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Abstract: Metal-organic frameworks (MOFs)-based optical nanoprobes for luminescence and surface-
enhanced Raman spectroscopy (SERS) applications have been receiving tremendous attention. Every
element in the MOF structure, including the metal nodes, the organic linkers, and the guest molecules,
can be used as a source to build single/multi-emission signals for the intended analytical purposes.
For SERS applications, the MOF can not only be used directly as a SERS substrate, but can also
improve the stability and reproducibility of the metal-based substrates. Additionally, the porosity
and large specific surface area give MOF a sieving effect and target molecule enrichment ability, both
of which are helpful for improving detection selectivity and sensitivity. This mini-review summarizes
the advances of MOF-based optical detection methods, including luminescence and SERS, and also
provides perspectives on future efforts.

Keywords: metal–organic frameworks; luminescence; surface-enhanced Raman spectroscopy;
multiplexed detection

1. Introduction

Nanomaterial-based optical methods are advantageous for measuring quantitatively
biomolecules of interest. With optical nanosensors, an extremely high photolumines-
cence intensity or enhancement effect in surface-enhanced Raman spectroscopy (SERS)
can be achieved, and diversified signals, including wavelength/wavenumber, intensity,
and excited-state lifetime, can be tuned to cater to specific applications. Most importantly,
multiple signals can be integrated in a single optical nanoprobe to readily achieve ratio-
metric, multiplexed, and multimodality measurements. These detection modes are highly
desirable for quantitative measurements in complex sample matrices [1,2].

Metal–organic frameworks (MOFs) are a kind of hybrid porous material consisting
of inorganic metal ion or cluster nodes, and linkers including organic ligands and metal–
organic complexes [3–7]. Due to the large specific surface area, the ultrahigh porosity,
the adjustable internal surface property, the extraordinarily diversified structure, and the
reasonable biocompatibility, MOFs are widely employed in storage and separation [8],
catalysis, [9,10] drug delivery [5,11–15], and biomedicine [12,16–18], as well as in chemical
sensors and biosensors [12,19–28]. In terms of optical measurements, MOFs are promising
optical sensing materials because emission centers of MOFs can be constructed by “multiple
photonic units” originating from inorganic metal ion or cluster nodes, linkers, or their
combination to exemplify the features of structural diversity through combining inorganic
and organic chemistry [29]. This unique property, together with tunable functional sites,
imparts MOFs with highly designable and diversified luminescence that can be used for
customized applications. On one hand, the “multiple photonic units” can be engineered
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or tailored with rational design to achieve the aforementioned diversified luminescence
signals, all of which can be used for applications with specific needs; on the other hand,
aside from attaching recognition entities for target-specific interaction, the functional sites
can also be used to provide auxiliary interaction with emission centers to further tailor
luminescence properties. Furthermore, taking the advantage of ultra-high porosity and
modifiable internal surface property to encapsulate luminescent guest molecules in the
porous structure, one more dimension of luminescence can be added to grant MOFs with
ratiometric, multiplexing, and multimodality measurement capabilities [30,31]. In addition
to luminescence, MOFs can serve as promising materials for SERS methods in which
MOFs either act as substrates for signal enhancement or form composite substrates by
encapsulating metallic nanomaterials. In addition to the above, the high surface area
and controllable pore size allow a high capacity for adsorbing and concentrating analytes
to achieve a low limit of detection (LOD) and a unique sieve effect, thus improving the
selectivity [6,32].

There are quite a few review articles on MOFs and their applications in the optical mea-
surement field [33–35]. This mini-review tries to highlight MOFs-based optical nanosensors,
particularly luminescence and SERS, for applications in analytical chemistry. First, the
application of MOFs in luminescence detection is summarized and discussed based on
the evolution from a single luminophore, including MOFs itself or the encapsulated guest,
to multiple signal sources for ratiometric and multimodality measurements. Second, the
application of MOFs in SERS measurements is summarized and discussed based on the
MOF itself as both a SERS substrate and a MOF-metal nanomaterial composite substrate.
Finally, perspectives on future efforts to develop MOF-based nanosensors for analytical
and bioanalytical applications are provided.

2. MOFs-Based Nanosensors for Luminescence Applications

Luminescence sensing has been recognized as an important tool in food safety detec-
tion, disease diagnosis, and environmental monitoring [36,37]. For these applications, it
is required that the method has sufficient sensitivity and selectivity towards the analyte
of interest. For analysis of targets in complex sample matrices, it is also desirable that the
sensor or nanosensor system can self-calibrate to provide reproducible and quantitative
results (Table 1).

Compared to conventional organic and inorganic luminophores, the luminescent
MOF materials have excellent host and sensing features that can meet the aforementioned
requirements for luminescence sensing [32,35,38]. The photoluminescence of MOFs may
originate from metal centers, linkers, or guest molecules. Each emission unit can be de-
signed and tuned for diversified application needs. Moreover, the integration of emissive
units into MOFs can be adopted for the purpose of developing multi-emissive probes
to realize self-calibrating measurements, multiplexed measurements, and multimodal-
ity measurements. The following discussion is based on the signal evolution in terms
of the single luminophore signal, the ratiometric signal, and the multimodality signals.
A perspective on multiplexed measurements for fluorescence applications will be discussed
in the Conclusions and Future Perspectives section.

2.1. Single Luminophore Signal

The luminescence of MOFs may originate from the metal nodes [39], organic linkers [6],
and guest molecules [40]. The luminescence may also originate from second building units
(SBUs), including metal clusters [30,41,42] and metal–organic complex linkers [6,43], which
are also used to build MOFs with extended porous networks and luminescence centers.
All of the above can be utilized as luminescent probes to indicate the presence and even
quantity of a tentative analyte [44]. The analyte can alter the luminescence of MOF sensors
through one of the following mechanisms: intermolecular charge transfer, ligand-to-metal
charge transfer (LMCT), photo-induced electron transfer (PET), Förster resonance energy
transfer (FRET), dynamic quenching, or static quenching [45,46].
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Lanthanide-based MOFs (Ln-MOFs), as metal node-based luminescence MOFs, present
distinctive luminescence properties originating from abundant f-orbital configurations, long
luminescence lifetimes, and “antenna effects” of linkers [47,48]. Qian and colleagues [39]
used H3TATAB (4,4′,4”-s-triazine-1,3,5-triyltri-p-aminobenzoic acid) as an organic linker
to synthesize a series of isomorphic Ln-MOFs. For example, TbTATAB exhibited good
stability in water and a high fluorescence quantum yield (77.48%). The large amount
of N atoms afforded it a high ligand-Hg2+ affinity, which was able to block the antenna
effect of the linker. As a result, the fluorescence of TbTATAB was quenched through either
a dynamic or a static mechanism. The TbTATAB-based sensor showed excellent stability,
reproducibility, and sensitivity, such that it could be practically employed to detect Hg2+ in
environmental samples.

