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Abstract: Herein, a novel nitr[ogen-doped carbon dot (N-CD) fluorescence sensor with a dual
emission ratio is developed using the microwave-assisted synthesis of m-phenylenediamine and
spermidine. As a result of the fluorescence inner filtration effect (IFE) effect between morphine (MOR)
and N-CD, the blue fluorescence of N-CDs at 350 nm was reduced in the presence of MOR, whereas
the fluorescence of N-CDs at 456 nm increased substantially. The results demonstrated that the
approach has a tremendous potential and that the linear range of MOR detection is 0.25–25 µg/mL,
with a 71.8 ng/mL detection limit. Under UV light, the blue fluorescent system is easily visible to the
naked eye. More significantly, the sensor proved successful in providing satisfactory results for the
speciation measurement of MOR in a variety of biological samples.

Keywords: carbon dots; fluorescent sensor; dual-emission; morphine

1. Introduction

An essential opium alkaloid known as morphine (MOR) is a natural source of a
phenanthrene derivative purified from the poppy plant [1]. Clinically, it helps patients with
pain relief, particularly chronic cancer symptoms. Regrettably, MOR can, like all opioids,
lead to addiction and even death as a result of respiratory failure [2–5]. Overdose deaths
caused by opioids claimed over 100,000 lives in the United States for the 12 months ending
in April 2021, a 28.5% increase from the year before [6]. To monitor MOR levels in biological
samples and prevent overdose or abuse-induced toxicity, morphine analysis is required in
the healthcare and forensic domains [7].

It is generally accepted that MOR diagnosis uses two strategies: initial on-site screening
and laboratory validation. The majority of the initial screening process involves qualitative
analysis, which can immediately determine whether specimens contain morphine. The
commonly used screening techniques include immunoassay, spectroscopy, and molecular
imprinting [8–10]. These initial screening methods, although simple and fast, cannot be
quantitatively analyzed and are also prone to false positive or false negative phenom-
ena. For laboratory confirmation, samples are sent to the laboratory for further quan-
titative analysis using large instruments such as HPLC-MS (High-Performance Liquid
Chromatography-Mass Spectrometry) [11,12] and GC-MS (Gas Chromatography-Mass
Spectrometry) [13,14]. However, these instruments are bulky and require professional
personnel to operate, so they cannot be used for rapid detection in the field of front-line
law enforcement.

The fluorescence analysis method has been used more and more in field rapid detec-
tion due to its features of convenient operation, simple equipment, high sensitivity, and
strong selectivity [15]. Carbon dots (CDs), generally termed semiconductor nanocrystals,
are zero-dimensional nanocrystals, and the size is no more than twice the exciton Bohr
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radius of the corresponding semiconductor material [16]. When the size reaches a critical
value, the energy will be completely quantized, showing quantum characteristics, so it
is called quantum dots. As a novel form of fluorescent semiconductor, quantum dots
have many unique properties compared with traditional fluorescent dyes, such as good
photostability, adjustable fluorescence emission wavelength, high fluorescence intensity,
and good biocompatibility [17]. Because of their unique optical properties, they have grad-
ually replaced the traditional organic fluorescent dyes and are a relatively ideal fluorescent
nanomaterial. CDs have been used in detection and analysis more frequently due to their
excellent fluorescence performance [18–20].

As the name implies, CDs are used in chemical sensors because of their molecular
recognition function. However, fluorescent chemical sensors are usually interfered with
or affected by sensor concentration, stability of detector or light source, and coexistence
of components in a complex sample matrix [21]. The double emission ratio fluorescence
method can avoid the above problems by using ratio fluorescence to detect the target [22].
It is still relatively uncommon to use carbon dots in the development of ratio fluorescence
probes and to use CDs further in the detection of illegal drugs in biological samples.

In this study, novel carbon dots were synthesized from m-phenylenediamine and
spermidine as the source of N atoms by microwave. Due to the improved inhibition
efficiency attributed to the fluorophore’s inner filter effect of the nanoparticles in the
occurrence of MOR, the fluorescence detector was modified for the analysis of MOR. For
the highly selective MOR measurement in biological samples, the dual emission ratio
fluorescence sensor has been successfully employed.

