biomarkers has recently become an established method for the
early diagnosis of cancer. The sensitive analysis of specific biomarkers can also be clinically applied
for the determination of response to treatment and monitoring of disease progression. Because of
the ultra-low concentration of cancer biomarkers in body fluids, diagnostic tools need to be highly
sensitive and specific. Conducting polymers (CPs) are particularly known to exhibit numerous
features that enable them to serve as excellent materials for the immobilization of biomolecules and
the facilitation of electron transfer. Their large surface area, porosity, and the presence of functional
groups provide CPs with binding sites suitable for capturing biomarkers, in addition to their sensitive
and easy detection. The aim of this review is to present a comprehensive summary of the available
electrochemical biosensors based on CPs and their composites for the ultrasensitive detection of
selected cancer biomarkers. We have categorized the study based on different types of targeted
biomarkers such as DNAs, miRNAs, proteins, enzymes, neurotransmitters and whole cancer cells.
The sensitivity of their detection is enhanced by the presence of CPs, providing a limit of detection as
low as 0.5 fM (for miRNA) and 10 cells (for the detection of cancer cells). The methods of multiplex
biomarker detection and cell capture are indicated as the most promising category, since they furnish
more accurate and reliable results. Ultimately, we discuss the available CP-based electrochemical
sensors and promising approaches for facilitating cancer diagnosis and treatment.

Keywords: biomarkers; biosensors; cancer; conducting polymers; electrochemical sensors

1. Introduction

Cancer is undoubtedly one of the leading reasons for global deaths. In 2020„ there were
4 million new cases of cancer and 1.9 million cancer-related deaths reported in the European
Union [1]. Since cancer is a result of an uncontrolled proliferation of misregulated cells, it is
a challenge to detect it at the early stage of the disease, particularly in the asymptomatic
stage [2]. The progression of cancer disease in the body does not only alter a specific organ or
tissue, but has severe effects on the whole organism by modifying the chemical composition
of different body fluids. Consequently, these changes may be used to distinguish between
an affected person and a healthy individual.

Cancer biomarkers are biological molecules of different origin that can be found in blood,
tissue or other body fluids (Scheme 1). Biomarkers can be categorized based on their biological
identity as proteins, genomic biomarkers (DNA and RNA), carbohydrates (glucose, sucrose,
glycans), lipids (cholesterol, prostaglandins, phospholipids), and metabolites (reactive oxygen
species, dicarboxylic acid, inorganic ions). Biomarkers can be strictly associated with the
metabolic activity of cancer cells or highlight the genetic tendency of the organism to develop

Biosensors 2023, 13, 31. https://doi.org/10.3390/bios13010031 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios13010031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0003-0503-0906
https://doi.org/10.3390/bios13010031
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios13010031?type=check_update&version=1


Biosensors 2023, 13, 31 2 of 15

cancer [3]. Therefore, the analysis of biomarkers can be used to either predict a risk of cancer
(anteceding and screening biomarkers), help in cancer diagnosis (diagnostic and staging
biomarkers), or inform about a likely cancer outcome (prognostic biomarkers).
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Scheme 1. Categorization of biomarkers’ sources, categories, and classes.

Despite current advancements in genomics, proteomics and bioinformatics, leading to
the identification of a plethora of potential biomarkers, there are many barriers affecting
the transfer of results from a lab bench to medical practice [4]. The major challenges in the
field of bioanalytics are associated with deficiencies in sensitivity, specificity, and predictive
values of analytical methods. Because of the ultra-low concentration of cancer biomarkers,
diagnostic tools need to be highly sensitive and specific. Enhanced sensitivity of a biosensor
is, therefore, crucial to find out the ultra-small concentration of the biomarker in the early
diagnosis and variation in the concentration of the biomarker during the prognosis to get
a picture on the progression of treatment. Consequently, researchers have devoted much
attention to making specific biosensors for each target with maximum sensitivity in a prac-
tical assay. Due to the heterogeneity of cancer, the concentration of a particular biomarker
may vary between different patients and different stages of the disease. Therefore, a recent
trend suggests the design of analytical platforms allowing for the simultaneous detection
of multiple biomarkers and the analysis of their mutual relationships.