In addition to the metal nodes, the organic linker is another source of luminescence of MOFs.
A luminescent MOF using aggregation-induced emission (AIE) molecules as an organic linker
can confine the intramolecular motions of the linker molecule to give a bright emission [49]. Tang
and colleagues [6] used an AIE linker, tetrakis(4-carboxyphenyl)ethylene (TCPE), to prepare
ZnMOF and CoMOF with an unique [M+–L–M−–L–M]∞ (M = metal clusters, L = linker)
configuration (Figure 1). During the sensing of HCl vapor, ZnMOF exhibited a blue-to-
yellow-greenish transition of fluorescence due to the adsorption, rather than coordination,
of HCl vapor. The adsorbed strong dipole HCl molecules were able to decrease the energy
of the lowest singlet excited state via dipole–dipole interaction, leading to a red-shifted and
weakened emission. For CoMOF, luminescence was quenched by cobalt ions. Introducing
histidine could cause the collapse of the CoMOF framework and subsequent aggregation
of TCPE to recover the blue emission of the TCPE aggregate.
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Figure 1. HCl vapor sensing by ZnMOF. (a) Photographs of ZnMOF fumigated with HCl vapor 
from 12% HCl solution. (b) Fumigation time dependence. (c) HCl solution concentration depend-
ence (fumigation time = 5 s) of solid-state fluorescence spectra of HCl-vapor fumigated ZnMOF. (d) 
Emission peak and intensity responses to HCl vapor concentration. (e) Schematics showing the 
solid-state fluorescence change of ZnMOF with adsorption and desorption of HCl vapor (the blue 
dotted line for host–guest interaction, and the black solid line for coordination), and the energy 
diagram of ZnMOF showing the influence of dipole–dipole interaction [6]. Copyright 2021, John 
Wiley and Sons. 

Figure 1. HCl vapor sensing by ZnMOF. (a) Photographs of ZnMOF fumigated with HCl vapor
from 12% HCl solution. (b) Fumigation time dependence. (c) HCl solution concentration depen-
dence (fumigation time = 5 s) of solid-state fluorescence spectra of HCl-vapor fumigated ZnMOF.
(d) Emission peak and intensity responses to HCl vapor concentration. (e) Schematics showing the
solid-state fluorescence change of ZnMOF with adsorption and desorption of HCl vapor (the blue
dotted line for host–guest interaction, and the black solid line for coordination), and the energy
diagram of ZnMOF showing the influence of dipole–dipole interaction [6]. Copyright 2021, John
Wiley and Sons.

Guest encapsulation into MOFs offers advantages over traditional synthesis of lu-
minescent materials, such as easiness and cost effectiveness, as well as the possibility
of tuning the emission properties by selection of guest molecules. [50] To date, various
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luminescent molecules have been used as guests, including but not limited to Lanthanide
(Ln) ions [47], quantum dots (QDs) [51,52], carbon dots (CDs) [40], upconversion nanopar-
ticles (UCNPs) [3,11,16,53–59], noble metal nanoclusters [5,8,38,58,60–76], and organic
dyes [20,77–82]. Encapsulation can prevent the aggregation-caused quenching (ACQ)
of organic dyes and maintain the signal stability, the photostability, and the reasonable
shelf-life of the fluorescent nanoparticles [30,38,77]. Wang and colleagues [40] reported
a nanoscale complex based on CDs and MOFs (abbreviated as CDs@ZIF-8) for enhanced
chemical sensing of quercetin. Quercetin can form a complex with CD in CDs@ZIF-8 via
the electrostatic interaction between hydroxyl groups of quercetin and basic groups on
the surface of CDs; thus, the fluorescence of CDs@ZIF-8 was quenched. Moreover, ZIF-8
endowed CDs@ZIF-8 with a high binding affinity to quercetin by π-π staking, as well as by
improving the detection sensitivity and selectivity. The aforementioned characteristics of
CDs@ZIF-8 guaranteed a LOD of 3.5 nM and its suitability for practical application in real
samples for sensing of quercetin. In addition, Yan and colleagues [47] also used Ln ions as
guest molecules to decorate MOF through post-synthetic modification in order to detect
diphenyl phosphate in human urinary samples.

2.2. Ratiometric Signal

Although single emission-based luminescent materials have been widely used, they
suffer from inherent defects, such as signal fluctuations, variations of probe concentrations,
light scattering from the matrix, signal fluctuations due to the complex matrices and
sometimes sample pretreatments, etc. [30,77,79,83–86]. The ratiometric fluorescence sensing,
based on the intensity ratio of two or more well-resolved emission bands, has the self-
calibrating capability to eliminate the aforementioned problems, and, thus, to enable
more accurate measurements [80,84,87,88]. Due to the tunable multiple emission centers,
the large absorption cross sections, and the tailorable skeletons [78,80], MOFs have been
demonstrated to be a potential candidate for ratiometric sensing applications [78,79,83,84].
A ratiometric signal can be achieved between MOF and guest molecules [30,78–80,89],
between guest and guest molecules [77], and even by MOF itself [32,42,84].

The tailor-made skeletons of MOFs offer specific host–guest interaction sites for in-
tended recognition events. The guest molecules can be attached on the surface of MOFs
through covalent linking [78] and electrostatic adsorption [40], or being encapsulated
into the MOF channels [30,38,89]. Zhang and colleagues [78] synthesized nanoscale
MOF (NMOF) for ratiometric peroxynitrite (ONOO−) sensing based on FRET (Figure 2).
Poly(vinyl alcohol) (PVA) was used to attach the energy acceptor (ABt or BDP) on the
surface of the energy donor (MOF). With 340-nm excitation of the donor, the nanosensor
presented the emissions of the acceptors: 540 nm for ABt and 610 nm for BDP. The presence
of ONOO− disabled FRET by detaching the acceptor from the donor. The quantification of
ONOO− was realized based on the donor-to-acceptor intensity ratio. The fast response and
high selectivity made the nanosensor suitable for imaging of ONOO− in living cells.