2. Materials and Methods
2.1. Chemicals

All reagents and chemicals were analytical grade (>99.0% purity) and were utilized as
received without additional purification. The Ministry of Public Security’s Key Laboratory
of Narcotics Assay and Control Technology supplied MOR, heroin and methylamphetamine
standards (>99.5% purity). Spermidine (99.0% purity) and m-phenylenediamine (99.0%
purity) were provided by Yuanye Biotechnology Co., Ltd., and Aladdin Biochemical Tech-
nology Co., Ltd., both of Shanghai, China. Siens Biochemical Technology Co., Ltd. and
Maclean Biochemical Technology Co., Ltd. (Shanghai, China) provided the amino acids
(>98.0% purity) used in the interference test (Tianjin, China). All other chemicals were
purchased from Zhiyuan Chemical Reagent Co., Ltd. and Fengchuan Chemical Reagent
Technologies (Tianjin, China). Using the Milli-Q filtration apparatus (Millipore, Bedford,
MA, USA), double-distilled water (18.2 MΩ cm) was utilized as the input to generate
deionized water.

2.2. Instruments

A quartz cell (1 cm × 1 cm)-equipped Agilent G9800A Cary Eclipse fluorescence
spectrophotometer (USA) was applied to record the fluorescence spectrum. The emission
and excitation monochromatic slit widths were both fixed at 10 nm. A TENSOR-27 FTIR
spectrometer was used to record the FT-IR spectrum (Bruker, Bremen, Germany). Utiliz-
ing a UV-2550 spectrophotometer, the ultraviolet-visible (UV-vis) spectrum was recorded
(Shimadzu, Kyoto, Japan). PHI5000 Versa Probeqy-II with monochromatized Al K light
was used to characterize X-ray photoelectron spectroscopy (XPS) (ULVAC-PHI, Kanagawa,
Japan). X-ray diffraction (XRD) patterns were recorded by a PANalytical X’pert3 powder
diffractometer using Ni-filtered Cu Ka radiation. Using a transmission electron microscope,
TecnaiG2 F30 S-Twin (FEI, Hillsboro, OR, USA) was applied to analyze the size and ap-
pearance of carbon dots. Carbon dots were synthesized using the Analytik-Jena TOPwave
microwave-assisted digesting system (Jena, Germany). Using a Leici PHS-3 digital pH
meter, the pH was controlled (Shanghai, China).
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2.3. Preparation of Real Samples and Standard Solutions

In this study, blood samples were collected from healthy individuals. To collect serum
at 4 ◦C for the plasma preparation, blood samples were centrifuged at 4000 rpm for 30 min.
In water, a stock standard solution of MOR (100 µg/mL) was prepared. The stock standard
solutions were diluted with deionized water to formulate working solutions. All solutions
were kept in a freezer at 4 ◦C.

2.4. Preparation of N-CDs

The fluorescent N-CD schematic diagram for the synthesis process is shown in Figure 1.
Spermidine (0.4 g) and m-phenylenediamine (0.4 g) were precisely weighed, dissolved
in 40 mL of deionized water, and then heated at 180 ◦C for one hour in a microwave.
Using a 0.22 µm filter membrane, the sample was filtered, and the filtrate was collected for
dialyzing. The fractions corresponding to 3 kDa were ultrafiltered from N-CDs and studied
in our work.
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Figure 1. A schematic illustrating the synthesis and morphine detection of N-CDs.

2.5. Detection of MOR with the Ratiometric Sensor

At room temperature, 100 µL of N-CDs solution and 20 µL of serum with various
concentrations of MOR were carefully mixed. Under the optimized conditions, the pH was
adjusted to 8 with citrate-disodium hydrogen phosphate buffer. Next, the mixture was
diluted to 4 mL with deionized water and heated in a water bath at 44 ◦C to maximize the
sensitivity. The final MOR concentrations were 0.25, 0.5, 1.0, 1.25, 2.5, 5, 10 and 25 µg/mL.
Then, with excitation at 310 nm, fluorescence spectra in the wavelength range of 330–470 nm
were obtained. This sensing system’s MOR selectivity was evaluated using NO2−, HCO3

−,
K+, Na+, Mg2+, Cu2+, K+, Fe2+, Mn2+, Zn2+ and other amino acids, such as Tyr, Gly, Try,
Leu, Met, Glu, Lys, and Cys.

