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Abstract: The development of efficient H2O2 sensors is crucial because of their multiple functions
inside and outside the biological system and the adverse effects that a higher concentration can
cause. This work reports a highly sensitive and selective non-enzymatic electrochemical H2O2 sensor
achieved through the hybridization of Co3S4 and graphitic carbon nitride nanosheets (GCNNS).
The Co3S4 is synthesized via a hydrothermal method, and the bulk g-C3N4 (b-GCN) is prepared by
the thermal polycondensation of melamine. The as-prepared b-GCN is exfoliated into nanosheets
using solvent exfoliation, and the composite with Co3S4 is formed during nanosheet formation.
Compared to the performances of pure components, the hybrid structure demonstrates excellent
electroreduction towards H2O2. We investigate the H2O2-sensing performance of the composite by
cyclic voltammetry, differential pulse voltammetry, and amperometry. As an amperometric sensor,
the Co3S4/GCNNS exhibits high sensitivity over a broad linear range from 10 nM to 1.5 mM H2O2

with a high detection limit of 70 nM and fast response of 3 s. The excellent electrocatalytic properties
of the composite strengthen its potential application as a sensor to monitor H2O2 in real samples.
The remarkable enhancement of the electrocatalytic activity of the composite for H2O2 reduction is
attributed to the synergistic effect between Co3S4 and GCNNS.

Keywords: Co3S4; g-C3N4 nanosheets; H2O2 sensor; cyclic voltammetry; differential pulse voltam-
metry; amperometry; electrochemical sensor

1. Introduction

H2O2 is an important chemical in many fields, including the biomedical, pharmaceuti-
cal, food, and textile industries [1–3]. It is also a reactive oxygen species abundant in living
organisms and is essential for maintaining regular biological functions. At normal concen-
trations, it functions as a signaling molecule for neural development and cell proliferation
and is a byproduct of cellular metabolism [4]. However, abnormal levels of H2O2 in a cell
cause oxidative stress, leading to aging and diseases such as Parkinson’s, Alzheimer’s,
cardiovascular diseases, cancers, or inflammation, and is, therefore, a biomarker [5,6]. As
a result, the accurate and efficient determination of H2O2 is imperative, and the drive to
develop inexpensive and highly sensitive H2O2 sensors has increased significantly.

There are different methods to detect H2O2, such as fluorimetry, titrimetry, chemilumi-
nescence, and spectrophotometry [7–10]. However, electrochemical methods offer a better
platform for fast, sensitive, inexpensive, and portable sensing [6,11]. For the electrochemi-
cal detection of H2O2, enzymatic or non-enzymatic sensors can be used. With enzymatic
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sensors, enzymes catalyze the reduction of H2O2. Although they have high sensitivity and
good selectivity, the enzymatic electrochemical sensors suffer from the instability of the
enzymes to various variables such as temperature, pH, etc., and they are expensive and
have poor reproducibility [12]. Consequently, the non-enzymatic electrochemical sensing
of H2O2 becomes of great importance.

The enzyme-free H2O2 sensors employ nanostructured and morphologically impres-
sive electroactive materials, including metal oxides, sulfides, and carbon nanomaterials, as
modifiers of conventional electrodes [13]. Cobalt-based nanomaterials, especially Co3O4,
are extensively studied for H2O2 detection due to their good catalytic activity and high
stability, and they are known to be very active towards H2O2 [1,14–18]. Similar in structure
to Co3O4, Co3S4 is another spinel compound with superior electrochemical properties,
abundant oxidation states for Faraday processes, and high theoretical specific capacity. It is
mainly used for energy storage applications [19,20]. Octahedral and tetrahedral positions
are occupied by cobalt in their Co3+ and Co2+ states, respectively. It is a superior electro-
catalyst because the metal–sulfur bond is weaker than oxygen. Substitution with a bigger
anion reduces the material’s band gap, permitting faster electron transport in Co3S4 than
in Co3O4 [21,22]. However, the potential application of these materials in electrochemical
sensing is not well explored, and few recent studies can be found in the literature [22–25].
The only study of Co3S4 for H2O2 detection was by Chen et al., in which they prepared
core–shell Cu2S@Co3S4 heterostructures by hydrothermal as an electrocatalyst for H2O2
reduction. The superior electrocatalytic performance of the sensor was attributed to the
microstructure and the synergistic effect between Co3S4 and Cu2S, where more Co(II) elec-
trocatalytic sites are formed by the transfer of electrons from Cu2S to Co3S4 [24]. However,
to be further explored as a sensor, the limitations of Co3S4, such as less surface area and
lower conductivity, need to be improved. Hybridizing Co3S4 with high surface area and
highly conductive carbon nanomaterials is one way to do this [2,16].

