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Abstract: Metabolic syndrome is a complex of interrelated risk factors for cardiovascular disease and
diabetes. Thus, new point-of-care diagnostic tools are essential for unambiguously distinguishing
MetS patients, providing results in rapid time. Herein, we evaluated the potential of Fourier transform
infrared spectroscopy combined with chemometric tools to detect spectra markers indicative of
metabolic syndrome. Around 105 plasma samples were collected and divided into two groups
according to the presence of at least three of the five clinical parameters used for MetS diagnosis. A
dual classification approach was studied based on selecting the most important spectral variable and
classification methods, linear discriminant analysis (LDA) and SIMCA class modelling, respectively.
The same classification methods were applied to measured clinical parameters at our disposal. Thus,
the classification’s performance on reduced spectra fingerprints and measured clinical parameters were
compared. Both approaches achieved excellent discrimination results among groups, providing almost
100% accuracy. Nevertheless, SIMCA class modelling showed higher classification performance between
MetS and no MetS for IR-reduced variables compared to clinical variables. We finally discuss the
potential of this method to be used as a supportive diagnostic or screening tool in clinical routines.

Keywords: metabolic syndrome; infrared spectroscopy; point of care; metabolic signatures; chemo-
metrics; classification strategy; health and wellbeing monitoring

1. Introduction

The high prevalence of non-communicable diseases (NCD) in adults is reflected in
increased costs for public health systems worldwide [1]. Among these NCD, metabolic
syndrome (MetS) plays a significant role. MetS is often associated with an increased risk
of diabetes and cardiovascular disease, resulting in increased incidence of morbidity and
mortality and reduced quality of life [2-6]. Thus, the commensurate prevalence of metabolic
syndrome burdens national health expenditure, representing a significant socio-economic
problem, particularly in low- and middle-income countries [7-10]. However, MetS is a
multifactorial disorder accompanied by conflicting opinions on its definition [11-13]. In
particular, many different definitions have been proposed to describe MetS in adults. The
main discrepancies were associated with inclusion and exclusion criteria adopted according
to the World Health Organization (WHO), National Cholesterol Education Program (NCEP),
Adult Treatment Panel III (ATPIII), and International Diabetes Federation (IDF). Finally, in
2009, the definition for metabolic syndrome was harmonised [14]: MetS is a disease formed
by metabolic and vascular abnormalities, namely insulin resistance (IR), visceral adiposity,
atherogenic dyslipidaemia, and oxidative and endothelial dysfunction. These risk factors
easily predispose hyperglycaemia and hypertension, atherosclerotic vascular diseases and
viral infection [15-18].

Given the complex and intertwined nature of MetS, it would be utopian to think that
a single biomarker could define it unambiguously. Thus, parameters concerned around
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central obesity (waist circumference (WC)), hypertension (blood pressure), atherogenic
dyslipidaemia (small low-density lipoprotein (LDL) and levels of high-density lipoprotein
(HDL) cholesterol), and insulin resistance (fasting glucose levels) are usually measured to
evaluate MetS diagnosis [19]. Due to the heterogeneity of these factors, people affected
by metabolic syndrome are three times more likely to suffer acute myocardial infarction,
cerebrovascular events, diabetes, or stroke. In addition, they have higher mortality rates [20].
Besides the economic impact, misdiagnosis or tardive diagnosis could lead not only to
inefficient treatment outcomes but even to significant dysfunctions such as cancer [21,22].
Thus, early and proper diagnosis plays a crucial role in delaying the pathology’s onset or
progression as much as possible and improving a patient’s condition.

Today, MetS diagnosis is based on several steps such as measuring metabolic mark-
ers of insulin resistance and other indices of metabolic syndrome (triglycerides, HDL
cholesterol levels, and blood glucose) that are obtainable from routine clinical biochemistry
laboratories, whereas blood pressure is measured in primary care [23]. The collection
and analysis of samples also entails a waiting time for laboratory results and additional
time for a new medical consultation. Although the proposed definition of MetS shares
some common features, the clinical diagnosis lacks standardisation. On that basis, it was
proposed that individuals showing a combination of any three out of these five simple
clinical criteria were likely to be characterised by insulin resistance. Prospective analyses
have also shown that any combination of these factors was predictive of an increased risk
of both type 2 diabetes and cardiovascular disease. First, it is still challenging to identify a
unified criteria for MetS applicable across all ethnicities. In addition, the contribution of
each parameter seems to have different importance based on the evaluation adopted in
each clinical environment (e.g., diagnosis focussed on glucose tolerance instead of obesity
cut-offs). Moreover, there is variation in the cut-off values of diagnostic inclusion criteria
(>140/90 mmHg according to WHO vs. >130/85 mmHg according to ATP III for blood
pressure). The application of MetS diagnosis in clinical practice could also be compromised,
since most patient registries have missing data, limiting a study’s accuracy or leading to
false-positive results. In addition, measurements such as WC, one of the predominant
parameters for defining MetS, are not always feasible in patients because the diagnosis can
often be limited by the patient’s inability to perform a complete physical examination.