3. Results and Discussion
3.1. Characterization Results of N-CDs

TEM was used to analyze the nanostructure of N-CDs. N-CD TEM images at various
scales are displayed in Figure 2A,B. As shown in Figure 2A, the transmission TEM images
show good monodispersity and good size homogeneity of N-CDs, clearly indicating that
these nanoparticles are almost spherical with an average size of 5 nm. However, neither
Figure 2A nor Figure 2B showed any obvious lattice fringes, suggesting that the crystallinity
of the carbon dots is weak, which is in accordance with previous research [23,24].
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The N-CD FT-IR spectra are shown in Figure 2C. The stretching vibrations of O-H
and N-H are associated with the low-intensity band at 3472 cm−1. The C-H stretching
and bending vibrations were demonstrated by the peaks at 2065 cm−1 and 732 cm−1,
respectively [25]. The C=C and C-N bending vibrations are correlated to the peaks at 1605
and 1424 cm−1, respectively [26]. These results confirmed the existence of the -NH2, C-N,
and C=C groups, which enhanced the solubility of N-CDs in water.

Figure 2D shows the XRD patterns of the obtained material. As can be seen, it has
an amorphous structure with a broad peak at 2θ = 21.22◦ that is clearly related to the
amorphous nature of C-dots.

XPS was applied to investigate the chemical groups on the surface of N-CDs. C1s,
N1s, and O1s concentration levels are the origin of the peaks in the spectrum at 283.2, 399.2,
and 530.4 eV (Figure 3A). Three peaks in the C1s spectra can be assigned to the C=C, C-N,
and C=O groups with energies of 284.8, 286.2, and 288.8 eV, respectively (Figure 3B) [27].
Two peaks in the N1s spectra were observed at 399.2 and 401.3 eV (Figure 3C), and they
might belong to N-H and N-O bond types. Two major peaks from the C=O and C-O
groups can be observed at 532.0 and 533.7 eV, according to further analysis of the O1s
spectra (Figure 3D) [28]. Additionally, quantum yield (QY) of N-CDs was determined based
on the relative method by using quinine sulfate as reference (dissolved in 0.1 M H2SO4,
QY = 54.6%) [29]. According to the reference calculation formula, the N-CD quantum yield
was 12.95%.
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Figure 3. (A) XPS spectra of N-CDs, high resolution (B) C 1s, (C) N 1s, and (D) O 1s peaks of N-CDs.

3.2. Optical Properties of N-CDs

Figure 4A shows the N-CDs’ UV-vis spectrum. The π-π* transitions are responsible
for the shoulder peak at 242 nm [30]. Besides the peak at 242 nm, no sharp absorption
peaks were present for N-CDs, except for the display of a long absorption edge, which was
extended from 275 to 400 nm. Using the same 310 nm excitation wavelength, N-CDs in this
sensor system displayed two emission peaks (350 nm and 456 nm) (Figure 4B).
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3.3. Effect of Solution pH

Fluorophore ionization has a significant impact on how much light is emitted. Since
the I350/I456 value decreases with increasing concentration of MOR, it is necessary to adjust
the solution pH to maximize a method’s sensitivity. To maximize a method’s sensitivity,
it is necessary to adjust the pH of a solution. The pH ranged in this study from 6.0 to 9.0.
I350/I456’s fluorescence ratio increased from pH 8.0 to 9.0 after declining from pH 6.0 to 8.0.
(Figure 5A). Therefore, before testing, the pH value of the test solution must be adjusted
to 8.0.
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under the same conditions (pH: 8.0; N-CDs: 100 µL; MOR concentration: 10 µg/mL; Ex: 310 nm; Em:
350 nm and 456 nm).

