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Abstract: Blood glucose (BG) monitoring is important for critically ill patients, as poor sugar control
has been associated with increased mortality in hospitalized patients. However, constant BG monitor-
ing can be resource-intensive and pose a healthcare burden in clinical practice. In this study, we aimed
to develop a personalized machine-learning model to predict dysglycemia from electrocardiogram
(ECG) data. We used the Medical Information Mart for Intensive Care III database as our source of
data and obtained more than 20 ECG records from each included patient during a single hospital
admission. We focused on lead II recordings, along with corresponding blood sugar data. We pro-
cessed the data and used ECG features from each heartbeat as inputs to develop a one-class support
vector machine algorithm to predict dysglycemia. The model was able to predict dysglycemia using a
single heartbeat with an AUC of 0.92 ± 0.09, a sensitivity of 0.92 ± 0.10, and specificity of 0.84 ± 0.04.
After applying 10 s majority voting, the AUC of the model’s dysglycemia prediction increased to
0.97 ± 0.06. This study showed that a personalized machine-learning algorithm can accurately detect
dysglycemia from a single-lead ECG.

Keywords: machine learning; dysglycemia; blood glucose; ECG; personalized medicine; noninvasive
blood glucose monitor

1. Introduction

Blood glucose (BG) monitoring and control are extremely important in global health
care. The incidence of hyperglycemia in critically ill patients is high. Researchers have
reported that poor sugar control is associated with increased mortality in admitted pa-
tients [1–4]. In critically ill patients, continuous glucose monitoring can prevent acute
complications such as severe hypoglycemia [5,6]. BG is typically measured using a glucose
meter after a lancing device and a test strip have been used to obtain a blood sample.
Repeated blood glucose monitoring can be resource-consuming and pose a healthcare
burden in clinical practice. Drawing blood is also a painful and distressing experience,
leading to low adherence to general practice in home healthcare [7,8].

Continuous glucose-monitoring devices have been developed for BG measurements [9].
In place of the finger-prick test, it uses a glucose probe inserted into the subcutaneous tissue
to achieve the automatic monitoring of glucose in the interstitial fluid per 5–10 min. How-
ever, the lifetime of the probe is usually limited to 3–14 days. Therefore, the development of
an affordable, noninvasive approach is necessary. Several noninvasive continuous glucose
monitoring techniques have been developed, including methods that utilize Raman spec-
troscopy, fluorescence technology, mid-infrared spectroscopy, near-infrared spectroscopy,
optical coherence tomography, optical polarimetry, and microwave planar resonant sen-
sor [10–12]. Although such devices have yielded promising results, their equipment should
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be improved to make them more accurate, convenient, comfortable to wear, and available
for personalized use at home.

The idea of using electrocardiogram (ECG) features to determine BG levels has been
previously proposed. Previous research has suggested that hyperglycemia and hypo-
glycemia are both correlated with a prolonged QT interval and decreased heart rate vari-
ability on ECG [13–15]. However, it is still difficult to identify dysglycemia based on ECG
because numerous differential diagnoses should be considered when interpreting ECG
findings.

Owing to an increase in storage ability and computing power, machine learning has
recently begun to evolve in the medical field. Machine-learning-assisted ECG interpretation
has shown promising results in distinguishing cardiac arrhythmia and predicting certain
metabolic illnesses such as hyperkalemia [16–18]. In the past few years, there has also been
a trend to use machine learning to predict hypoglycemic episodes from ECG, which has
demonstrated its potential [19]. However, a recent meta-analysis showed that machine
learning had a sensitivity of only 0.72–0.86 in predicting hypoglycemia in patients with
diabetes mellitus, which is still insufficient for clinical applications [20].

In this study, we aimed to develop a personalized machine-learning model to predict
dysglycemia, including hyperglycemia and hypoglycemia, based on ECG data. We believe
that this model can improve the clinical practice of blood glucose monitoring, optimize the
use of human resources, and improve the quality of life of patients.