The detection of cancer biomarkers can be clinically applied not only for the early
detection of cancer and accurate pre-treatment staging, but also for the determination of
response to treatment and monitoring of disease progression [5]. Even though there are
numerous therapies that can be applied to cancer patients (surgical resection, chemotherapy,
radiotherapy, targeted therapy, immunotherapy, hormone therapy, etc.), it is difficult to
predict which one will be the most effective for a particular patient. Accordingly, a sensitive
biomarker detection system, available at the point-of-care, would be indispensable in the
assessment of the efficacy of treatment. For this purpose, conducting polymers (CPs)
have recently emerged as promising and versatile materials with remarkable properties
suitable for biosensing applications. Exhibiting biocompatibility, developed surface area
and mechanical flexibility, CPs provide improved signal transduction, which allows for
the increase in sensitivity of analysis [6]. Additionally, a wide range of immobilization
protocols of various recognition elements makes CPs versatile carriers applicable for the
design of multiplex arrays for biosensing applications [6–9].
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The aim of this paper is to present the recent advances in the development of elec-
trochemical biosensors, particularly those based on CPs, allowing for the ultrasensitive
detection of cancer biomarkers.

2. Electrochemical Biosensors

Electrochemical methods, including potentiometry, coulometry, voltammetry, am-
perometry and impedance spectroscopy, are standard laboratory techniques used for the
qualitative and quantitative analysis of substances. Electrochemical analysis is based on
the measurement of potential, charge, current or conductivity values to determine the
concentration of the analyte or its electrochemical reactivity. Electrochemical biosensors
act in a similar way, i.e., through the use of functionalized electrodes able to produce
an electrical signal when a particular biological entity is attached (Scheme 2). Both the
specificity and selectivity of the electrochemical biosensor are determined by a molecular
recognition element (enzyme, antibody, nucleic acid, etc.) that needs to be appropriately
immobilized on the surface of the electrode to avoid its deactivation [10,11]. On the other
hand, the sensitivity of the biosensor is greatly influenced by the transducer (electrode) and
its modifications.
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Among the various electrochemical measurement methods, four are the most com-
monly used in the design of biosensors [11–13]. Amperometric biosensors are the best-
known devices whose mode of action is based on the oxidation or reduction of an electroac-
tive biological element that produces a detectable current signal. Potentiometric biosensors,
on the other hand, allow an electrical potential difference between two electrodes to be
quantified when the cell current is zero. This allows of the use of the Nernst equation
to relate the concentration of an analyte to a potential difference. Biosensors take the ad-
vantage of different voltammetric techniques (differential pulse voltammetry: DPV, cyclic
voltammetry: CV, square wave voltammetry: SWV, linear sweep voltammetry: LSV), use a
varying potential to measure resulting current, and provide analytical information with
low cost, good selectivity, and high sensitivity. Impedimetric biosensors use the variation
in electrode impedance to detect the presence of analytes with low excitation voltage, fast
speed, and high sensitivity, making them particularly suitable for a long-term and real-time
detection of biomarkers.

3. Conducting Polymers

Conducting polymers (CPs) belong to a special class of polymeric materials that
combine mechanical properties of polymers with the ability to conduct currents typical for
metals. In turn, CPs have found applications in various fields, from optoelectronics and
energy storage devices [14] to biomedical devices and biosensors (Scheme 3) [15]. In the
latter, CPs are especially pursued due to their biocompatibility, sensitivity, improved signal
transduction, porosity, and mechanical flexibility [6].
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Electrical conductivity in CPs results from the presence of a conjugated backbone,
consisting of alternating single and double bonds throughout the whole structure. σ-bonds
present in the single and double bonds are highly localized, whereas π-bonds are weaker
and more delocalized. The conjugated system is formed by the overlap of p-orbital electron
clouds in the series of π-bonds, which promotes an easier delocalization of electrons
and therefore facilitates their mobility, providing a pathway for charge carriers [16–18].
However, in the neutral state, CPs are only weakly conductive [6]. Another important factor
required for an efficient charge conduction through polymer chains is the introduction of
doping ions into their structure and creating self-localized excitations (i.e., solitons, polarons
or bipolarons) in the conjugated chains [18]. The process of CP doping corresponds to
redox reactions within the polymer matrix and the stabilization of the backbone. In the
case of oxidation (p-doping), the doping ions take the form of anions or electron donors,
whereas reduction (n-doping) involves the use of electron acceptors–cations. The p-doping
is generally more common due to the fact that it provides more stable charge carriers than
the negatively charged forms of CPs [19].

The electronic structure of CPs is sensitive to changes in the polymer chain conforma-
tion and in the environment, e.g., during biological recognition. These changes manifest
themselves in altered conductivity and spectroscopic properties that can be used directly
for signal detection [20]. Doping/dedoping processes can be also used to reversibly change
electronic and optoelectronic properties of CPs [21]. Another advantage of CPs is their dual
mechanism of conductivity. Since CPs have the ability to transport both electronic and ionic
charges, they can be used to efficiently convert an ionic signal into a solid state electronic
signal [22].