3.4. System Temperature

Temperature has an effect on the return of excited electrons to the ground state to
produce changes in fluorescence intensity. Thus, the effects of system temperatures of
14, 24, 34, 44, 54, 64, and 74 ◦C on the fluorescence intensity were explored (Figure 5B).
The results show that the fluorescence ratio of I350/I456 decreased from 14 ◦C to 44 ◦C
and then increased when the temperature increased from 44 ◦C to 74 ◦C. Considering this
comprehensively, the temperature of the system was chosen at room 44 ◦C. The temperature
change feature could be attributed to the temperature-enhanced population of non-radiative
channels of surface (trap/defect) states. More non-radiative channels would be activated
at a higher temperature, and more excited electrons returned to the ground state via a
non-radiative process, resulting in decreased fluorescence intensity [31,32].

3.5. Effect of Interfering Ions and Substances

An innovative fluorescence probe must have excellent selectivity. The effects of
different ions (NO2−, HCO3

−, Na+, Mg2+, Cu2+, K+, Fe2+, Mn2+, Zn2+, Fe3+) and interfering
substances (tyrosine, glycine, tryptophan, leucine, methionine, glutathione, glucose, lysine,
cysteine and vitamin C) added in the same proportion (100 µg/mL) on the fluorescence
signal of the morphine+N-CDs system were explored. Experiments were carried out
three times in regard to the results displayed in Figure 6A,B. These interfering ions and
interfering substances did not affect the system. The systematic execution of N-CDs
concerning their selectivity towards MOR was also conducted against some of the very
common interfering MOR analogues such as heroin and methylamphetamine. It was found
that morphine significantly enhanced the fluorescence of N-CDs at 466 nm, while heroin
and methamphetamine had no effect on N-CDs at 466 nm (Figure 6C). The above results
confirm the good selectivity of the ratiometric fluorescence sensor toward MOR.
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Figure 6. Effect of (A) interfering ions and (B) interfering substances under the same conditions (pH:
8.0; system temperature: 44 ◦C; N-CDs: 100 µL; MOR concentration: 10 µg/mL; Ex: 310 nm; Em:
350 nm and 456 nm) (n = 3); (C) fluorescence spectra of MOR and its analogues (pH: 8.0; system
temperature: 44 ◦C; N-CDs: 100 µL; concentration of MOR and its analogues: 10 µg/mL).

3.6. Method Validation

The concentration of MOR displayed a consistent pattern as a function of I350/I456
in the range of 0.25–25 µg/mL (I350/I456 = 1.6027 − 0.02622C, R2 = 0.9910) under optimal
conditions (Figure 7). Error bars in the calibration curve were obtained from three parallel
measurements. The method’s LOD was determined to be 71.8 ng/mL using the formula
3 s/K (s is the continuous determination standard deviation of 10 blanks, and K is the
slope of the calibration trendline), and the relative standard deviation (RSD) was 4.6%
(c = 5 µg/mL, n = 8), in accordance with the IUPAC standard [33]. Based on this, the limit
of quantitation (LOQ) of MOR determined by this sensor was calculated to be 0.239 µg/mL
by 10 s/k. This approach exhibited a comparable detection limit to earlier reported MOR
probes based on CDs, but it had a higher selectivity [34–38].
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3.7. Analysis of Real Samples

Considering the complexity of blood samples, we added morphine to blood samples
in this study to verify the accuracy and anti-interference of the method. Actual blood
samples from patients were tested using the standardized calibration curve. The suggested
method was used to determine the amounts of MOR in various blood samples (Table 1).
The innovative fluorescent approach used had a recovery of between 93.8% and 103.3%
with RSDs of under 6%. The analytical data of several strategies for MOR detection are
evaluated in Table 2. The outcomes reveal that the proposed approach can be used to
swiftly test blood for illegal drugs using the methods outlined. The results confirmed that
the proposed method showed good anti-interference and accuracy.

Table 1. Quantification of MOR in samples (n = 3).