Yin and colleagues [89] reported a turn-on ratiometric fluorescent sensor, Ru@MIL-
NH2, for water quantification. Ru(bpy)3

2+ was trapped in the channels of MIL-101(Al)-NH2
via a simple one-pot method. With the water content increasing from 0% to 100%, MIL-
NH2 emission at 465 nm was intensified while the Ru(bpy)3

2+ emission remained stable at
615 nm with 300 nm excitation. It was revealed that the protonation of the nitrogen atom of
the MIL-NH2, the π-conjugation system, and the stable fluorescence of Ru(bpy)3

2+ together
facilitated the sensitive ratiometric measurements. This turn-on ratiometric fluorescence
sensor showed low LOD (0.02%), fast response (less than 1 min), large dynamic range
(0−100%), and good sensor reusability. The turn-on response is much simpler and more
straightforward, and even more sensitive, than the quenching process [77].
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Figure 2. The sensing and cell imaging of ONOO- with NMOF-Dye FRET pair. (a) Schematics
of the sensing mechanism. (b) Fluorescence spectra of MA (1 mg L−1) as a function of ONOO−

concentration in PBS buffer (pH 7.4) for 30 min; (c) fluorescence spectra of MA (1 mg L−1) with the
addition of 1.00 mM ONOO− over time (0 to 20 min). (d,e) Fluorescence microscopic images of
HeLa cells for exogenous ONOO−. (d) The cells were stained with MA (10 mg L−1) for 1 h and then
washed with PBS before imaging; (e) the cells were pretreated as shown in (d) and then treated with
SIN-1(1 mM) for 30 min. Scale bar: 25 mm [78]. Copyright 2017, Royal Society Chemistry.

A ratiometric signal can be achieved from the guest molecules and metal nodes of
MOFs. Chen and colleagues [80] developed a MOF for real-time ratiometric fluorescent
monitoring of food freshness by covalently coupling fluorescein 5-isothiocyanate (5-FITC)
with NH2-rich EuMOF in a post-synthetic modification manner. Histamine, a biogenic
amine produced by spoiled food, increased the emission of FITC at 525 nm and decreased
the emission of Eu3+ at 611 nm. By doping the EuMOF-FITC probe on a flexible substrate
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(glass fiber), the complex was able to be integrated with a smartphone-based portable
platform for on-site visual inspection of the freshness of raw fish samples.

MOFs with multi-emission centers are able to provide the ratiometric signal them-
selves. The metal-to-ligand and metal-to-metal energy transfers empower diversified
luminescence responses. Shi and colleagues [32] synthesized a luminescent Eu-ZnMOF-
n by a structure engineering strategy, rendering the material enhanced slope sensitivity
within the “optimized useful detection window” (Figure 3). Therefore, this biosensor
enabled the discrimination of small concentration variations of urinary vanillylmandelic
acid (VMA), an early pathological signature of pheochromocytoma. Upon the addition
of VMA, emissions from organic linker at 433 nm became conspicuous with 330-nm ex-
citation, while emissions from Eu3+ at 615 nm decreased. The organic linker emission
change was attributed to the formation of an exciplex between the linker and VMA, which
held a lower-lying excited-state energy level; the emission change in Eu3+ was due to the
static quenching by VMA. This structure engineering strategy provided a facile approach
to detect the biomarker change within a small concentration range, making the biosensor
more suitable for clinical applications.
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Figure 3. Ratiometric luminescence sensing of VMA by Eu-ZnMOF-n. (a,b) The widening of the
excitation peak of Eu-ZnMOF-n, monitored at both 433 and 615 nm emissions with incremental
addition of VMA. (c) The structure–property relationship of the probe’s surface area to its dynamic
range and sensitivity. (d) Color-coded digital array of Eu-ZnMOF-n probe after treatment with
increased VMA concentrations under irradiation with a UV lamp (λex = 254 nm). [32] Copyright 2020,
John Wiley and Sons.

The similar atomic radii and chemical properties of Ln ions make it feasible to prepare
multi-emissive Ln-MOFs [87,90]. Previous studies have shown that a Tb-to-Eu energy trans-
fer can occur [91]; therefore, the Tb/Eu mixed-Ln MOF can serve as the ratiometric sensor.
Chen and colleagues [84] developed a mixed Ln-MOF luminescence thermometer using
2,5-dimethoxy-1,4-benzenedicarboxylate (DMBDC) as the linker. The Tb-to-Eu luminescent
intensity ratio in Tb-DMBDC and Eu-DMBDC decreased as the temperature increased
due to the thermal activation of non-radiative decay pathways. In the mixed-Ln-MOF,
Eu0.0069Tb0.9931-DMBDC, the increment of temperature led to a decrease in Tb emissions
and an increase in Eu emissions, thus forming a ratiometric fluorescence nanothermome-
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ter that presented a wide temperature dynamic range. The unique phenomenon can be
attributed not only to the efficient antenna effect between DMBDC and Ln ions, but also to
the Tb-to-Eu energy transfer.

Some non-luminescent MOFs, such as ZIF-8, can serve as host matrices to encapsulate
guest organic dyes for ratiometric sensing. The confinement and isolation of the organic
dyes can effectively inhibit the intramolecular torsional motion and increase the conforma-
tional rigidity to produce a high quantum yield [92]. Qian and colleagues [77] reported a lu-
minescent nanothermometer by encapsulating luminescent dyes, 4-methylumbelliferone
(4-Mu), and fluorescein (Flu) in the pores of ZIF-8. The developed nanothermometer can re-
sponse to temperature changes based on the Flu-to-4-MU emission ratio (IFlu/I4-MU) as well
as the emission peak wavelength of 4-MU. These two kinds of readouts can self-calibrate to
ensure the accuracy of the detection. Furthermore, the nanosized property of ZIF-8 and the
excellent luminescence properties of dyes impart the sensor with a large dynamic range
and a high spatial resolution, which are important for temperature mapping [93].

In addition to fluorescence, phosphorescence can also be tuned by rationally designing
the structure of metal nodes or organic linkers of MOFs [42,79]. MOFs can integrate both
fluorescence and phosphorescence in one nanosensor. For example, the emission and
lifetime of phosphorescence, but not fluorescence, are easily quenched by triplet oxygen,
which can be utilized as a ratiometric signal based on the fluorescence-to-phosphorescence
ratio. Lin and colleagues [79] designed the mixed-linker nanoscale UiO MOF and decorated
the structure with Rhodamine-B isothiocyanate (RITC) to form R-UiO MOF for ratiometric
sensing of intracellular O2 (Figure 4). In the nanostructure, the phosphorescent Pt-5,15-di(p-
benzoato)porphyrin (DBP-Pt) linker acted as an O2-sensitive probe, and the O2-insensitive
fluorescent RITC served as a reference. With 514-nm laser excitation, emissions at 630 nm
from DBP-Pt and 570 nm from RITC were observed. With the increase of O2 pressure, the
DBP-Pt phosphorescence decreased significantly while the RITC fluorescence remained
unchanged. The intracellular O2 of CT26 cells at 4, 32, and 160 mmHg was detected based
on ratiometric signals using confocal laser scanning microscopy.