CPs provide a variety of immobilization pathways for recognition elements. The
simplest mechanism is a physical adsorption, in which biomolecules become immobilized
on the polymer surface by electrostatic interactions, hydrogen bonds, van der Waals forces,
or hydrophobic interactions [6,9]. The chemical functionalization of CPs’ backbone can
be used to provide stronger physical interactions for even better immobilization and
contact with the CP. Polymer chains can be modified at the monomer level [23] or during
bulk processing after polymerization, which is mostly applied to chemically synthesized
CPs [22]. Additional functional groups can either improve the affinity of the bioreceptor
to CPs, or be used to further increase the binding efficiency by a covalent attachment.
Covalent immobilization is a well-known and effective technique used to improve the
stability, activity, and sensitivity of biosensors, and to prevent the leaching of the molecular
recognition element [24].

The unique immobilization mechanism associated with CPs is the ability to confine
the biosensor elements within the volume of the CP matrix. This can be achieved by simply
adding biomolecules to the solution intended for electrochemical polymerization. In this
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way, selected molecules, such as peptides, enzymes and antibodies, can act as dopants
and become entrapped in the polymer matrix [8]. It is a one-step process that offers good
reproducibility and control of film thickness [6]. Although the efficiency of target binding
can be reduced due to the partial burial of the bioreceptors and diffusion constraints [9],
CPs are characterized by a developed specific surface area. By tuning polymerization
conditions [18] or using organic molecules as chain ‘connectors’ [25], porosity can be
controlled so that biochemical interactions between analytes and receptors are still possible
when embedded in the 3D structure of the CP [26]. This property can also increase the
selectivity of the biosensor by providing a size exclusion membrane for analytes penetrating
the CP network [6,26].

Some CPs are compatible with a technique of molecular imprinting. In this method,
the resulting label-free biosensing platform consists only of the polymeric matrix with
imprinted recognition sites based on the template of a target molecule [25]. The molecular
imprinting technique provides high selectivity and limits the use of biologically active
components in the final design [27]. The electrochemical polymerization of CPs allows
a precise deposition of the polymer on the microelectrode sites. Consequently, it is pos-
sible to construct multiplex microelectrode arrays for biosensing applications [7]. The
precise construction of biosensor chips and the multifunctionality of detection can also
be achieved with inkjet printing technologies that use soluble CPs in the ink composi-
tion [28,29]. Additionally, the mechanical properties of CPs enable the development of
flexible biosensors [27,29,30], which are particularly important for the transition to wearable
or in vivo devices.

4. Conducting Polymer-Based Electrochemical Sensors for Cancer Diagnosis

Electrochemical methods allow for the sensitive detection of cancer biomarkers present
in different forms, such as DNA, proteins, miRNA, antigens, enzymes or neurotransmitters
(Scheme 4) [12]. The application of CPs for the functionalization of electrodes can be used
to further increase the sensitivity and selectivity of analysis.
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Scheme 4. Different forms of cancer biomarkers that can be detected through electrochemical methods.

4.1. DNA Sensors

Circulating tumor cells and circulating cell-free DNA (cfDNA) are important for the
early detection and screening of cancer, as they can be used to identify tumors and genetic
alterations (Scheme 5) [31]. The cfDNA level is comparatively higher in cancer patients
than in healthy people. Therefore, it is crucial for early cancer diagnosis to detect even a
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small deviation from the normal cfDNA concentration. For instance, an electrochemically
deposited polypyrrole (PPy)-modified chip was fabricated for the detection of cfDNA [32].
The over-oxidized surface of the chip was immersed in blood serum, which enabled the
successful immobilization of DNA on the chip. The clinical utility of the chip was tested by
extracting cfDNA from healthy donors and lung cancer patients.
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Scheme 5. Circulating tumor cells (CTC), circulating cell-free DNA (ccfDNA) [including circulating
tumor DNA (ctDNA)], circulating cell-free RNA (ccfRNA), and exosomes are released from tumor
cells to the bloodstream. Hence, blood can be collected in the context of a liquid biopsy and analyzed
using electrochemical biosensors. Reprinted with permission from [31]. Copyright (2020) MDPI.