2. Materials and Methods

The data collection and protocols used in this study were approved by the Institu-
tional Review Board of the Chang Gung Medical Foundation (202100362B0). The data
supporting this study’s findings are available in the Medical Information Mart for Intensive
Care (MIMIC)-III Waveform Database Matched Subset (http://doi.org/10.13026/c2294b,
accessed on 17 September 2022) [21].

2.1. Dataset Collection and Inclusion Criteria

In this study, data from the Waveform Database Matched Subset of the Medical
Information Mart from Intensive Care III (MIMIC-III) were used. The dataset contained
the recordings of 22,317 waveforms and 22,247 numerics for 10,282 distinct ICU patients
admitted to the critical care units of medical centers in the United States between 2001
and 2012 [22]. These recordings typically include digitized signals such as ECG, arterial
blood pressure, and respiration data, as well as periodic measurements such as heart rate,
oxygen saturation, and blood pressure values. The ECG signals contained in the dataset are
typically lead I, lead II, or lead V signals. This subset represents the records for identifiable
patients whose clinical records are available in the matched clinical database.

In this study, we considered patients in the MIMIC-III database for whom at least 20
BG records were made during a single hospital admission. Patients with atrial fibrillation
or an implanted pacemaker were excluded from the study. Patients with less than five
dysglycemia data points during a single hospital admission were also excluded. We
defined two classes of BG levels: dysglycemia for BG > 200 mg/dL or BG < 70 mg/dL, and
euglycemia for BG between 80 and 180 mg/dL. ECG signals corresponding to BG values in
the ranges of 70–80 and 180–200 were not considered during training in this study to ensure
that no consecutive heartbeats would be considered as both hypoglycemia and euglycemia
or both euglycemia and hyperglycemia.

2.2. Training and Validation Dataset

We randomly selected 10 euglycemic BG data from included patients, along with
the corresponding lead II ECG records, as the training dataset for developing a one-class
machine-learning model. We then randomly selected five euglycemic and five dysglycemic
BG data points from the rest, along with their corresponding ECG records, as the validation
dataset. We defined a corresponding ECG of one BG data point as the signal within a
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10 min period before the storage time of the BG record. So, the training dataset for each
patient would be 10 ECG strip of total 100 min.

2.3. ECG Segmentation and Feature Extraction

The MIMIC-III database contains one-dimensional digital ECG records with a resolu-
tion of 125 samples per second and an amplitude quantization of microvolts (µV). These
signals were used in our study to develop a personalized model for non-invasive BG
monitoring. We retrieved the corresponding ECG signals and segmented each ECG record
into multiple heartbeats with 1 s segments based on the R-peak position in the ratio of 2:3.
Therefore, each heartbeat segment contained 50 samples and 75 samples before and after
the R-peak position, respectively. R-peak was capture using BioSPPy 0.6.1 software, which
receive input of 10 min ECG strip and output the location of R-peak position from multiple
cardiac cycles [23]. The segmented heartbeat was first manually inspected to exclude those
with a high level of ECG signal noise. This process helped to reduce model overfitting and
deviation as a result of noisy data.

Following heartbeat segmentation, we managed segmented ECG by PyWavelets
software to generate a signal amplitude change list for each cardiac cycle [24]. We then
identified the position of P, Q, S, and T point base on amplitude difference base on their
order of location to R-peak. Afterward, ECG features related to the P-Q-R-S-T point position
correlations, which included the amplitude, interval, and slope gradient between two of the
five points in one heartbeat ECG cycle, were extracted. Furthermore, ten interval features
(Figure 1a) and 15 amplitude features (Figure 1b,c) were extracted. The R-peak interval to
the next heartbeat was collected as an input feature.
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Figure 1. The extracted features from one heartbeat ECG cycle. (a) Features of 10 different intervals,
(b) features of 10 different amplitude, (c) features of 5 different slope gradients.