Given these perspectives, the need for standardised clinical diagnostic tools and protocols
becomes imperative in the prevention and diagnosis of MetS. For this reason, analysing global
metabolic profiles instead of disparate clinical measurements could be essential in shedding
light on MetS disarrangements. A multifactorial and complex pathology such as MetS seems
to require an approach from a holistic functional perspective, so an analysis of metabolic
profiles reflecting the global clinical status of a patient could represent a suitable alternative.

By now, metabolomics plays a key role as a powerful analytical tool that has been widely
applied to investigate plenty of disorders and disarrangements [24-26]. Metabolomics analy-
sis has the potential to discover biomarkers and allow for the detection of a wide range of
metabolites. In recent years, there has been a great interest in extracting biomarkers from
biofluids and, considering that blood is a biofluid containing numerous valuable metabolic
information, it seems that it in particular, it appropriately reflects metabolic changes and
disarrangements during disease initiation or progression [27,28]. In this context, tech-
niques based on vibrational spectroscopy are particularly suitable as sample preparation
is simple, non-invasive, rapid, and low-cost [29]. Therefore, the Fourier transformed in-
frared spectroscopy (FTIR) technique has been established as a reliable analytical tool in
metabolomic-based studies [30-34]. Moreover, another significant advantage resides in the
fact that FTIR is ideally suitable for acquose matrices such as blood [35,36]; the instrument
requires the collection of only one blood sample, with little or almost null pre-treatment. In
this study, we proposed an FTIR-based method that investigates many components at a
time, which are registered as spectral signatures. The development of a chemometric strat-
egy capable of extrapolating the most significant infrared (IR) signatures plays a crucial role
in this study, since each spectrum is unique for every patient and reflects their metabolic
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status. Non-targeted metabolomic studies, such as the one presented here, aim to extract
the metabolic signatures instead of individual biomarkers with limited potential, and
this permits the classification of patients according to their molecular patterns, reflecting
clinical/pathological conditions such as MetS or no MetS.

This method could greatly support clinicians, capturing the complexity of the MetS
metabolic profile when the clinical indicators are missing or lacking sufficient discrimi-
native power, revealing the globality of physiological disturbances. We do not want to
underestimate the importance of clinical diagnosis at any time. Still, our main aim is to
propose an alternative analytical strategy that could be of great diagnostic relevance and
support, limiting the time and cost of clinical measurements.

2. Materials and Methods
2.1. Study Population

A total of 105 plasma samples from anonymous donors were recruited from Infectious
Disease Area, Center for Biomedical Research of La Rioja (Logrofio, Spain). This study
was approved by the Committee for Ethics in Drug Research in La Rioja (CEImLAR)
(23 April 2013, reference number 121) and a written informed consent was achieved from
all participants. The patients were evaluated by the NCEP-ATP-III scale and, if eligible,
were assigned to a metabolic syndrome category. MetS was defined as the concomitant
presence of at least three of the following risk factors: elevated TGL (>150 mg/dL), low
concentrations of the fraction HDL cholesterol (<50 levels mg/dL in women or <40 mg/dL
levels in men), increased WC (>88 cm in women or >102 cm in men), elevated blood
pressure (>130/85 mmHg), and elevated fasting glucose (>110 mg/dL or diabetes) [37].
Thus, the patients were divided into two groups by the criteria of MetS: 19 patients tested
as MetS positive and 86 as MetS negative. The patients enrolled in this study were also
characterised by the presence of viral load through serological evidence of HIV or co-
infection of HIV/HCV. A correct distribution between patients with and without infection
in both categories has been ensured to not introduce bias in future models developed for
diagnosing MetS.