Wang et al. [33] reported the detection of breast cancer biomarker BRCA1 using
poly(3,4-ethylenedioxythiophene) (PEDOT) doped with the zwitterionic polypeptide.
Polypeptide-doped PEDOT (PEDOT/PEP) was electrodeposited on the surface of a glassy
carbon electrode (GCE), and GCE/PEDOT/PEP was incubated in a DNA capture solution
containing the coupling agents N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethyl
aminopropyl)carbodiimide (EDS). Furthermore, an indicator (methylene blue, MB) was
attached to the surface of the sensor electrode and immersed in target DNA for the at-
tachment on the electrode surface. The differential pulse voltammogram (DPV) was then
recorded to find out the concentration of BRCA1 indirectly from the current response of MB.
Due to the strong interactions between the DNA probe and BRCA1, MB was detached from
the surface, and the current response was decreased accordingly. Based on this strategy,
the sensitive and selective detection of BRCA1 was carried out and, finally, the analysis of
a real sample was performed with a human blood serum sample [33]. For the ultrasensi-
tive detection of BRCA1, Shahrokhian and Salimian [34] fabricated an electrochemically
reduced graphene oxide-PPy composite. The CP-coated reduced graphene oxide provided
more active sites for the immobilization of DNA. The quantitative detection of BRCA1
was possible in the linear range of 10 fM–0.1 µM with a detection limit as low as 3 fM in a
blood serum.

4.2. miRNA Sensors

The changes in the miRNA expression within a tissue are often associated with disease
states. The involvement of miRNA in human cancer was first reported by Caline et al. [35],
who described its key role in cancer metastasis. An impedimetric miRNA biosensor was
fabricated based on the miRNA-guided deposition of polyaniline (PAn) from the monomer
(Scheme 6) [36]. The gold electrode was then modified with a neutral peptide nucleic
acid capture probe to capture miRNA, and was incubated in a solution containing aniline,
hydrogen peroxide and G-qudraplex-hemin DNAzyme. The DNAzyme catalyzed the
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polymerization of aniline, which was guided by the miRNA standing on the electrode
surface. The as-formed sensor was able to detect 0.5 fM of target miRNA.
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In a similar study, the ruthenium oxide-tagged miRNAs-initiated polymerization
of aniline was executed for the voltammetric quantification of miRNA in lung cancer
cells [37]. A templated growth of PAn resulted in the formation of a conducting layer
exhibiting a dual-dependence amplification of detected signals, greatly increasing the
sensitivity of the device. The prostate cancer biomarker miR-141 was quantified using a
biosensor developed from multi-walled carbon nanotubes (CNTs) and a naphthoquinone-
based polymer. The sensor showed higher sensitivity with a limit of detection (LOD) of
8 fM [38]. An ultrasensitive electrodetection of miRNA was also developed based on a
microelectrode through the immobilization of peptide nucleic acid (PNA) capture probes
in nanogaps of a pair of interdigitated microelectrodes [39]. Hybridization was performed
with their complementary target miRNA, followed by the electrochemical deposition of
PAn nanowires driven by the electrostatic interaction between anionic phosphate groups
in miRNA and cationic aniline molecules. The conductivity of the deposited nanowires
correlated directly to the amount of hybridized miRNA. Under optimized conditions, the
target miRNA can be quantified in a range from 10 fM to 20 pM with a detection limit
of 5 fM. The biosensor array was applied to the direct detection of miRNA in total RNA
extracted from HeLa cells and lung cancer cell lines.

4.3. Immunosensors

Immunosensing is a method of biosensing where the sensitive detection is based on
the specific binding between an antigen and an antibody to form a stable complex. Im-
munosensors combine the advantages of good sensitivity and high selectivity. Furthermore,
they allow the progress of immunoreactions on detector surfaces to be followed in real-
time [40]. A crucial step in the design of immunosensors is the immobilization of antibodies
on the surface of the electrode. Since CPs can be easily oxidized and reduced, their zeta
potential and surface charge density depend on pH and ionic strength, allowing for tailored
electrostatic interactions between charged proteins affecting their adsorption [41].

A three-dimensional macroporous PAn-based electrode was developed for the sen-
sitive detection of alpha-fetoprotein, which can be associated with several conditions,
including hepatocellular carcinoma, metastatic disease affecting the liver, nonseminoma-
tous germ cell tumor, or yolk sac tumor. A PAn-based substrate provided an excellent
platform for the immobilization of alpha-fetoprotein antibody and the resulting biosensor
achieved good linearity in the wide range from 0.01 to 1000 pg mL−1 [42]. In another study,
conducting polythiols and gold nanoparticles (AuNPs) were used to develop a biosensor
sensitive to the carcinoembryonic antigen (CEA), a biomarker for colorectal cancer [43]. The
results revealed a good amperometric response to CEA, with a linear range from 1 fg mL−1

to 10 ng mL−1, and an LOD of 0.015 fg mL−1. Furthermore, the high applicability of AuNPs
in electrochemical cancer detection was confirmed, as supported by further studies [44,45].