2.4. Machine-Learning Algorithm

In this study, we developed a one-class support vector machine (Oc-SVM) algorithm
to predict dysglycemia based on ECG features. SVM is a machine-learning algorithm that
can create a nonlinear decision boundary by projecting data through a nonlinear function
onto a space with a higher dimension. Thus, the data points that could not be separated by
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a straight line in their original space were shifted to a feature space where there could be
a straight hyperplane demarcating the data points of two classes. When the hyperplane
was projected back onto the input space, it had the form of a nonlinear curve. The Oc-SVM
is typically applied to specific tasks, such as anomaly detection or fault detection, where
positive cases are difficult to collect during the training process. In our study, it was trained
using ten normal BG datasets with their corresponding ECG heartbeats.

2.5. Statistical Analysis

Data are presented as mean (standard deviation (SD)) for continuous variables, pro-
portions for nominal variables, and median (interquartile range) for ordinal variables. The
model was evaluated based on accuracy, sensitivity, specificity, and area under the receiver
operating characteristics curve (AUC). From the clinical perspective, sensitivity was con-
sidered more relevant than specificity because it showed how accurately hypoglycemia
and hyperglycemia events were identified. Thus, when comparing different models, the
sensitivity was considered more important.

When training the model, the inputs of the SVM model and its output prediction
were based on segmented heartbeats. In clinical applications, predicting dysglycemia for
every heartbeat is undesirable, and the result may fluctuate, which makes it difficult to
follow. Generating a prediction every 10 s, which is represented by a standard ECG, is
more feasible. Therefore, we also evaluated the model’s performance in a 10 s window of
time by taking the majority class of the heartbeat predictions in that specific timeframe.

3. Results

In this study, we used 50 patients from the MIMIC-III database for the analysis (Table S1).
Their median age was 64 (55–72) years old, with 27 (54.0%) being male. Majority of them were
white (58.0%). Many of them were on ICU admission diagnosed with cardiovascular disease
(26.0%), neurological disease (22.0%), respiratory disease (14.0%), infectious diseases (12.0%),
gastrointestinal disease (8.0%), metabolic disease (8.0%), and others. Other demographic
characteristics are presented in Table 1.

Table 1. Demographics of the included patients.

Variables Median (IQR)/N (%)

Age, median (IQR) 64 (55–72)

Male, n (%) 27 (54.0)

Race

White 29 (58.0)

Black 10 (20.0)

Asian 2 (4.0)

Latino 2 (4.0)

Height (cm), median (IQR) 172 (163–180)

Weight (Kg), median (IQR) 83.6 (70.2–96.3)

BMI, median (IQR) 27.9 (25.4–29.7)

Diagnosis at admission

Cardiovascular 13 (26.0)

CNS 11 (22.0)

Respiratory 7 (14.0)

Infectious 6 (12.0)

Gastrointestinal 4 (8.0)

Metabolic 4 (8.0)

Others 5 (10.0)

IQR: Interquartile Range, BMI: Body Mass Index, CNS: Central Nervous System.

To clarify the relationship of ECG features to BG change, we reported the statistical
differences of selected ECG features between normal and dysglycemia from the training
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data of included patients. In general comparison, ECG manifestation in dysglycemic status
was associated with P–R, P–Q, R–S, S–T, and Q–T interval. R–R interval was shortened
(0.74 ± 0.52 vs. 0.66 ± 0.50, p < 0.001) in dysglycemia indicated higher heart rate. Compare
to normal, dysglycemia was also associated with lower amplitude of R wave, including
Q–R amplitude (0.68 ± 0.46 vs. 0.56 ± 0.43, p < 0.001) and R–S amplitude (0.75 ± 0.56 vs.
0.71 ± 0.49, p < 0.001). Other characteristics of ECG morphology to BG change are shown
in Table 2.

Table 2. Statistical differences of selected ECG features between normal and dysglycemia.