g-C3N4 (GCN) is a π-conjugated polymeric carbon material with a layered structure,
and the C and N atoms are sp2 hybridized. Its structure and surface functionalities give
the material good catalytic activity [26]. The bulk g-C3N4 (b-GCN) can be synthesized in
good yield from low-cost materials. Due to its attractive properties and tunability, it has
attracted great interest in electrochemical sensing in recent years [27,28]. The poor electrical
conductivity and lower surface area of b-GCN can be significantly improved by tailoring
their morphology by converting them into nanosheets. The thermal or solvent exfoliation
of b-GCN yields nanosheets with high surface area and high electrical conductivity [26,29].
Ajay et al. compared the electrochemical performance of GCN nanosheets (GCNNS)
prepared by solvent and thermal exfoliation and reported the superior electrocatalytic
activity of solvent-exfoliated nanosheets [30]. Coupling an electroactive material with
GCNNS has proven to be an excellent way to improve sensor performance [3]. In this aspect,
Liu et al. integrated ZnO into the GCN matrix to form a highly sensitive H2O2 sensor. The
performance enhancement of the composite resulted from increases in effective surface area
and conductivity [31]. Later Atacan et al. hybridized CuO and GCN to achieve improved
electrooxidation of H2O2 [32]. Ye et al. developed spherical ZnFe2O4/GCN nano-micro
composites for highly efficient H2O2 sensors. The internal synergy between ZnFe2O4 and
GCN promotes conductivity and improves the reaction kinetics at the electrode surface [3].
These studies emphasize the need for detailed investigations of metal oxides or sulfides
hybridized with GCN as electrode materials to enhance H2O2 sensing.

In the present work, a composite is developed through hybridization between Co3S4
and GCNNS to obtain a highly sensitive and selective H2O2 sensor that works in a wide
range of analyte concentrations and has a detection limit of 70 nM. Co3S4 micro flowers
were synthesized by a facile hydrothermal method, b-GCN by thermal polycondensation
of melamine, and the GCNNS and composite were prepared by solvent exfoliation. The
electrocatalytic reduction of H2O2 was evaluated using cyclic voltammetry (CV), differential
pulse voltammetry (DPV), and amperometry. As shown by impedance spectroscopy, the
Co3S4/GCNNS showed a lower charge transfer resistance than its counterparts, indicating
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the increased electron transfer kinetics at the composite electrode due to the collective
effect between Co3S4 and GCNNS. The practical application of the developed sensor was
evaluated by estimating H2O2 in the human serum.

2. Experimental Section
2.1. Synthesis
2.1.1. Co3S4

Co3S4 micro flowers were synthesized by hydrothermal route [33]. First, 6 mmol of
cobalt (II) nitrate hexahydrate was dissolved in 60 mL of distilled water. After stirring for
10 min, 8 mmol of thiourea was added and vigorously stirred for another 15 min. Then,
4 mL of ethylenediamine was added to the above solution, and the color of the solution
changed to brown. The solution was transferred to a 100 mL Teflon-lined autoclave and
held at 200 ◦C for 12 h. After that, the reaction mixture was cooled to room temperature. A
black-colored product was obtained, which was washed three times with distilled water
and ethanol. The product was dried at 60 ◦C overnight.

2.1.2. GCNNS

b-GCN was synthesized via the thermal polycondensation of melamine. 4 g of
melamine was heated at 600 ◦C in a crucible for 2 h at 25 ◦C min−1 to obtain a yellow-
colored b-GCN. The nanosheets were prepared by the solvent exfoliation of b-GCN. 10
mg of b-GCN was dispersed in 10 mL of distilled water and sonicated at 40 kHz for 2 h to
obtain the nanosheets [30].

2.1.3. Co3S4/GCNNS

First, 10 mg b-GCN was dispersed in 10 mL of distilled water and sonicated for 2 h at
40 kHz to obtain the nanosheets. Then, 2 mg of Co3S4 was added to the above dispersion
and was further sonicated for 45 min to obtain the Co3S4/GCNNS [34,35].