2.2. Sample Collection

Once drawn, the venous blood samples were centrifuged at 2200x g for 15 min at
4 °C and the obtained plasma were transferred into a clean Eppendorf tube. Aliquots of
200 uL of each sample were stored at —80 °C until the day of the analysis. Before FTIR
measurements, plasma samples were defrosted during the night according to the optimised
ultrasound-based protocol for lipidomic analyses developed in our research group [38].

2.3. Method

FTIR spectroscopy measurements were performed by a Spectrum-One ABB Miracle
Type MB3000 FI-IR Spectrophotometer using a PerkinElmer liquid cell (Omni Cell, Specac
Ltd., Orpington, UK) with CaF, windows separated with a 50 um Mylar spacer. The spectra
from 25 uL of each plasma sample were recorded in the mid-IR region (4000-300 cm 1)
in triplicate. A mean spectrum was subsequently obtained from the replicates recorded
for each plasma sample. The sample temperature was maintained at 23.0 = 1.0 °C, and
a constant N, purge was applied for atmospheric water vapour and CO, suppression.
A resolution of 2 cm~! was obtained using 32 scans. In order to monitor the stability and
reproducibility of the analytical system, quality control (QC) samples were processed similarly
to the actual samples and inserted regularly. In addition, the instrument performance was
verified at the beginning of each day of data collection using PE-specific reference standards.

2.4. Data Analysis

After data acquisition, the processing and computational analysis of raw metabolic
data was performed using Unscrambler (version X 11.0, Camo ASA, Oslo, Norway), V-
Parvus (version PARVUS2011, Michele Forina, Genoa, Italy), and Matlab (MATLAB 9.4
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R2018a). Two different regions of the mid-IR spectrum were analysed: the first region
examined was the biochemical “fingerprint region” at 1500-1050 cm ™!, and the second
was a higher region at 29050-2700 cm~!. Remaining wavenumber ranges, as they were
affected by signal saturation effects caused mainly by strong water absorptions or noise,
were removed, and not considered for further analysis. Given the high dimensionality of bi-
ological spectral data, many disturbing factors influence the spectral data acquisition, such
as random noise, baseline distortions, or light scattering. Thus, the pre-processing step is
imperative in analysis to reduce these factors. To compensate for instrumental artefacts and
sample to sample variations, different pre-processing methods were evaluated individually
or in combination to minimise the adulterant-unrelated variability, namely derivatives (e.g.,
Savitzky—Golay (5-G) first and second derivatives), standard normal variate (SNV), and
extended multiplicative scatter correction (EMSC). Thus, better resolution of overlapping
peaks and decreased scatter effects were ensured after applying the combination (S-G)
smoothing and SNV.

The entire data set was split into two independent subsets to develop and validate
the classifications proposed: a training set with 95 samples (used to optimise and develop
the classification rules and models) and a test set with ten samples (never used in the
construction of the classification but to evaluate their actual predictive ability). The test set
used was the same for all methods applied and classifications developed. As a result, the
smoothed and normalised output tables were always centred before additional multivariate
analysis and classification algorithms.

3. Results and Discussion

After careful pre-processing, FTIR measurements were submitted for further multivari-
ate analysis. Thus, five measured clinical variables and a total of 838 spectra variables over
the wavelength ranges of 1583-1050 cm~! and 2973-2700 cm ! collected from 105 patients
were included. The two main categories of this study were patients with and without
metabolic syndrome, i.e., MetS and no MetS, respectively.

3.1. Descriptive Statistics

Herein, an analysis was performed based on the distribution of five clinical parameters.
It should be noted that one of the most critical clinical measurements, waist circumference,
was not included in this study because most patients had missing data in the clinical register.
Therefore, only parameters that were available for all patients have been used for the further
comparative classification step. Thus, the descriptive statistics were calculated to analyse
the distribution of clinical data in a box and whisker plot (Figure 1). The plot shows that
TGL values seem to have more influence and variability between the two categories of
patients; indeed, MetS patients have significantly higher values ranging from a minimum
of 33 to 338 (mg/dL). The general distribution trend indicates that MetS patients also have
slightly higher diastolic and systolic blood pressure values and glucose levels, whereas
HDL values are lower, ranging from 25 to 95 (mg/dL). Table 1 shows the ranges of the
collected values with the respective medians between the two categories.