Normal Dysglycemia p-Value

R–R interval (s) 0.74 ± 0.52 0.66 ± 0.50 <0.001
P–Q interval (s) 0.13 ± 0.07 0.16 ± 0.09 <0.001
Q–R interval (s) 0.08 ± 0.06 0.07 ± 0.05 <0.001
R–S interval (s) 0.04 ± 0.03 0.05 ± 0.03 <0.001
S–T interval (s) 0.25 ± 0.08 0.32 ± 0.09 <0.001
P–R interval (s) 0.21 ± 0.09 0.23 ± 0.10 <0.001
Q–T interval (s) 0.37 ± 0.13 0.44 ± 0.15 <0.001
P–Q amplitude (mV) 0.13 ± 0.05 0.15 ± 0.07 <0.001
Q–R amplitude (mV) 0.68 ± 0.46 0.56 ± 0.43 <0.001
R–S amplitude (mV) 0.75 ± 0.56 0.71 ± 0.49 <0.001
Q–S amplitude (mV) 0.07 ± 0.05 0.05 ± 0.04 <0.001
S–T amplitude (mV) 0.64 ± 0.43 0.58 ± 0.34 <0.001
P–R slope (mV/s) 0.61 ± 0.58 0.81 ± 0.79 <0.001
P–Q slope (mV/s) −1.14 ± 0.53 −1.08 ± 0.58 <0.001
Q–S slope (mV/s) −0.31 ± 0.27 −0.12 ± 0.08 <0.001
S–T slope (mV/s) 5.92 ± 5.91 4.64 ± 4.95 <0.001
R–T slope (mV/s) −0.68 ± 0.60 −0.58 ± 0.68 <0.001

s: second; mV: mini-Volt.

During training, each patient was assigned a model weight based on the training
data. Individual Oc-SVM models with the same hyperparameters were developed for
the patients. The kernel function selected was a linear SVM. The “ν” argument indicates
an upper bound on the fraction of training errors and a lower bound of the fraction of
support vectors, and was set to 0.75 to provide better sensitivity for dysglycemia during
the prediction.

The prediction performance of the developed models for all the patients is presented in
Table S2. The prediction performance for a single heartbeat and for a 10 s strip are presented
in Tables S1 and S2. The model prediction for dysglycemia from a single heartbeat had
an AUC level of 0.92 ± 0.09 (Figure 2a), with a sensitivity of 0.92 ± 0.10 and specificity of
0.84 ± 0.04. The positive predictive value (PPV) for a single heartbeat was 0.85 ± 0.03, and
the negative predictive value (NPV) was 0.92 ± 0.09. Based on 10 s majority voting, the
AUC of the model prediction for dysglycemia increased to 0.97 ± 0.06 (Figure 2b). Other
performance measurements are presented in Table 3.

Table 4 demonstrates the F-score as feature importance of the developed Oc-SVM
model of all the included patients. In linear SVM, the model is trained to find a hyperplane
boundary that separates the classes as best as possible. The coefficients are the weights
represent this hyperplane, by giving you the coordinates of a vector which is orthogonal
to the hyperplane. The longer the vector, the bigger the importance of feature. The most
important ECG feature for predicting dysglycemia was the R–R interval, followed by the
R–S, P–T, Q–R, Q–R, S–T, R–T, and R–S intervals.
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Table 3. Performance of model prediction based on single heartbeat and 10 s majority voting.

Oc-SVM AUC Sensitivity Specificity PPV NPV

Single heartbeat 0.92 ± 0.09 0.92 ± 0.10 0.84 ± 0.04 0.85 ± 0.03 0.92 ± 0.09
10 s 0.97 ± 0.06 0.97 ± 0.09 0.96 ± 0.04 0.96 ± 0.04 0.97 ± 0.09
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Table 4. Feature importance of Oc-SVM model in predicting dysglycemia.

ECG Features F-Score

R–R interval 591

R–S amplitude 271

P–T amplitude 153

Q–R amplitude 150

Q–T interval 98

S–T slope 97

R–T amplitude 76

R–S interval 76

P–S amplitude 72

P–Q amplitude 69

P–R slope 69

R–T slope 69
The F-score was calculated based on single heartbeat average from included patients.

4. Discussion

In this study, we aimed to develop a personalized machine-learning algorithm to
recognize dysglycemia from an ECG recording using only the lead II ECG record. Using
personalized data, we found that the Oc-SVM model could accurately predict dysglycemia
from a single heartbeat, with a high AUC of 0.92, which increased to 0.97 when using 10 s
majority voting. In our exploration of the research, we also assessed the use of a one-class
neural network. We found that the network architecture, including the number of layers
and the number of neurons in each layer, had to be adjusted for different patients in order
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to achieve optimal performance. However, this made future deployment more difficult, as
manual tuning of hyperparameters would be required for each individual. Additionally,
the performance of the one-class neural network was not superior to that of the Oc-SVM
method. As a result, we only reported the results of the Oc-SVM in our study.