Zang and colleagues [42] reported a fluorescence–phosphorescence dual-emissive oxy-
gen sensing MOF: ([Ag12(SBut)8(CF3COO)4(bpy-NH2)4]n (abbreviated as Ag12bpy-NH2)),
based on silver–chalcogenolate-cluster and bipyridine (bpy) linkers. The introduction of
the amino group enhanced the spin–orbit coupling and increased the intersystem crossing
efficiency to boost triplet excitons and prolong the lifetime of phosphorescence at 556 nm in
vacuum. As a result, oxygen molecules quenched the phosphorescence at 556 nm, while the
fluorescence emission at 456 nm remained nearly invariant. This ratiometric quantification
manner ensured a LOD as low as 0.1 ppm. The introduction of other substitutional groups,
such as methyl or F− groups, extended the dynamic range of the ratiometric sensing. There-
fore, tailoring the linker was deemed to be a powerful method for modulating luminescent
sensing functionality.

Zhou and colleagues [94] used Prussian Blue (PB) and UCNPs to develop a nanoprobe
(UC-PB) for the purpose of detecting and eliminating H2S with a linear range of 0–150 µM
and an LOD of 50 nM. The Er-doped UCNP, NaLuF4:Yb,Er,Tm@NaLuF4, presented multi-
ple emission peaks at 550 nm, 650 nm, and 800 nm, which were quenched by adding the PB
shell. H2S triggered the decomposition of the PB shells to recover the strong upconversion
luminescence (UCL) signal and the near infrared-to-green (N/G) ratio due to the coop-
eration of both redox and combination reactions. With the help of DL-propargylglycine
(DL-PAG), the UC-PB was able to realize the in vivo near-infrared region ratiometric imag-
ing, eliminate and inhibit the production of H2S, which is meaningful for clinical acute
pancreatitis treatment.
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Figure 4. Oxygen sensing based on the phosphorescence-to-fluorescence ratio of R-UiO-1.
(a) Emission spectra (λex = 514 nm) and (b) phosphorescent decays (λex = 405 nm) of R-UiO-
1 in HBSS buffer under varied oxygen partial pressures. Ratiometric luminescence imaging
(λex = 514 nm) of CT26 cells after incubation with R-UiO-2 under (c) hypoxia, (d) normoxia, and
(e) aerated conditions. Scale bar: 10 µm. (f) Schematics of fluorescence (Fl)–phosphorescence (Ph)
dual emission centers, with Ph center quenched (Qu) in response to oxygen [79]. Copyright 2016,
American Chemical Society.

2.3. Multi-Modal Signal

Fluorescence imaging (FLI), magnetic resonance imaging (MRI), and photoacoustic
imaging (PAI) are widely used molecular imaging technologies which can realize non-
invasive disease diagnosis and real-time in vivo lesion imaging [95,96]. Compared to
single-modality imaging, which has the limitation of low penetration depth and low spatial
resolution, multi-modality imaging integrates two or more modalities into one nanocom-
plex. Thus, it can provide more efficient and comprehensive information, which is desirable
in the biomedical field [97].

Kuang and colleagues [53] developed an ultrasensitive and selective method for H2O2
detection based on a UCNP@ZIF-8/NiSx chiral complex. The NiSx moiety is a chiral
nanoparticle with circular dichroism (CD) signals at 440 and 530 nm. The presence of
the NiSx can quench the UCL signal of the UCNPs core at 540 nm, with the UCL signal
at 660 nm remaining unchanged. The introduction of H2O2 caused NiSx to degrade,
accompanied by the recovery of the UCL signal and the disappearance of the CD signal.
This dual-mode signal of CD and fluorescence changes opens a new avenue for developing
a toolbox for biomedical and biological analyses.



Biosensors 2023, 13, 128 9 of 24

Yin and colleagues [98] reported a MnO2-coated, hollow mixed metal (Mn/Cu/Zn)
MOF that could allow the photosensitizer, indocyanine green (ICG), to have a high loading
efficiency. The coexistence of Cu+ and Cu2+ in the MOF, as verified by X-ray photoelectron
spectroscopy, endows the complex with a glutathione-responsive “turn on” MRI ability.
With the laser irradiation, the ICG can serve not only as the fluorescence and photothermal
imaging agent, but also as the photodynamic therapy (PDT) agent. Therefore, this hollow
MOF was used as a trimodality imaging-guided tumor therapy agent to highlight the
efficiency of mixed-metal and mixed-valence strategies in tumor theranostic capacities.

For small functional molecule encapsulation, the risk of leakage and burst release is
always a challenge [99]. To solve the aforementioned problem, Yang and colleagues [100]
used the one-pot approach to prepare a Fe-based MOF (MIL-53) with defect structure
due to the introduction of near-infrared dye (cypate). Further decoration of PEG and
transferrin on the surface of nanoparticles (denoted as CMNP-Tf) was able to accelerate
the passive and active targeting to the tumor region. The presence of cypate endowed the
nanoparticles with excellent PAI and near-infrared fluorescence (NIRF) imaging properties,
as well as reactive oxygen species (ROS) generation and photothermal therapy abilities.
Furthermore, Fe also possesses a T1-weighted MRI contrast property. Therefore, the
CMNP-Tf can realize the NIRF-, PAI-, and MRI-guided tumor targeting imaging-guided
photothermal/photodynamic performance.

Table 1. Summary of MOF based fluorescence applications.

MOF Synthesis
Method

Luminescence
Center λex/em (nm) Target Molecules LOD Ref.