The electrochemical detection of CEA was also studied by Wang and Hui [46], who
successfully designed a zwitterionic poly(carboxybetaine methacrylate) (polyCBMA) com-
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posite with conducting PAn nanowires (Scheme 7). PolyCBMA exhibited good antifouling
properties, which in combination with PAn provided an excellent immunosensor, char-
acterized by low fouling properties, that prevented non-specific protein adsorption. The
biosensor was used to quantify the presence of CEA in an undiluted human blood serum
sample, demonstrating the practical usability of the system in clinical analysis. Another
antifouling electrochemical biosensing platform was fabricated from PEDOT and a multi-
functional peptide with a sequence of CAEAEPPPPQEQKQEQK and used for the selective
and sensitive quantification of CA 15-3 in breast cancer patients [47]. During the polymer-
ization process, the peptide was doped within PEDOT to achieve a negative charge on the
surface of the sensor. The antifouling property of the modified sensor decreased by only
~12% after using the same sensor for up to 30 days. These long-term, stable antifouling
properties are ideal for implantable sensor devices.
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Scheme 7. Schematic illustration of the construction process of the CEA biosensor: (a) Polyaniline
(PANI) nanowires electrodeposited onto the GCE, (b) covalently bound CBMA on PANI nanowires,
(c) a photopolymerized polyCBMA layer on PANI nanowire, (d) the immobilization of CEA antibody
on the polyCBMA/PANI composite, (e) specific CEA capturing and the antifouling towards non-
specific protein, (f) DPV current signal recording. Reprinted with permission from [46]. Copyright
(2018) Elsevier.

4.4. Detection of Enzymes

Since cancer dysregulates metabolic activity and reprograms affected cells, the pres-
ence of increased levels of certain enzymes in body fluids may be a sign of disease.
Poly(triphenylamine rhodanine-3-acetic acid-co-3,4-ethoxylene dioxy thiophene)s incorpo-
rated with molybdenum disulfide were reported for the monitoring of matrix
metalloproteinase-1 (MMP-1), which is associated with lung cancer [48]. Electrode mod-
ification was carried out by incorporating a CP on the surface of molybdenum disulfide
by a peptide-imprinted electropolymerization process using MMP-1 peptides as tem-
plates (Scheme 8). As-formed thin film electrodes provided the monitoring of MMP-1 at
1 pg mL−1 with a linear range of 1–10 pg mL−1. The validation of the performance of a
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fabricated biosensor was performed for a human lung cancer cell line (A549), in which an
MMP-1 concentration of 800 ng mL−1 was found. This method showed 95% accuracy when
compared with the conventional enzyme-linked immunosorbent assay (ELISA) method. A
PPy-based biosensor was reported for the electrochemical detection of another enzyme,
human autocrine motility factor-phosphosglucose isomerase, which is considered to be a
metastatic biomarker in human plasma. Amperometric quantification was performed in
the linear range of 1 pM-1µM with an LOD of 43 fM in a phosphate buffer solution [49].
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permission from [48]. Copyright (2022) Elsevier.

4.5. Detection of Neurotransmitters

In the past decades, many research studies have reported on the regulatory role of neu-
rotransmitters in physiological and pathological functions of tissues and organs. Notably,
emerging data suggest that cancer cells use neurotransmitter-initiated signaling pathways
to activate uncontrolled proliferation and dissemination. In addition, neurotransmitters can
affect immune cells and endothelial cells in the tumor microenvironment to promote tumor
progression [50]. Chung et al. [51] developed a CP-based palladium complex for the electro-
chemical detection of the neurotransmitters dopamine and serotonin in the cancer cell lines.
The proposed sensor was fabricated using a poly2,2:5,2-terthiophene-3-(p-benzoic acid)
layer anchored with the Pd(C2H4N2S2)2 complex on the reduced graphene oxide substrate
decorated with AuNPs. To achieve maximum sensitivity of the sensor, various parameters
such as the concentration of AuNPs-reduced graphene oxide, the number of electropoly-
merization cycles, and the immobilization of Pd complex were optimized. The LOD of
serotonin and dopamine was achieved as 2.5 nM and 24 nM, respectively, and the reliability
of the sensor was evaluated in both normal and breast cancer cells. The results showed
that the serotonin level released in breast cancer cells was 3.1 times higher than in normal
cells. Although more studies on the application of neurotransmitters as cancer biomarkers
are inevitable, CPs and their metallic and non-metallic composites appear to be excellent
candidates for the design of such biosensors, since they have been successfully used for
the monitoring of neurotransmitters such as glutamate, aspartate, tyrosine, epinephrine,
norepinephrine, dopamine, serotonin, histamine, choline, and acetylcholine [52].