Samples Added (µg/mL) Found (µg/mL) Recovery (%) RSD (%)

Blood
(female)

- N. D. a - -
2.495 2.411 96.7 5.6
4.990 5.153 103.3 4.3

Blood
(male)

- N. D. a - -
2.495 2.515 100.8 3.5
4.990 4.683 93.8 4.9

a Not detected.

Table 2. The overview of analytical data of the reported methods for the analysis of MOR.

Materials Detection Method Linearity Range LOD Reference

graphene quantum dots voltammetric electrode 0–3.5 µM 0.06 µM [34]
chiral colloidal CdSe quantum dots fluorescence enhancement / 0.06 µM [35]

graphene quantum dots fluorescence enhancement 0–33 µM 0.5 µg/mL [36]
anti-morphine antibody-labeled

C-Dots fluorescence immunoassay 3.2 × 10−4–10 mg/L 3.0 × 10−4 mg/L [37]

N,Cl-CDs fluorescence enhancement 0.15–280.25 µg/mL 46.5 ng/mL [38]
N-CDs fluorescence quenching 0.25–25 µg/mL 71.8 ng/mL This work

3.8. Sensing Mechanism of Ratiometric Nanosensor towards MOR

We performed a series of tests to examine the effects of various MOR substances in
the N-CDs system, and the results are shown in Figure 8A. These tests were carried out
to investigate the potential mechanism of the N-CDs/MOR based fluorescence sensing
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technique for MOR analysis. The fluorescence of N-CDs at 350 nm was reduced when
the MOR was introduced, whereas the fluorescence of N-CDs at 456 nm was substantially
enhanced. The absorbance peak of MOR aligns with the emission spectrum of N-CDs, as
shown in Figure 8A, demonstrating the possible existence of an inner filtration effect (IFE)
or Förster resonance energy transfer (FRET) between N-CDs and MOR [39,40]. As a result,
the intensity of the N-CDs fluorescence emission gradually decreased with the addition of
morphine. As a result of the comparatively small size distribution of the resulting N-CDs,
Figure 4B also exhibits a narrow band at 300–400 nm in the emission spectra. To further
confirm the sensing mechanism, a fluorescence lifetime experiment was conducted [41].
Figure 8B shows the fluorescence lifetime graph. The average lifetime of fluorescence
is 2.25 ns (χ2 = 0.90), while the lifetime components of N-CDs are τ1 = 0.83 ns (26.15%)
and τ2 = 2.42 ns (73.85%). The mean fluorescence lifetime is 2.83 ns (χ2 = 0.94), and the
lifetime components after the addition of morphine are τ1 = 0.86 ns (23.76%) and τ2 = 3.01
ns (76.24%). These results show that the fluorescence lifetime is essentially unaffected by
the presence or absence of MOR. This indicates that IFE, not FRET, causes fluorescence
quenching because the donor’s PL lifetime is constant during IFE but seems to change
significantly during FRET. As a result, we can conclude that MOR and N-CDs have an IFE
effect [42].
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Figure 8. (A) Fluorescence spectra of N-CD solution with different concentrations of morphine.
(B) The fluorescence lifetime curve of N-CDs and N-CDs + morphine. (C) The fluorescence spectra of
N-CDs in different apolar solvents.

Since FRET is not affected by the polarity of the solvent, changing the polarity of the
solution has little effect on the quenching efficiency based on FRET. Therefore, we also
studied the interaction of N-CDs in different apolar solvents (Figure 8C). The experimental
results show that the fluorescence is dramatically changed in dimethylsulfoxide (DMSO)
and chloroform (CHCl3). This further confirms that the interaction mechanism between
N-CDs and MOR might be due to IFE.



Biosensors 2023, 13, 143 10 of 12

4. Conclusions

In this study, a simple and accurate ratiometric fluorescence sensor for MOR measure-
ment between N-CDs and MOR was developed. Based on the FRET effect, the addition
of MOR further inhibited the fluorescence of N-CDs. High sensitivity, superior selectivity,
rapid detection, and an expanded linear response range were all promising characteristics
of the dual-emission carbon-dot ratiometric fluorescence sensing device. The detection of
MOR in actual blood samples was evidence of the developed method.
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