ZnMOF solvothermal
TCPE

HCl vapor 2.63 ppm
[6]CoMOF histidine 2 × 10−6 M

Eu-ZnMOF solvothermal Eu & BPDC 330/433 & 615 vanillylmandelic
acid [32]

TbTATAB solvothermal Tb & linker Hg2+ 4.4 nM [39]

CDs@ZIF-8
one-pot room
temperature

crystal growth
CD 365/480 quercetin 3.5 nM [40]

Ag12bpy-NH2 bpy-NH2 370 O2 11.4 mPa [42]
Tb(III)@Cd-MOF solvothermal Tb3+ 325/544 diphenyl phosphate 0.022 mg/mL [47]

MIL-101(Cr) hydrothermal Cy3 525/570 tetrodotoxin 0.006 ng/mL [60]

ZIF-8⊃4-MU & Flu solvothermal 4-MU & Flu 360/380–450 &
500–570 temperature [77]

Zr-MOF Suzuki coupling Zr-MOF-ABt
Zr-MOF-BDP

340/403 & 530 peroxynitrite [78]340/403 & 610
R-UiO Suzuki coupling DBP-Pt/RITC 514/570 & 630 O2 [79]

EuMOF-FITC hydrothermal Eu3+ & FITC 380/525 & 611 biogenic amine 1.11 mg/L [80]

Eu3+/Tb3+ MOFs solvothermal Eu & Tb 280/547 & 491,
616 & 592 Fe3+ 3.86 µM [83]

Eu0.0069Tb0.9931-DMBDC solvothermal Eu & Tb 355/613 & 545 temperature [84]
Ru@MIL-101(Al)-NH2 one-pot Ru & linker 300/465 & 615 water 0.02% v/v [89]

UC-PB
ligand-exchange
and controllable

complexation
UCNP 980/540 & 654 H2S 50 nM [94]

ZnMOF solvothermal Linker 370

Fe3+ 28 µM [101]
Pb2+ 600 µM

Cr2O7
2− 43 µM

CrO4
2− 45 µM

CdMOF Fe3+; Pb2+; Cr2O7
2−;

CrO4
2−

57 µM; 370 µM;
71 µM; 31 µM

ZJU-168(Tb or Eu) solvothermal
Tb &linker 340/430 & 544

Glutamic acid
3.6 µM

[102]Eu & linker 340/430 & 614 4.3 µM
F-UiO solvothermal FITC 488 & 435/520 pH [103]

BSA + KFP@ZIF-8/HP
+primer + MB

one-pot room
temperature

crystal growth
Cy5 survivin mRNA 2.3 pM [104]
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3. MOFs-Based Nanosensors in SERS Applications

Surface-enhanced Raman spectroscopy is a hypersensitive technique that enhances
Raman scattering of the analyte in proximity to a nanostructured substrate via electromag-
netic or chemical enhancement [4,105]. It can provide structural fingerprint information
on the low-concentration analyte in real time [106,107]. Owing to its high sensitivity and
high selectivity, SERS has a breadth of applications in pharmaceutical and environmental
analysis [69,108], food science [109], life sciences [5], clinical diagnosis [64,69], and other
fields [106]. However, for metal substrates, problems remain regarding the application of
real-world sample detection. To name a few, the selective adsorption of analytes onto the
metal substrate is required to assure better sensitivity and specificity [110]; the binding
strength between the analyte and plasmonic surfaces needs to be improved to facilitate
better chemical enhancement; and the stability and reproducibility of metal substrates need
to be improved to assure the robustness of the analytical methods [105].

As a new class of porous polymeric materials, MOFs present ultra-high porosity, a large
surface area, and designable binding sites for multiple functionalization, which provide
concentrating effects and multiple selectivity for the analytes [22,23,63]. In addition to
directly serving as the SERS substrate, the MOF-metal composite SERS substrate can further
improve both the sensitivity and the selectivity of the analytical measurements; in such
a way, the stability and uniformity of the enhancement substrate can be improved [32,75].
Therefore, MOF materials have found increasing applications in SERS measurements
(Scheme 1, Table 2).
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Table 2. Summary of MOF and MOF-plasmonic system-based SERS applications.

SERS Substrate Target Molecules Enhancement
Mechanism LOD Ref

UiO-67 2,4,6-Trinitrophenol (TNP) CM a [23]
Au/MOF-199 acetamiprid EM b & CM 10−8 M [42]

Au@MIL-101 (Cr) tetrodotoxin EM & CM 0.008 ng/mL [60]
GSPs@ZIF-8 aldehyde VOCs EM & CM 10−9 M [64]

Ag@MIL-101 (Cr) nitrofurantion
EM & CM

10−7 M [65]
APTES@ZIF-67 benzaldehyde 10−2 M [65]

ZIF-8 methyl orange 10−4 M [65]
Au-L/D-AlaZnCl pseudoephedrine EM & CM 10−12 M [72]

Cu2O@SiO2@ZIF-8@Ag phenol red EM & CM 10−12 M [73]
Au/MOF-74 4-nitrothiophenol EM & CM 69 nmol·L−1 [74]
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Table 2. Cont.

SERS Substrate Target Molecules Enhancement
Mechanism LOD Ref

Au@ZIF-8 4-nitrobenzenethiol EM & CM 0.1 nM [75]
Ag@MIL-101 (Fe) dopamine EM & CM 0.32 p M [76]

Au/MIL-101 rhodamine 6G; benzadine EM & CM 41.75 fmol; 0.54 fmol [110]
Mo-MOF crystal violet CM 10−6 M [111]

MIL-100 (Fe)

toluene

CM

2.5 ppm [112]
acetone 20 ppm

chloroform 20 ppm
isopropanol 100 ppm

4-ethylbenzaldehyde 26 ppm
MIL-100 (Fe-Zr) isopropanol 50 ppm [112]

Au@MIL-101 (Fe) toluene EM & CM 0.48 ppb [112]
Au@NU-901 4′-mercaptobiphenylcarbonitrile EM & CM [113]

a: Chemical enhancement; b: electromagnetic enhancement.

3.1. SERS Substrates

To date, many MOFs have been directly used as SERS substrates; examples include
ZIF-67, ZIF-8, Mo-MOF, MIL-100(Fe), etc. [91,112,114]. The enhancement by MOF can be
attributed to chemical enhancement (CM) [63,105], which has been proposed as the primary
enhancement mechanism for plasmon-free substrates such as MOF, semiconductors, and
other metal oxides (Cu2O [73], WO3 [115], TiO2 [116], VO2 [117–119]), etc. Particularly,
charge transfer transitions may be major contributors to SERS [120]. The charge transfers
between the highest occupied molecular orbital (HOMO) of the analyte and the conduction
band (CB) edge of the substrate material, or between the valence band (VB) of the substrate
material and the lowest unoccupied molecular orbital (LUMO) of the molecules, are crucial
for the enhancement effects. Other than the resonance Raman enhancement due to elec-
tronic transition between HOMO and LUMO, the electronic transition between VB and CB
of the substrate material can also contribute to the enhancement of the Raman signal due
to the resonance process [121–123].