4.6. Cell Capture

An interesting alternative to the detection of molecular and macromolecular biomark-
ers is the possibility to capture and analyze whole cells, particularly circulating tumour
cells (CTC) released from cancerous cells in the primary and metastatic stages. CP
nanostructures-based cell capture systems were first reported by Sekine et al. [53], who
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used PEDOT-COOH nanodots fabricated through an electropolymerization process on
the surface of indium tin oxide (ITO)-coated glass electrodes. Due to the synergistic ef-
fects of ligand–receptor interaction, nanostructure adaptation, and mechanical property
adjustment, modified surfaces were able to capture CTC through epithelial cell adhesion
molecule (EpCAM) antibodies bioconjugated to PEDOT-COOH.

In another study, PPy nanowires doped with biotin were used to capture, release
and quantify CTCs (Scheme 9) [54]. Electrochemical detection of the captured cancer
cells using a PPy nanowire platform with horseradish peroxidase-labeled and conjugated
nanoparticles showed high sensitivity and specificity. Luo and co-workers [55] developed
the electrodeposited PEDOT and a multifunctional peptide-based composite to avoid the
biofouling effect in the detection of CTCs. The designed peptide showed antifouling
properties in complex biological media and provided special recognition for breast cancer
cells (MCF-7). The electrodeposited PEDOT formed an electroactive surface suitable
for the detection of cancer cells in blood without dilution and purification. CP-based
microfluidic devices and composites are already available in the literature for the capturing
and detection of CTCs [56–59]. Recently, a conducting ter-polymer-coated carbon cloth
designed by Ashraf et al. [60] was used for the capture and release of extracellular vesicles
originating from both MCF-7 and SKBR-3 breast cancer cell lines. Cell capturing was
carried out with the aid of a substrate conjugated antibody, and the performance of the
developed system was validated in real samples.
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EpCAM-SS-biotin-Ppy NWs) of 200-nm diameter for capture, release, and in situ quantification
of cancer cells. (B) The dual electrical simulation (ES)- and glutathione (GSH)-responsive system for
the release of the captured cells. (C) On-site electrochemical detection of the captured cancer cells by
a nanoparticle-based signal amplification strategy. Reprinted with permission from [54]. Copyright
(2014) Elsevier.
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4.7. Multiplex Biomarkers Detection

Due to the complexity of the biological systems, an accurate diagnosis is not usually
possible by the analysis of a single biomarker alone. Consequently, an improved accuracy
for cancer detection is achievable through the simultaneous detection of multiple biomark-
ers. There are few reports on the fabrication of biosensors for multiple biomarkers based
on conducting polymer matrices. For instance, a PPy-modified gold electrode was reported
for the electrochemical detection of the oral cancer biomarkers interleukin (IL)-8 mRNA
and IL-8 protein. Under optimized conditions, the LOD of salivary IL-8 mRNA and IL-8
protein reached 3.9 fM and 7.4 pg mL−1, respectively. The accuracy of the sensor was
found to be 90%, and similar results were obtained when compared with conventional
clinical methods such as ELISA [61]. On the other hand, the simultaneous electrochemical
detection of alpha-fetoprotein (AFP) and CEA was achieved by fabricating redox-active
species, poly(o-phenylenediamine) (POPD)/Au nanocomposite and poly(vinyl ferrocene-2-
aminothiophenol) (poly(VFc-ATP))/Au nanocomposite, where HAuCl4 was chosen as the
oxidant [62]. AuNPs-decorated polymers exhibited the successful immobilization of anti-
CEA and anti-AFP as the immunosensing probes, which enabled the sensitive detection of
AFP and CEA with an LOD of 0.003 ng mL−1 and 0.006 ng mL−1, respectively.

5. CP-Based Electrochemical Sensors for Cancer Diagnosis: Comparison

In the previous section, a detailed discussion of the available electrochemical biosen-
sors based on CPs was presented. An overview of the reported results, including electrode
material, biomarkers, sensing technique, range of linearity, limit of detection, and biomarker
source is presented in Table 1.

Table 1. Comparative study on the available CP-based electrochemical biosensors for the detection
of various cancer biomarkers (alpha-fetoprotein: AFP, carcinoembryonic antigen: CEA, circulating
tumour cells: CTC; interleukin: IL). Abbreviations: chronoamperometry, CA; cyclic voltammetry:
CV; differential pulse voltammetry: DPV; electrochemical impedance spectroscopy: EIS; glassy
carbon electrode: GCE; gold electrode: AuE; gold nanoparticles: AuNPs; graphene oxide: GO;
indium tin oxide: ITO; multi-walled carbon nanotubes: MWCNTs; polyaniline: PAn; poly(3,4-
ethylenedioxythiophene): PEDOT; polypyrrole: PPy; screen printed electrode: SPE; square wave
voltammetry: SWV.