Table 1. The distribution of the clinically measured parameters in MetS and no MetS patients
expressed in mg/dL and in mmHg,.

Category MetS No MetS
Clinical Parameters Max Min Mean Max Min Mean
Systolic blood pressure 174 120 136 178 94 126
Diastolic blood pressure 109 75 87 115 61 79
Triglycerides 338 88 242 215 33 109
HDL 58 25 37 95 29 55

Glucose 164 82 114 123 63 91
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Figure 1. Box and whisker plot showing the distribution of clinical values levels in patients with MetS
and no MetS. The line located in the middle of the box represents the median and is used to better
visualise the differences between clinical parameters: triglycerides (TGL) levels are displayed in
orange (m); high density lipoprotein (HDL) in violet (m); systolic pressure (SP) in yellow ( ); diastolic
pressure (DP) in green (m); and glucose (GLU) in blue (m).

3.2. Exploratory Analysis with PCA

An unsupervised pattern recognition method based on principal component analysis
(PCA) was performed for the initial data overview and to investigate any possible clustering of
samples based on five collected clinical parameters and 838 spectral variables, respectively.

The PCA score plot of clinical parameters, with 50.46% of explained variance by PC1,
displays evident clustering according to known categories, delimitated by the parallel to
the bisector of the second quadrant (Figure 2). Whereas PCA performed on pre-treated IR
spectra accounted for 83.12% of explained variability on the PC1, evidenced by very subtle
clustering between known categories (Figure 3).

In both cases, the first PCs explained most of the data’s variability. The distribution
of samples in principal component space suggests that it only seems possible to address
subsequent, direct discrimination in the case of analysis of clinical parameters. Thus,
parameters such as TGL and GLU majorly contributed to the segregation of no MetS
from MetS and the values of HDL contributed to the separation of MetS from no MetS,
as was shown in preliminary analysis by descriptive statistics. No evident clustering
among the two main categories was observed performing PCA on spectral variables; only
a few outliers were determined and excluded from further analysis. The high degree of
overlapping features among the two classes was expected, as most blood components
are common in all individuals. This also indicates the need to perform a selection of
relevant spectral variables, closely related to clinicopathological parameters of prognostic
importance in MetS. Therefore, other chemometric strategies were used to investigate and
highlight metabolomic differences in metabolic syndrome using IR spectra.
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Figure 2. Scores for the plasma samples on the first two principal components explaining the
variability in the dataset of five measured clinal parameters. The samples are labelled according to
their specific pathology: no MetS (m), MetS (m), and external test samples (m).
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Figure 3. Scores for the plasma samples on the first two principal components explaining the
variability in the IR spectral dataset. The samples are labelled according to their specific pathology:
no MetS (m), MetS (m), and external test samples (m).

3.3. Supervised Techniques

The selection of variables in tandem with classification methods to extract reduced
IR fingerprints that reflect the metabolic profiles of patients for a potential MetS diagnosis
was studied. Therefore, a dual approach was applied based on a classification method on
the one hand and a class modelling method on the other.

For its part, discriminant techniques focus on the differences between samples belong-
ing to different categories, dividing the multidimensional space into as many subregions
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as the number of the considered classes. As a result of this work principle, every tested
sample would always be assigned to one of the predefined categories, even in the case
where an analysed sample truly belongs to a class not considered in the study. Regarding
the above, it makes good sense to evaluate the application of a discriminant classification
strategy in a two-class (binary) classification problem such as the one addressed in this
paper. In particular, linear discriminant analysis (LDA), the most widely used classification
algorithm, was used.

On the other hand, in contrast to class discrimination, class modelling approaches
exploit similarities among inter-category samples to construct an individual model for
every class independently from the others. Consequently, the developed class models may
not entirely cover the original multivariate space. This fact opens the door to different
assignment scenarios depending on whether a sample falls clearly into a single class region
(so that it is assigned to that) or if it falls in overlapping regions (leading to a confusing
classification in multiple classes), and, finally, when a sample falls outside every class
model constructed (predicted as member of none of the considered categories). Therefore,
due to their specific properties, modelling techniques, such as soft independent modelling
by class analogy (SIMCA), are suitable for classification problems in which the emphasis is
placed on a particular class of interest, as may be the case here with the MetS category.