The most common method for BG testing is finger-stick glucose monitoring, which is
not only invasive but also cumbersome and expensive, leading to poor patient compliance
for glucose measurement [25]. In addition, it does not allow continuous monitoring.
Continuous glucose-monitoring devices have been developed to replace the finger-prick
test. So far, the development of a more affordable, noninvasive approach is still in progress.
Several noninvasive continuous glucose monitoring techniques have been developed
and show promise, but their equipment needs to be improved for accuracy, convenience,
comfort, and availability for personal use at home.

An ECG can reflect significant amount of information about the electrical activity of the
heart. In the past decade, wearable noninvasive sensors have been developed for tracking
cardiac signals. ECG revealed the function of the cardiovascular system and changes in
the sympathetic and parasympathetic nervous systems, which are associated with changes
in BG levels. ECG signals can be easily obtained through wearable devices, such as smart
watches; thus, the ECG-based approach can be used for real-time monitoring of daily life,
especially for high-risk individuals [26].

Our work demonstrated ECG morphology change in dysglycemia that correlates
with previous studies (Table 2). Considering interval change, dysglycemia was associated
with prolongation of QT interval. This finding was documented in several previous
research where QT prolongation was found in both hyperglycemic and hypoglycemic
status, and was associated with increasing mortality in critical ill patients [27,28]. Other
electrophysiologic alterations created by dysglycemia include ST-segment depression and
T-wave flattening, and were also demonstrated by our statistical analysis by showing
decreased ST amplitude in dysglycemia. Higher heart rate was also found in dysglycemic
status. In previous studies, both hypoglycemia and hyperglycemia allowed a faster heart
rate [29]. As a group of data, these values of R-R interval may show the variability of heart
rate. Thus, the collection of these ECG features can help in building up a machine-learning
model for dysglycemia prediction.

Several methods have been proposed for the use of an ECG to detect dysglycaemic
events. Based on an ECG, Ling et al. proposed a hybrid neural logic approach that detected
hypoglycemic events with an average sensitivity of 79.07% and a specificity of 53.64% [30].
Using a deep belief network for the detection of hypoglycemic episodes in diabetes patients,
San et al. achieved sensitivity and specificity values of 80.00% and 50.00%, respectively [31].
Cordeiro et al. evaluated ECG data from 1119 patients and found that a 10-layer-deep
neural network was effective in detecting hyperglycemia, with an AUC of 94.53%, 87.57%
sensitivity, and 85.04% specificity [32].

However, this research was conducted to detect hypoglycemia or hyperglycemia
only. Very few studies have detected ECG changes indicating the hypoglycemic and
hyperglycemic states. Although Nguyen et al. revealed that ECG parameters could be used
to identify hypoglycemia and hyperglycemia in patients with type 1 diabetes, they did
not develop an AI model to detect dysglycemic events [33]. Cordeiro et al. developed a
deep learning model that was able to detect hyperglycemia with an AUC of 0.95, which
showed promise [32]. However, there were some differences between their study and ours.
First, we collected data from an ambulatory ECG monitor, whereas Cordeiro et al. used
simulated lead I data from a wearable device. Second, it was not clear whether Cordeiro
et al. mixed cardiac cycle data from same ECG readings in their training and validation
sets, which could have inflated their results. In contrast, we strictly separated our training
and validation data.