The first MOF-enhanced Raman spectroscopic study was conducted by Tsung-Han
Yu et al. [121] using methyl orange (MO) adsorbed in MIL-100 and MIL-101 as the model
system. The study suggested that the Raman intensity enhancement was due to the charge
transfer between the metal oxide clusters in MOFs and the adsorbed MO molecules. The
study also suggested that the SERS effect was also orientation-dependent, which is in
agreement with the basic understanding of Raman spectroscopy.

MIL-100(Fe) has been demonstrated, for the first time, by Li and colleagues to act
as a SERS-active substrate to detect volatile organic compounds (VOCs) that usually
possess low Raman cross-sections [112], and a LOD of 2.5 ppm was achieved for toluene.
Based on special adsorption energy and density functional theory (DFT) calculations, the
charge transfer enhancement mechanism was suggested for high SERS activity. Selective
enhancement was attributed to resonance between laser energy and the photo-induced
charge transfer energy, as well as the different dispersive energy between the ligand of the
MOFs and the analyte (Figure 5). Through the ion exchange strategy, the MIL-100(Fe-Zr)
complex improved LOD for isopropanol (50 ppm) compared to the pristine MIL-100(Fe)
(100 ppm). This MIL-100(Fe)-based sensing platform was successfully used to monitor
gaseous indicators, including 4-ethylbenzaldehyde, acetone, and isopropanol, for early
diagnosis of lung cancer.
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Figure 5. SERS of gaseous small molecules by MIL-100 (Fe). (a) Energy-level diagrams of toluene,
acetone, and chloroform relative to MIL-100 (Fe) with respect to the vacuum level. (b) Adsorption
affinity and binding energy of toluene, acetone, and chloroform on MIL-100(Fe). (c) SERS spectra
of toluene, acetone, and chloroform vapor, respectively, on MIL-100(Fe), with concentrations as
indicated [112]. Copyright 2020, John Wiley and Sons.

MOFs have a high degree of tailorability, with the ability to choose nodes and linkers
as well as to tune the framework topologies. Consequently, the electronic energy band
structure can be tuned to match the molecular orbital energy level of the analyte in order to
facilitate controllable combinations of several resonances, such as the charge transfer, inter-
band, and molecule resonances, in addition to the ground-state charge transfer interactions;
thus, a significantly enhanced Raman signal can be achieved. Encouragingly, based on
the pore-structure optimization and surface modification strategy, Zhao and colleagues
synthesized a series of MOFs by using metal clusters M2(COO)4 (M = Zn, Co, and Cu) as



Biosensors 2023, 13, 128 13 of 24

the nodes and Tetrakis(4-carboxyphenyl)porphyrin (TCPP) or 2-methylimidazole as the
linker (Figure 6) [114]. The electronic band structure of the MOFs can be tuned to match
that of the target analyte, such that the enhancement factor (EF) of ZIF-67 can reach as high
as 1.9 × 106 with the LOD as low as 10−8 M. The high flexibility of the MOF structure can
provide high levels of variety for SERS applications.
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light with the metal nanostructures results in a huge enhancement of the local electromag-
netic field, which is the major mechanism accounting for SERS. The combination of MOF 
with noble metal SERS substrates may be able to realize the synergetic enhancement by 
integrating CM and EM into one system, thus achieving maximum sensitivity [23,63]. Fur-
thermore, such a MOF-SERS combination may be but one solution for problems associ-
ated with metal substrates, such as the low concentration and high mobility of the analyte 
at the enhancement spot, complicated matrix interferences, and modest substrate stability 
[63,124]. Specifically, the adjustable pore size of MOFs enables them to serve as molecular 
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Figure 6. Structure and SERS effect of M-TCPP MOF. (a) Illustration of the process of synthesizing
the M-TCPP (M = Zn, Co, and Cu) MOFs. (b,c) SEM images of the Cu-TCPP MOFs and Zn-TCPP
MOFs. (d) PXRD patterns of the Co-TCPP MOFs, Zn-TCPP MOFs, and Cu-TCPP MOFs. (e) SERS
spectra of R6G (10−4 M) on the Co-TCPP, Zn-TCPP, and Cu-TCPP substrates. (f) SERS spectra of R6G
on the Co-TCPP substrate at three different concentrations: 10−4, 10−5, and 10−6 M [114]. Copyright
2019, American Chemical Society.

Using MOFs as the SERS-active substrate can realize selective enhancement of the
target molecule for the Raman signal. However, precise tuning of the band energy is
required to facilitate resonance with laser energy and charge transfer energies, which
makes it difficult to realize SERS for a breadth of molecules of interest using one MOF
substrate. Furthermore, there is still room to improve the sensitivity which can be achieved
by the combination of MOFs with plasmonic substrates.

Electromagnetic enhancement (EM) is a physical enhancement process attributed to
the localized surface plasmon resonance (LSPR) of the noble metal [4]. When the laser
impinges on the metal nanostructure, e.g., a metal nanoparticle, the electromagnetic wave
causes the collective oscillation of the delocalized conduction electrons. LSPR occurs when
the frequency of the light matches with the oscillation frequency. The coupling of incident
light with the metal nanostructures results in a huge enhancement of the local electromagnetic
field, which is the major mechanism accounting for SERS. The combination of MOF with
noble metal SERS substrates may be able to realize the synergetic enhancement by integrating
CM and EM into one system, thus achieving maximum sensitivity [23,63]. Furthermore,
such a MOF-SERS combination may be but one solution for problems associated with
metal substrates, such as the low concentration and high mobility of the analyte at the
enhancement spot, complicated matrix interferences, and modest substrate stability [63,124].
Specifically, the adjustable pore size of MOFs enables them to serve as molecular sieves to
filter the analyte based on molecular size [71,75,104]; MOFs’ shells can protect the metal
substrates from oxidation and reactive species in the complex matrix, thus improving the
stability [125].