3.3.1. SELECT

Considering that IR data presents high dimensionality, eliminating the futile features
due to noise and identifying the relevant and important variables to be applied in the follow-
ing classification steps was imperative. Thus, the stepwise orthogonalization of predictors
(SELECT) algorithm [39,40] was prioritised among other variable selection techniques since
it enabled us to optimise discrimination by simultaneously performing feature selection
and classification. Moreover, thanks to its stepwise decorrelation procedure, SELECT also
avoids the presence of redundant information in the subset of selected significant predictors.
In addition, it has previously demonstrated its accurate prediction ability in selecting the
most important variable for the discrimination of pathological status [41,42]. Thus, SELECT
was applied to extract the most significant wavenumbers from the IR dataset, providing
input features for a further dual-classification approach. Based on the commonly estab-
lished rule, the number of training objects selected was always at least three times greater
than the number of finally selected wavenumbers. An in-depth study of the literature is
encouraged to understand the algorithm’s rules [43].

3.3.2. LDA on Clinical Parameters

LDA is a well-known and extensively applied powerful supervised chemometric
classification technique [44]. Based on LDA classification rules, the objects are always
classified in one of the predefined classes.

LDA of five clinical parameters, built by leave one out (LOO) cross-validation, was
performed to evaluate the feasibility of this classification methodology to differentiate be-
tween MetS and no MetS patients. Excellent discrimination among categories was achieved,
providing a 100% level of correctly classified samples for no MetS subjects and patients with
metabolic syndrome, respectively. Satisfactory external prediction performances ranging
from 98.73% to 100% were achieved for both categories (within one no MetS subject classi-
fied as MetS), respectively (Table 2). Furthermore, a clear interclass separation achieved
between these main categories can also be visually appreciated in the corresponding dis-
criminative histogram (Figure 4). This classification performance was almost predictable
since the PCA results already showed a clear clustering between the two groups.

The object belonging to the category MetS which was classified as no MetS was
characterised by the following clinical parameters: 213 mg/mL of TGL, 76 mg/mL of
HDL, 139 mmHg of SP, 83 mmHg of DP, and 102 mg/mL of GLU. As we can see, two
out of five parameters have increased values, and the DP parameter is very close to the
cut-off value, which is 85 mmHg based on the NCEP-ATP-III scale. Thus, this patient
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might instead be classified as MetS positive, presenting almost three out of five clinical
parameters with augmented values. In addition, as we said above, the TGL parameter has
a major contribution, among other parameters, to MetS classification. Thus, the plausible
explanation could be that this subject, who has greater values of TGL, is more likely to be
classified as MetS by LDA rather than no MetS. However, as we highlighted before, the
eligibility criteria can be very insidious and create confusion and misassignment, worsening
and delaying the patients’ well-being.

Table 2. Results of LDA classification performance on clinical parameters.

Clinical Parameters Classification (%) External Prediction (%) Total Rate (%)
MetS 100 100 100
No MetS 100 98.73 (1) 99.36
Total rate 100 98.94 99.47

! The one corresponds to one misclassified subject in cross-validation.

I

First canonical variable

Figure 4. Histogram of the first canonical variable for the discrimination of MetS (@) and no MetS (=)
patients within included (m) test set, after performing LDA in the stratification approach based on
clinical parameters (y-axis indicates the maximum discrimination power between categories).

3.3.3. SELECT-LDA on IR Wavenumbers

Likewise, LDA on the IR dataset, containing 838 wavenumbers, was also performed.
Before LDA analysis, as explained above, SELECT was applied to extract those predictor
variables correlated with the discrimination between categories here considered. Therefore,
based on the SELECT rules, 20 selected spectra variables were decorrelated from other signals
and used for LDA. The 20 selected features showed an outstanding classification performance
and the results were higher in performance than LDA results on clinical parameters, achieving
100% in classification and external prediction, respectively. The results of the SELECT LDA
performance are displayed in Table 3. The suitability of the classification strategy applied
to reduced IR plasma signatures can be visually appreciated in Figure 5. A discriminative
histogram shows a clear group separation on the first canonical variable.
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Table 3. Results of SELECT LDA classification performance on 20 IR selected spectral variables.