Electrode Material Biomarker Sensing
Technique Linear Range Limit of Detection Real Sample Ref.

GCE/PEDOT/polypeptide BRCA1 DPV 1 × 10−5–1 nM 3.4 × 10−6 nM Serum [33]
GCE/GO/PPY BRCA1 DPV 1 × 10−7–100 nM 3 × 10−6 nM Serum [34]

AuE/PAn miRNA EIS 1 × 10−6–5 × 10−3 nM 5 × 10−7 nM Cancer cells &
blood [36]

RuO2-templated
electropolymerized PAn miRNA SWV 5 × 10−7–2 × 10−3 nM 2 × 10−6 nM Lung cancer

cells [37]

GCE/o-MWCNTs/Poly(5-
hydroxy-1,4-

naphthoquinone)
miR-141 SWV 1 × 10−6–10 nM 8 × 10−6 nM Serum [38]

PAn nanowires deposited
after hybridization miRNA Conductance

measurements 1 × 10−7–2 × 10−2 nM 5 × 10−6 nM

RNA extracted
from Hela cells

and lung
cancer cells

[39]

GCE/PAn AFP DPV 0.01–1 ng mL−1 3.7 × 10−6 ng mL−1 Serum [42]
Polythiols/AuNPs CEA DPV 1 × 10−6–10 ng mL−1 15 × 10−9 ng mL−1 Serum [43]

GCE/Poly(carboxybetaine
methacrylate)/PAn CEA DPV 1 × 10−5–0.1 ng mL−1 3.05 × 10−6 ng mL−1 Serum [46]

GCE/AuNPs/PEDOT/Peptide CA 15-3 DPV 1 × 106–1 × 1012 nU mL−1 3.2 × 102 nU mL−1 Serum [47]
ITO/Poly(triphenylamine

rhodanine-3-acetic
acid-co-3,4-ethoxylene

dioxy
thiophene)/MoS2/Peptide

Matrix
metalloproteinase-1 CV 1 × 10−3–1 × 10−2 ng mL−1 1 × 10−3 ng mL−1 Lung cancer

cells [48]

AuE/PPy/Polydendrimer Phosphosglucose
isomerase CA 1 × 10−3–1 × 103 nM 4.3 × 10−5 nM Human plasma [49]
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Table 1. Cont.

Electrode Material Biomarker Sensing
Technique Linear Range Limit of Detection Real Sample Ref.

SPE/Au/reduced GO/
Poly(2,2:5,2-

terthiophene-3-(p-benzoic
acid))/Pd

Serotonine &
dopamine DPV 20–2 × 105 nM

& 100–2 × 105 nM 2.5 & 24 nM Breast cancer
cells [51]

Biotin-doped PPy
nanowires CTC CA 10–104 cells 10 cells Cancer cells [54]

PEDOT/peptide CTC DPV 50–106 cells mL−1 17 cells mL–1 Breast cancer
cells [55]

AuE/PPy IL-8 mRNA
& IL-8 protein CA 5 × 10−6–5 × 10−4 nM

& 1 × 10−4–12.5 ng mL−1
3.9 × 10−3 nM

& 7.4 × 10−3 ng mL−1 Saliva [61]

Poly(vinyl ferrocene
-2-aminothiophenol)/Au AFP & CEA DPV 0.01–100 ng mL−1 3 × 10−3 & 6 × 10−3 ng mL−1 Serum [62]

6. Summary and Outlooks

The development of biosensors for the early detection of cancer biomarkers has
been reported in recent years by focusing on the sensitive detection of DNAs, miRNAs,
enzymes, proteins, etc., related to the presence of cancerous cells in the human body.
Although electrochemical biosensors are able to provide rapid and continuous detection,
the practicability of the electrochemical methods is restricted due to biofouling effects and
thereby limited stability. Researchers are currently devoting great efforts to achieve the
maximum sensitivity and selectivity of biosensors and to avoid the biofouling effect from
proteins and biomolecules present in blood serum samples during practical applications.