MOFs coatings have the advantage of controlling the hotspot distribution to improve
the SERS performance [71–73]. In the SERS technique, the Raman signal can be significantly
enhanced only when the analyte is confined to the proximal distance to the plasmonic
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surface (<3–5 nm), because enhancement depends on the exponential decay of the plas-
monic field at the metal–medium interface [63]. In the work by Wang and colleagues, gold
superparticles (GSPs) were used to provide high-density hotspots, and the coating of ZIF-8
over GSPs provided a further enhanced SERS effect [64] (Figure 7). The finite-difference
time-domain (FDTD) calculation revealed that the MOF coating was able to enhance the
intensity of the electromagnetic field around the metal surface, and the high dielectric
constant of MOF prevents the decay of the electromagnetic field along the radial direction.
Consequently, a very intense SERS effect was observed [64,75].
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Figure 7. GSPs@ZIF-8 and the mechanism for selective SERS detection. (a) Hotspots in GSPs (left)
and GSPs@ZIF-8 (right) around the edges of the plasmon. (b) SERS spectra of 4-ATP on GSPs
(black) and GSPs@ZIF-8 (red), with the inset showing the relative intensity of the Raman spectra.
(c) An illustration of the principle for achieving the selectivity. (d) The maximum diameter of four
main analytes that were allowed to pass through the pores of ZIF-8. (e) The reaction used to capture
aldehyde vapors via covalent linkage to the GSPs [64]. Copyright 2018, John Wiley and Sons.

The synergistic SERS effect was achieved by Wang and colleagues, via site-selective
deposition of ZIF-8 on gold nanobipyramids (Au NBPs) [71]. Deposition of ZIF-8 was
observed around the distal end, waist, or the surface of the Au NBPs (Figure 8). When ZIF-8
was located at the distal ends (Au BNPs@end-ZIF 8), the largest electric field enhancement
was achieved, and the Raman signals on Au BNPs@end-ZIF 8 were at least twice those
on the Au NBPs. Li and colleagues used ZIF-8-coated cuprous oxide/silica core–shell
nanostructure (Cu2O@SiO2@ZIF-8) as a template to precisely control the growth of Ag NPs
of varying sizes (2–29 nm) [73]. The results reflected that when the size of the Ag NPs
matched well with the pores of Cu2O@SiO2@ZIF-8, the strongest electromagnetic field was
generated. The Cu2O@SiO2@ZIF-8 provided abundant and uniformly distributed hotspots,
thus resulting in an LOD of 5.76 × 10−12 mol·L−1 and a limit of quantification (LOQ) of
1.92 × 10−12 mol·L−1, respectively, in the detection of phenol red.
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3.2. Other Effects of MOFs for Improving Selectivity and Sensitivity

Owing to the large specific surface area [20], uniform porosity [54], structural adaptabil-
ity and flexibility [73,114], and ease of functionalization [63], MOFs as shells can enhance
the selectivity and specificity of SERS substrates through physical adsorption and chemical
recognition [72,110]. The introduction of additional functional layers, such as aptamers and
antibodies, can ensure selective adsorption through multiple molecular interactions [23]. In
addition, other factors, such as the thickness of MOFs, the nature of the metal species, and
the functional groups afforded by the organic linkers [23,126], can also affect the selectivity.

The MOF shell over the plasmonic SERS substrate can serve as a sieve to allow only
the target of interest to diffuse to hotspots, as well as to facilitate an efficient reaction
with the Raman label by prolonging the contact time. VOCs are important biomarkers for
early diagnoses of diseases [127], but the low concentration and high mobility of gaseous
molecules result in insufficient collisions between gas molecules and SERS substrates,
significantly compromising the detection sensitivity [128]. Wang and colleagues [64] used
a GSPs@ZIF-8 SERS substrate to selectively detect aldehydes, a lung cancer biomarker in
patients’ exhalation. The detection of gaseous aldehydes is currently limited by its small
Raman cross section and poor adsorptivity on SERS substrates. The ZIF-8 shell allows
the small vapor-phase aromatic compounds such as benzaldehyde, glutaricdiadehyde,
and 4-ethylbenzaldehyde, but not 2-naphthaldehyde, to diffuse into the channel due to
the sieving effect (Figure 7c–e). The prolonged contact time between gaseous molecules
and the GSPs hotspots can facilitate the reaction of the analyte with the Raman-active
probe molecule p-aminothiophenol (4-ATP) through the Schiff base reaction to generate
a distinguished Raman signal. Apart from the physical adsorption, the MOFs can also
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selectively adsorb analytes through chemical recognition. Yusuke and colleagues [72]
prepared hierarchical mesoporous Au films coated with homochiral MOF, which were able
to realize ultrasensitive and enantioselective sensing of pseudoephedrine (PE) in complex
bio-samples. The chiral ligands (a kind of alanine derivative) were used to endow the MOF
with the homochiral property to distinguish (+)-PE. For analysis of PE in blood serum, the
matrix effect was reduced by taking the advantage of the pore size limit to prevent large
molecules from entering the MOF shell. This smart SERS substrate enabled an extremely
low detection limit (10−12 M) in the complex biomatrix without preliminary separation.

In reality, the size of most of the biomarkers does not match that of the MOF chan-
nel. Efforts have been made to detect the metabolites as an indicator of the amount of
biomarkers. By using an in situ reduction strategy, Zhou and colleagues [69] constructed
a AuNPs@MIL-101@GOx (or AuNPs@MIL-101@LOx) nanoplatform for the detection of
glucose/lactate, which are important neurochemicals associated with many physiological
and pathological brain functions, such as ischemia, learning, and memory. The Raman-
inactive reporter leucomalachite green (LMG) was oxidized into the active malachite green
(MG) through a cascade of catalytic processes, and the signal intensity was used to indicate
the amount of glucose/lactate. This nanoplatform has also been used to evaluate the
therapeutic effects of astaxanthin for the purpose of alleviating cerebral ischemic injuries.

The metal-MOF-based SERS substrates have also been used in drug delivery and
bioimaging due to the high surface area and porosity, excellent biocompatibility, and
stability of MOFs [5]. The exposed active sites on the surface of the MOFs can be used
for functionalization with recognition units, and the large specific surface area provides
sufficient accessible binding sites for target molecules [80]. For example, the carboxyl group
on the surface of the Au@Cu3(BTC)2 nanoparticles was used for functionalization with
the aptamers [5]. In another example, the ZIF-8 shell on the Au@Ag surface was used to
conjugate with IgG antibodies and recombinant nanobodies [70], based on the high affinity
of polyhistidine toward transition metal ions [129]. The Au@Ag@ZIF-8 substrate was used
to detect CD44 and EGFR biomarkers in mixed cell cultures, indicating the potential of the
nanoprobes for SERS imaging and multiplexed bio-detection.