Clinical Parameters Classification (%) External Prediction (%) Total Rate (%)
MetS 100 100 100
No MetS 100 100 100
Total rate 100 100 100

CIT 48 IPCOPC1Y
PC20Pcat pcazlPeic

First canonical variable

Figure 5. Histogram of the first canonical variable for the discrimination of MetS (m) and no MetS ()
patients within the included (m) test set, after performing SELECT-LDA in the stratification approach
based on 20 IR variables (y-axis indicates the maximum discrimination power between categories).

3.3.4. SIMCA

In an attempt to go one step further in this classification strategy, it was decided to
build optimised class models based on clinical parameters and the subset of reduced IR
signatures selected by SELECT. SIMCA often outperforms other classification methods,
where a new sample will always be classified in one of the predefined categories. Classi-
fication methods such as LDA are based on the development of classification rules and
delimiters between classes, whereas in class models, significance limits are built for the
specified classes. These limits define the membership parameters for each class; thus, an
unknown sample can be classified as not belonging to any defined categories because
it is not included in any of its class spaces. SIMCA class modelling uses the number of
true/false positives and negatives and statistics, showing the ability of a classification
model to recognise class members (sensitivity or true positive rate) and showing how good
the model is for identifying strangers (specificity or true negative rate). Moreover, SIMCA
class modelling is often used to describe the class structure of the data set, requiring little
or no prior assumptions to build the model.

On applying SIMCA, independent PCA modelling is performed for each class; each
sample is fitted in a PCA model to check the separation between classes [45]. This model
uses the optimal number of principal components that best describes and groups an
individual class. This model can then be used to classify new samples whose class is
unknown. The principal components are obtained usually using the NIPALS (non-iterative
partial least squares) algorithm after separate autoscaling of the data. Finally, the models
built for the different classes are compared by studying their differences and analogies [46].
Each class is modelled independently; thus, it is sensitive to the quality of the data used
to generate the principal component models for each class in the training set (at a 5%
significance level).



Biosensors 2023, 13, 15

10 of 16

SIMCA on Clinical Parameters

Herein, SIMCA modelling was performed on five clinical parameters (Table 4). A
class modelling of five clinical parameters of MetS was built using 4PCs for the inner space
of classes, achieving satisfactory results in both internal prediction (LOO) and external
prediction 98.95%. SIMCA builds a mathematical model of the category with its principal
components and a sample is accepted by the specific category if its distance to the model is
not significantly different from the class residual standard deviation. The results of SIMCA
modelling can be visually appreciated by a Cooman’s Plot, representing the samples’
distances against each of the two models. The Cooman’s plots were built considering a
95% confidence level to define the class space and the unweighted augmented distance.
This diagram is an effective visual representation that directly indicates the quality of
the model constructed with the magnitude of the distance between categories. Thus, the
distances to the principal component models and SIMCA approximation in a two-class
problem for the class of MetS and no MetS are plotted in Figure 6. No clear outliers were
observed, but several samples that fall into the joint space of both categories belong mainly
to the MetS category. This relatively large number of samples plotted in the class-space
common (overlapping) to the two models representing MetS and no MetS patients, as well
as the considerable amount of no MetS samples located near their class boundary, suggest
potential specificity problems associated with this classification approach based on clinical
parameters. Therefore, the distribution of some samples from the MetS category in the
area of relative indecision (small left quadrant) could be due to the unequivocal diagnostic
parameters defining metabolic syndrome. In fact, these patients have three out of five
altered parameters not necessarily similar. In addition, some parameters may be much less
marked than others, confounding the decision about their location inside the model.

Table 4. The values of discriminant and modelling powers of clinical parameters after SIMCA
class-modelling.

. L. Modelling Power
Clinical Parameters Discriminant Power Category MetS Category No MetS
Systolic blood pressure 1.99 0.70 0.73
Diastolic blood pressure 2.01 0.70 0.73
Triglycerides 2.18 0.94 0.96
HDL 2.34 0.79 0.94
Glucose 2.36 0.84 0.97