Most of the studies described above attempted to detect dysglycemia through noninva-
sive monitoring using features extracted from ECG signals from generalized data. To date,
only a limited number of studies have been conducted to detect dysglycemia using person-
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alized ECG signals. Porumb et al. demonstrated that a convolutional neural network-based
model can detect hypoglycemic events from personalized raw ECG signals recorded using
noninvasive wearable devices with a sensitivity of 87.5% and specificity of 81.7% [34]. To
the best of our knowledge, the proposed personalized model for simultaneously detecting
both hyperglycemia and hypoglycemia is novel. With ECG signal detection using a 10 s
window, the model performance yielded high AUC, sensitivity, and specificity values of
0.97, 0.97, and 0.96, respectively. In addition, instead of using a multiple-lead ECG, we
used only a single-lead ECG for signal acquisition. Because consumer wearable devices
with ECG-reading capabilities, such as smart watches, are becoming easily accessible, this
technique can be useful to the general public.

BG concentration affects the electrical activity of the heart [35]. Blood heart rate
variability (HRV), a representative cardiovascular autonomic function, is considered to
be significantly modulated by BG levels. Bekkink et al. demonstrated that hypoglycemic
events are related to an increase in the low-frequency (LF)/high-frequency (HF) ratio and a
decrease in the square root of the mean standard differences of successive R-R intervals [36].
Amanipour et al. observed a six-fold decrease in the LF/HF ratio with hyperglycemia [37].
The QT interval is also recognized as one of the most common features of cardiopathy
assessment in dysglycemia [38]. Robinson et al. demonstrated that hypoglycemia could
lead to QTc and QTd lengthening from baselines of ~75 ms and 55 ms, respectively [39].
Among 8277 participants, Arnaud et al. found that severe hypoglycemia was associated
with an increased risk of QTc prolongation, independent of other risk factors such as
cardiac autonomic neuropathy [40]. Pickham et al. revealed that elevated glucose levels of
140–180 mg/dL corresponded to 2.1 odds of QTc interval prolongation. The odds are 3.8
for glucose levels above 180 mg/dL [28]. In a population-based study, impaired fasting
serum glucose levels led to significant QTc lengthening and RR interval shortening, and
both phenomena were associated with an increased risk of sudden cardiac death [41]. ECG
changes in response to hypoglycemia include an increased QTc interval, decreased PR
interval, increased R-wave amplitude, decreased T-wave amplitude, and ST depression [42].
In cases of hyperglycemia, other ECG abnormalities, such as significant increases in the
PR interval and shorter mean RR intervals, have been reported [43,44]. For additional
information, we ranked the results of the variables by their importance. This would enable
a clinical physician to recognize the part of the ECG signal significantly associated with
dysglycemia. In our study, the most important ECG feature for predicting dysglycemia was
the R-R interval, followed by the R-S, P-T, Q-R, Q-R, S-T, R-T, and R-S intervals (Table 4).

Our study has several limitations. In this study, we developed a personalized Oc-SVM
model using a limited number of data points. In real-world applications, it would be
necessary to gather multiple samples of dysglycemic ECG signals from a user. Despite
being based on an open-source database, our results suggest the potential for non-invasive
BG monitoring using this method. Second, although HRV is associated with dysglycemia,
it is difficult to measure HRV from a single heartbeat. We used the R-R interval, which
reflects heart rate and is inversely associated with HRV, as an input feature, but this may
not be sufficient to capture HRV accurately. Third, we did not differentiate between hyper-
glycemia and hypoglycemia in our model predictions. Previous studies have shown that
these conditions may be associated with similar ECG changes, making them difficult to
distinguish from each other. In addition, one-class algorithms are suitable for predicting
abnormal events from patterns of normal data, but they may not be suitable for differen-
tiating two minority classes, hyper- and hypoglycemia in this scenario. Collecting ECG
signals might be challenging owing to their sensitivity to diverse environmental stresses,
which could affect the quality of the data. However, wearable devices have been shown
to achieve high diagnostic accuracy [45]. Further research should be conducted using the
ECG signals from wearable devices.
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5. Conclusions

We developed a personalized machine-learning algorithm with Oc-SVM that can de-
tect dysglycemia from only lead II ECG records. This noninvasive, continuous monitoring
method had a high AUC of 0.97. Since it only requires a single-lead ECG for signal acquisi-
tion, it is expected to be easily accessible to the general public. Additionally, ranking ECG
features using the Oc-SVM model would allow physicians to identify which components
of the ECG signal are significantly associated with dysglycemia.
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