Farha and colleagues [113] reported the controlled encapsulation of gold nanorods
(AuNRs) with a scu-topology Zr-MOF (NU-901) via the room-temperature assembly of
MOF on AuNRs seeds. After incubating AuNR@NU-901 with a mixture of thiolated
polystyrene (PST-SH; Mw = 5000 g/mol) and 4′-mercaptobiphenylcarbonitrile (BPTCN)
molecules (roughly 15 × 7 Å along the thiol−CN axis and phenyl axis), the resulting
spectrum closely matched with that of BPTCN alone. This result demonstrated that the
prepared AuNR@MOFs were able to take-up molecules with suitable sizes and block
large molecules from the pores, thus facilitating highly selective SERS detection at the
AuNR ends.

3.3. Enhancement of the Stability, Homogeneity, and Reproducibility of SERS Substrates

The instability and reproducibility of the plasmonic nanoparticles under harsh envi-
ronment represent inherent challenges in SERS detection [4,63,65,72]; therefore, a protective
layer is necessary. Due to their excellent chemical and thermal stability [130], as well as
their mechanical robustness [131], MOFs are an ideal candidate to act as a stabilizing layer.
For example, Liang and colleagues [65] prepared a dense MIL-101(Cr) film on the rough
titanium oxide foil via a secondary growth method, and then the Ag+ was reduced to
Ag on the surface of the film to form the Ag@MIL-101(Cr) film SERS substrate. In such
a way, the excellent SERS effect and the high reproducibility of the SERS substrate were
achieved to realize the detection of nitrofurantoin (down to 10−7 M) without any complex
subsequent procedures. Li and colleagues reported a highly sensitive and continuously
stable 3D substrate (Cu2O@SiO2@ZIF-8@Ag) for SERS detection of phenol red with a LOD
of 5.76 × 10−12 mol·L−1 and LOQ of 1.92 × 10−12 mol·L−1, and a high enhancement factor
of 1.7 × 107 was achieved even after 35 days [73].
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The sensitivity and quantification performance of the SERS technique often contradict
one another due to the modest reproducibility of the SERS substrate. Yang and colleagues
constructed an integrated SERS platform with analyte enrichment and analyte filtration
functions (referred to as AEF-SERS) to simultaneously achieve a good quantification per-
formance and ultra-high sensitivity (Figure 9) [75]. In their work, single Au NRs were
separated from each other through the coating of a thick ZIF-8 shell to form a AuNR@ZIF-8
submicroscale truncated rhombic dodecahedron (TRD); thus, a homogeneous SERS sub-
strate was produced to improve the reproducibility of the detection. The separation of Au
NRs may reduce the number of hotspots, thus compromising the sensitivity. However, the
authors were still able to successfully realize a highly sensitive detection by constructing
a polydimethylsiloxane (PDMS) brush surface that was capable of shrinking the analyte
dispersion area by a million-fold in order to enrich the analyte.
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Figure 9. (a) Schematic illustration of the working principle of the AEF-SERS platform, showing
application of the test solution (I), the enrichment and sieving effect (II), and the formation of analyte-
SERS substrate aggregates (III) for selective and sensitive quantification of the analyte. (b) SERS
spectra of 4-NBT at different concentrations using AuNR@ZIF-8 TRDs on the PDMS brush surface.
(c) The calibration curve of 4-NBT at 1329 cm−1. (d) SERS mapping of 10 nM 4-NBT at 1329 cm−1

using AuNR@ZIF-8 TRDs. (e) Intensity variations at 1329 cm−1 from randomly chosen 40 SERS
spectra using AuNR@ZIF-8 TRDs [75]. Copyright 2020, American Chemical Society.

The integration of noble metals and MOFs can speed up the development of the
SERS technique. The high sensitivity can be partially explained by pre-concentration of
the analyte through physical adsorption and chemical recognition. Aptamers, antibodies,
and other recognition units can be easily used to modify MOFs in order to increase the
molecular recognition specificity. In addition, when used in complex environment such
as the biomatrix, the MOF shells provide a physical defense to improve the stability and
reproducibility of the substrates, as well as to reduce the nonspecific adsorption and, thus,
improving the detection sensitivity.
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4. Conclusions and Future Perspectives

Applications of MOFs in the analytical and bioanalytical fields have experienced rapid
growth due to their unique structural features. This mini-review summarized the advances
of MOF-based optical detection methods, including luminescence and SERS, from the
following aspects: the development of MOF-based luminophores, including the single
luminophore signal, ratiometric signal and multi-modality signals; and the SERS effect of
including MOFs as enhancement substrates and as auxiliary moieties for target molecule
concentration, selective separation, and SERS substrate homogeneity for the purpose of
improving the method’s robustness.

Compared to detection based on single parameter, the multiplexed detection with
which multiple target or parameter detection is achieved in one sample volume can be more
informational and can help to draw solid conclusions in the analysis of biological samples.
Optical-based analytical methods have been used in the field of multiplexed detection
due to their non-invasiveness, excellent spatiotemporal resolution, and, most importantly,
their multiple coding elements, including intensity, wavelength, lifetime, location, and
combinations of the above. Luminescent MOFs should be developed as an excellent type of
multiplexing probe, because the broad choice of guest molecules and the structural diversity
of MOFs provide diversified coding elements. However, the multiplexing capability of
photoluminescent MOFs has been less frequently studied, if at all. Therefore, more efforts
should be contributed to designing luminescent MOFs with multiple signal sources to
facilitate the necessary analytical and bioanalytical applications.

Lanthanide ion-based MOFs, including mixed Ln ions, exhibit tunable luminescence
peaks and lifetimes, making them suitable for ratiometric, multiplexed, and multi-modal
measurements. However, as luminescent nanoprobes, the modest luminescence quantum
yield in aqueous media impedes the application of these MOF-based luminescence sensors
in aqueous solution as well as in biological samples. Future efforts should also include the
engineering of the building elements of MOF structures to create more MOF-based optical
nanosensors with improved performance in terms of factors such as physical and chemical
stability, photostability, easiness in functionalization, quantum yield, red/near infrared
emission wavelength, and tuned luminescence lifetime.

For the applications of MOFs in SERS measurements, the SERS mechanism of MOFs
needs to be explored in more depth and breadth to rationally achieve the maximum SERS
sensitivity. Further novel and facile approaches are expected to produce distinctive Raman
signals via chemistry of the MOF with the analyte of interest. Efforts towards reproducible
MOF substrates with high enhancement factors will be crucial to applications of MOF-based
SERS in practical samples.

In both the photoluminescence and SERS fields, the breadth of applications need to
be further explored in order to most effectively utilize the excellent physical and chemical
properties of MOFs. The aforementioned needs represent challenges, but they also repre-
sent opportunities for MOF-based optical nanosensors to play a more significant role in
bioanalytical applications.
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