The data modelling power (MP) and discriminatory power (DP) of the SIMCA class
modelling of clinical parameters are presented in Table 4. The MP describes how well a
variable helps each principal component to model variation in the data, and discriminatory
power (DP) describes how well a variable helps each principal component model to classify
samples in a training set. The first detail that can be noticed is that, comparably, the
MP in no MetS is consistently higher for all parameter pairs. This was expected as the
distribution of the values of clinical parameters for each class of patients was significantly
different. Nevertheless, the values of TGL have the highest modelling power in both MetS
and no MetS categories, with values of 0.94 and 0.96, respectively. This ability of TGL to
discriminate between the two groups is justified by previous studies, as metabolic syndrome
patients should have significantly higher TGL values. This difference in modelling power
is especially remarkable by the measured glucose (0.97 vs. 0.84) and HDL (0.94 vs. 0.79). In
addition, clinical parameters such as glucose and HDL also showed significant discriminant
power, with values of 2.63 and 2.58, respectively. These two parameters are also perfectly
in line with the data collected from our patients. The MetS group is characterised by high
glucose and low HDL values. These same parameters are often responsible for the presence
or future development of comorbidities in patients such as diabetes, cardiac disease, and
obesity. Other clinical parameters seem to contribute less to the principal component
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models; indeed, no significant difference was observed in the values distribution of SP or
DP between the two categories.

PCT|

Distance from model of class no MetS

TN 1Y 2 e |

Distance from model of class MetS

Figure 6. Cooman’s plot displaying the results obtained by applying SIMCA class-modelling to clinical
parameters: MetS (m) and no MetS (») patients within the included (m) test set. The red solid line indicates
a confidence level for class space at 95%. The red dashed line indicates equal class distance.

SELECT-SIMCA on IR Wavenumbers

The best recognition ability (percentage of the samples in training set correctly clas-
sified during the modelling step) afforded by SIMCA was achieved by only ten of 20
previously selected wavenumbers by SELECT, providing 98.94% in classification and
95.79% in external prediction, respectively. Interestingly, eight out of ten selected wavenum-
bers belong to the “fingerprint region”, which reflects the production of characteristic
perturbations in the metabolome and other such variations. The absorption pattern in this
area is highly complex; that same inherent complexity makes it unique for each sample and
reflects its pathophysiological status. Thus, eight of the selected IR spectral wavenumbers
may reflect the current status of the organism and could be directly correlated with the
presence or absence of the disease. The results of SIMCA performance applied to clinical
variables and to reduced number of IR spectral variables are summarised in Table 5.

Table 5. The results of SIMCA class-modelling performance on clinical parameters and ten selected
IR spectral variables.

Variables Classification (%)  LOO (%)  CV Efficiency (%)  Criciency Forced p ) 2 ote (%)
Model (%)
5 clinical measurements 98.59 97.18 87.05 95.68 100
10 IR selected wavenumbers 97.18 94.37 87.92 97.86 100

A Cooman'’s plot is presented to show discrimination between the two MetS categories
of IR variables (Figure 7), where the distance to the PC models for MetS and no MetS are
displayed. Compared to the Cooman’s plot of clinical parameters, it is observed that there is
better separation and discrimination between categories. The Cooman’s plot showed a high
degree of interclass specificity and a patently clear separation between class models, with a
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significant improvement from the models constructed from available clinical parameters
to those constructed from IR variables. The no MetS patients appear evidently segregated
and concentrated forming a dense cluster at large distances from the model of MetS class.
Likewise, the vast majority of MetS samples fall clearly and univocally into their class region,
far from the class limit for the no MetS model. Furthermore, the single MetS sample located in
the inconclusive classification region is virtually placed above the membership threshold.

FPC20

PC27

PCH
PCEEPC106
PCRC114

PC94
PCIFIC11BL2c

Ca1
pcgj’qﬂin

P

CT7

Distance from model of class no MetS

P ?'g o

SGHARCH
Distance from model of class MetS

Figure 7. Cooman’s plot displaying the results obtained by applying the SELECT-SIMCA class-
modelling to ten selected IR signals: MetS (m) and no MetS (w) patients within included (m) test set.
The red solid line indicates a confidence level for class space at 95%. The red dashed line indicates
equal class distance.

From ten selected wavenumbers, the highest discriminant power (5.87) was obtained
by the 1133.09 cm~! spectra variable from the “fingerprint region” (Table 6), followed
by 4.31 for 1557.40 cm ! and 4.29 for 2948.94 cm~! from the higher spectral region. The
average discriminant power for IR variables is higher compared to DP values obtained
with SIMCA modelling of clinical parameters, indicating the increased suitability of the
method compared to those using values obtained from clinical measurements. Likewise,
the contribution of IR variables to the model variation was of major strength compared
to clinical parameters. Thus, all the selected variables contributed equally to marking the
difference between MetS and no MetS with an MP equal to 1.00. Furthermore, the distance
between classes was 5.19, significantly higher than in the case of SIMCA class modelling
applied to clinical parameters (4.26). These results highlight that the proposed method
outperformed in accuracy and specificity of the evaluation parameters used in clinical
practice. Since the clinical diagnosis of metabolic syndrome lacks standardisation, the
results of the obtained model capacity could greatly support clinical decisions, for example,
in terms of exclusion and inclusion evaluation criteria for MetS discrimination.