CPs and their composites have been the subject of intensive studies, particularly
in the development of electrochemical sensors, for the ultrasensitive detection of cancer
biomarkers. Their large surface area, porosity, and the presence of functional groups
provide CPs with binding sites suitable for capturing biomarkers, as well as enabling
sensitive and easy detection. Consequently, CPs have been found to act as excellent
electrode materials able to immobilize a wide range of molecular recognition elements
allowing for the ultrasensitive recognition (with LOD as low as 0.5 fM) of DNAs, miRNAs,
proteins, enzymes, neurotransmitters, as well as whole cancer cells (LOD of 10 cells). More
importantly, functionalized CP surfaces have been found to limit the biofouling effect,
allowing for sensitive detection in real patient samples. The anti-fouling property of a
sensor material is a supreme character in the practical applications of biomarker detection.
Similarly, from the development of biosensors for a single biomarker, researchers have now
reached the stage where a single biosensor can detect multiple biomarkers at a time. In this
way, it is possible to provide the detailed encryption of the cancerous initiation and growth.
Additionally, CPs furnish the direct cell capturing and sensing, which will make the cancer
diagnosis more accurate and efficient. Nevertheless, apart from the laboratory methods,
no devices are reported elsewhere for the point of care diagnosis of cancer biomarkers.
The fabrication of stable, sensitive, selective and antifouling cancer biomarker biosensing
devices, particularly those based on CPs, is expected to be a positive new development in
the field of cancer diagnosis to replace the conventional analytical methods.

Author Contributions: Conceptualization, K.K.; writing—original draft preparation, J.K. and M.S.;
writing—review and editing, K.K.; visualization, K.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Science Center in Poland, grant number 2021/42/E/
ST5/00165 (SONATA bis).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest.



Biosensors 2023, 13, 31 13 of 15

References
1. Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The

European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157,
308–347. [CrossRef] [PubMed]

2. Davies, P.C.W.; Lineweaver, C.H. Cancer tumors as Metazoa 1.0: Tapping genes of ancient ancestors. Phys. Biol. 2011, 8, 015001.
[CrossRef] [PubMed]

3. Topkaya, S.N.; Azimzadeh, M.; Ozsoz, M. Electrochemical Biosensors for Cancer Biomarkers Detection: Recent Advances and
Challenges. Electroanalysis 2016, 28, 1402–1419. [CrossRef]

4. Bensalah, K.; Montorsi, F.; Shariat, S.F. Challenges of Cancer Biomarker Profiling. Eur. Urol. 2007, 52, 1601–1609. [CrossRef]
[PubMed]

5. Tang, Y.; Qiao, G.; Xu, E.; Xuan, Y.; Liao, M.; Yin, G. Biomarkers for early diagnosis, prognosis, prediction, and recurrence
monitoring of non-small cell lung cancer. Onco. Targets. Ther. 2017, 10, 4527–4534. [CrossRef]

6. Prajapati, D.G.; Kandasubramanian, B. Progress in the Development of Intrinsically Conducting Polymer Composites as
Biosensors. Macromol. Chem. Phys. 2019, 220, 1800561. [CrossRef]

7. Luong, J.H.T.; Narayan, T.; Solanki, S.; Malhotra, B.D. Recent Advances of Conducting Polymers and Their Composites for
Electrochemical Biosensing Applications. J. Funct. Biomater. 2020, 11, 71. [CrossRef]

8. Peng, H.; Zhang, L.; Soeller, C.; Travas-Sejdic, J. Conducting polymers for electrochemical DNA sensing. Biomaterials 2009, 30,
2132–2148. [CrossRef]

9. Aydemir, N.; Malmström, J.; Travas-Sejdic, J. Conducting polymer based electrochemical biosensors. Phys. Chem. Chem. Phys.
2016, 18, 8264–8277. [CrossRef]

10. Cho, I.H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater.
Res. 2020, 24, 6. [CrossRef]

11. Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical
Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [CrossRef] [PubMed]

12. Cui, F.; Zhou, Z.; Zhou, H.S. Review—Measurement and Analysis of Cancer Biomarkers Based on Electrochemical Biosensors.
J. Electrochem. Soc. 2020, 167, 037525. [CrossRef]

13. Sadeghi, S.J. Amperometric Biosensors. Encycl. Biophys. 2013, 61–67. [CrossRef]
14. Ouyang, J. Recent Advances of Intrinsically Conductive Polymers. Acta Phys.-Chim. Sin. 2018, 34, 1211–1220. [CrossRef]
15. Boehler, C.; Aqrawe, Z.; Asplund, M. Applications of PEDOT in bioelectronic medicine. Bioelectron. Med. 2019, 2, 89–99. [CrossRef]
16. Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater.

2014, 10, 2341–2353. [CrossRef]
17. Poole-Warren, L.; Martens, P.; Green, R. Biosynthetic Polymers for Medical Applications; Elsevier: Amsterdam, The Netherlands,

2016; ISBN 9781782421054.
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