2.2. Fabrication of the Electrodes

The glassy carbon electrode (GCE) was polished with 0.3 and 0.05 µm alumina slurry
using a polishing cloth, sonicated for 3 min in distilled water and dried at room temperature.
Drop-casting is a simple, efficient, and fast method to modify electrode surfaces [36]. 10 µL
of the prepared composite was drop-cast onto the mirror-polished GCE and dried overnight
at room temperature. The fabricated Co3S4/GCNNS-modified electrode was washed with
distilled water and used for electrochemical studies. GCNNS-modified GCE and Co3S4-
modified GCE were prepared by a similar procedure. A scheme for synthesizing the
materials and the fabrication of Co3S4/GCNNS is shown in Figure 1.
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validated the synthesis of the materials, crystalline behavior, and phase purity. 

Figure 1. A scheme for (a) hydrothermal synthesis of Co3S4, (b) synthesis of b-GCN, and (c) prepara-
tion of Co3S4/GCNNS and fabrication of the electrode.

3. Results and Discussion
3.1. Characterization
3.1.1. Crystallographic Studies

Powder X-ray diffraction (XRD) studies of the as-prepared Co3S4, b-GCN, GCNNS,
and Co3S4/GCNNS (Figure 2) help reveal the crystal and phase structure of the prepared
materials. The XRD spectra of b-GCN and GCNNS are identical, and the characteristic
peaks exist at 2θ values of 12.87◦ and 27.58◦ due to diffraction from (100) and (002) crystallo-
graphic plane and agree well with the standard JCPDS card no# 87-1526. The peak centered
at 12.87◦ is a feature of the repeating tris triazine structural motifs present in b-GCN and
GCNNS, and the peak at 27.58◦ ascribes to the periodic stacking of layers along the c-axis.
The XRD spectrum of Co3S4 shows a cubic phase with the diffraction peaks at 2θ values
of 31.1◦, 36.04◦, 47.13◦, and 55.0◦ corresponding to the crystal planes of (311), (400), (422),
and (440) aligning well with standard JCPDS card no# 42-1448. As depicted in Figure 2, the
XRD pattern of the Co3S4/GCNNS nanocomposite shows the presence of both GCNNS
and Co3S4, ensuring the successful formation of the composite. XRD analysis validated the
synthesis of the materials, crystalline behavior, and phase purity.
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Figure 2. XRD data of b-GCN, GCNNS, Co3S4, and Co3S4/GCNNS.

3.1.2. XPS Analysis

XPS studies were performed to acquire information about the chemical states of the
elements in Co3S4, b-GCN, GCNNS, and Co3S4/GCNNS. The C/N atomic ratio in the
b-GCN was determined to be 0.77, with the atomic percentages of C 1s and N 1s being
44.6 and 55.4, respectively. This confirms the graphitic nature of the prepared b-GCN as
it contains C and N in a nearly 3:4 ratio [37,38]. The spectra of Co3S4/GCNNS are shown
in Figure 3, and those of GCNNS and Co3S4 are in Figure S1 (Supplementary Materials).
The full-scan spectrum of Co3S4/GCNNS in Figure 3a reveals the presence of C, N, Co,
and S in the composite. The O detected is due to the oxidation or absorption of oxygen by
the sample in the air [39]. As shown in Figure 3b, the high-resolution spectra of C 1s can
be deconvoluted into two peaks at 284.8 and 288.0 eV. The peak at 284.8 eV is attributed
to graphitic or amorphous carbon present in GCNNS or adsorbed on the surface. The
carbon atoms in the N = C− (N)2 group in GCNNS yield a peak at 288.0 eV [35,40]. The
high-resolution spectrum of N 1s (Figure 3c) combines four peaks at 398.4, 399.3, 400.5, and
404.6 eV. The peak at 398.4 eV is the N sp2 bond in C−N = C in the triazine ring, and
the peaks at 399.3 and 400.5 eV correspond to the tertiary nitrogen group (N− (C)3) and
the quaternary N three-carbon atom amino functional group (N−H) in the aromatic ring,
respectively. The peak at 404.6 eV corresponds to the π excitation of C = N in GCNNS [41].
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(c) N 1s, (d) Co 2p, (e) S 2p.