Biosensors 2023, 13, 15

13 of 16

Table 6. Discriminative and modelling powers of ten selected spectra variables after SELECT-SIMCA
class modelling.

Wavenumber (cm~—1)  Discriminant Power Category Ml\gfsd elling I’Coav;:;rory No MetS
2860.22 3.77
1423.36 4.23
1562.22 3.66
1578.61 3.75
1108.98 3.70
1316.32 3.64 100 100
2948.94 4.29
1557.40 4.31
1133.09 5.86
1247.85 3.58

Our principal aim was to obtain optimal segregation between patients without addi-
tional clinical, physical, or ethnic data, and this goal was achieved.

3.3.5. Biochemical Reasoning of Ten Extracted Signals

Herein, we presented a simple, non-invasive, low-cost FTIR-based method for rapid
discrimination between MetS and no MetS patients. The use of FTIR spectroscopy is gaining
momentum for diagnosis of multiple disorders, from infectious diseases such as hepatitis
C and B viruses or malaria to cancers [47-53]. Due to its ease of use and portability, the
potential for using FTIR techniques in clinical environments is within reach. Our strategy
extracted the metabolic signatures, instead of individual biomarkers with limited potential,
that permit the classification of patients according to molecular patterns. Thus, the FTIR
technique provided an overview of spectral changes associated with lipid, protein, or
carbohydrate metabolisms.

Ten out of twenty previously selected wavenumbers showed higher discriminant
power than clinical parameters. Thus, among these, influential bands at 1578.61, 1562.22,
and 1557.40 cm ! could be assigned to [6 (N-H) + v (C-H)] of the amide II region of proteins.
These discriminative signals may suggest some link with HDL lipoproteins, which showed
significant influence among five clinical factors for the classification of MetS and no MetS
subjects. Likewise, the higher absorbance in peaks at 2860.22 cm~! and 2948.94 cm™!
could be attributed to CH3 and CH2 sym. stretching of lipids or carbohydrates, which
is perfectly congruent with the formulated theories about MetS impairments and their
possible implication in the disease. Moreover, as discussed above, TGL and GLU levels
seemed to have more influence and variability between the two categories of patients;
thus, these attempted assignments properly reflect the actual situation of the patient’s
metabolism. In addition, the variable at 1133.09 cm~! could be associated with stretching
C-O/C-O(H) of carbohydrates or proteins, since it was already shown that the parameters
such as glucose or HDL have remarkable modelling and discriminant powers compared to
other measured factors.

In this study, the selected spectral biomarkers perfectly reflect the clinical reality of
the patient’s metabolic profile. Thus, the explanation of the most significant spectral bands
confirms the potential of FTIR spectroscopy to deal with such a complex disorder as MetS.

4. Conclusions

We firmly believe that this alternative analytical strategy could be of great diagnostic
relevance and support for clinicians, limiting the time and cost of MetS diagnosis. Moreover,
the evaluation of the metabolic profile captures the globality of physiological disturbances,
whereas clinical indicators often lack sufficient discriminative power. The results indicate
the possibility of rapid application of this strategy to screen for patients with metabolic
syndrome. The LDA classifications and SIMCA developed models demonstrated that



Biosensors 2023, 13, 15 14 of 16

the spectral variables could provide the same discriminative results as measured clinical
parameters. Therefore, why take five measurements when one measurement could provide
the same classification ability, greatly stratifying categories of patients? The proposed FTIR
method is quick, simple, and non-invasive, and it could be perfectly implemented for
large scale-analysis in clinical routines. The principal limitation of this study resides in
the relatively tiny sample size at our disposal. In addition, this is a cross-sectional study;
therefore, no data on confounding factors (such as gender, age, or diet) were routinely
included. The results of a more extensive data set would be required to strengthen the
validity of the adopted classification strategy and lead to a firmer conclusion.
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