The high-resolution spectra of Co 2p in the composite (Figure 3d) can be deconvoluted
into two spin-orbit doublets of Co2+ and Co3+. The peaks 14.96 eV apart at 783.3 and
798.26 eV correspond to the 2p3/2 and 2p1/2 orbitals of Co2+ in Co3S4. Whereas the 2p3/2

and 2p1/2 doublet of Co3+ appears at 780.7 and 796.1 eV with a spacing of 15.4 eV, suggesting
the existence of Co in the +2 and +3 oxidation states in Co3S4/GCNNS and a satellite peak
appears at 804.2 eV [42,43]. The S 2p spectra (Figure 3e) of Co3S4/GCNNS are fitted into
four peaks, the peaks at 161.9 and 164.9 eV are indexed to S 2p3/2 and S 2p1/2 of S in Co3S4
and the two peaks at 166.8 and 171.48 eV belong to S in SO2−

3 and SO2−
4 , respectively [41].

The results demonstrate the successful formation of the Co3S4/GCNNS composite. As
shown in Figure S1a, the survey scan of GCNNS showed the presence of C 1s and N 1s,
while Co3S4 showed the presence of Co 2p and S 2p, and the deconvoluted spectra are
shown in Figure S1b,c,e,f. The spectral peaks of the materials are presented in Table S1
for comparison. Interestingly, the binding energy of Co 2p has increased in the composite
compared to pure Co3S4, and the binding energy of C 1s has decreased compared to its
pure counterpart, strongly suggesting the electron transfer between Co3S4 and GCNNS
in the composite. The decrease in electron density of Co3S4 in the composite causes an
increase in its binding energy, attributed to the transfer of electrons from Co3S4 to GCNNS
in the hybrid structure. Meanwhile, the electronegativity of Co (1.88) is lower than that of C
and N, further proving that the electron of Co3S4 tends to donate to GCNNS. These results
prove that the integration between Co3S4 and GCNNS in the composite is not just a physical
mixture but that there is heterojunction formation with strong electronic interactions [44].

3.1.3. UV-Visible

The UV-visible spectra of Co3S4, GCNNS, and Co3S4/GCNNS are shown in Figure 4.
GCNNS shows a characteristic absorption band at 318 nm due to the π-π* transition in
GCNNS, as previously reported [30]. The corresponding absorption in Co3S4/GCNNS
appears at 321 nm, although the intensity of the absorption has diminished. The slight
wavelength shift and decrease in adsorption intensity are attributed to composite formation.
Co3S4 displays a broad absorption in the 400–800 nm region. Due to the integration of
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Co3S4 into the GCNNS matrix, the Co3S4/GCNNS exhibits greater absorption in the visible
light region than that of GCNNS.
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3.1.4. SEM and EDS

The morphology of the synthesized materials was examined by SEM and is shown in
Figure 5. The SEM micrograph of the b-GCN shown in Figure 5a is a highly aggregated
structure. Further GCNNS was drop-cast and dried on a glassy carbon (GC) plate to
record the SEM images (Figure 5b). Interestingly, wrinkled layers with a few-nanometer
thicknesses are observed, confirming the formation of the nanosheets. The recorded SEM
micrographs of Co3S4 (Figure 5c) show a micron-sized flower-like morphology consistent
with the literature [33]. Co3S4 micro flowers sonicated in water were drop-cast, dried on a
GC plate, and examined by SEM to understand whether structural distortion occurs under
sonication. No morphological changes were observed. Furthermore, the Co3S4/GCNNS
modified on the GC plate was analyzed, and as shown in Figure 5d, the composite showed
both GCNNS and Co3S4 micro flowers, with Co3S4 embedded on the GCNNS surface. The
Co3S4 and GCNNS retain their structure in the composite; however, slight agglomeration
was observed in the composite. The elemental composition of the materials was analyzed
using EDS. As shown in Figure 5e, the EDS spectrum of Co3S4/GCNNS showed the
presence of C, N, Co, and S, confirming the formation of the composite. The respective
atomic and weight percentages of the elements are presented in Figure 5f. The uniform
distribution of the elements can be understood from the elemental mapping shown in
Figure 5g.
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 Figure 5. SEM images of (a) b-GCN, (b) GCNNS, (c) Co3S4, (d) Co3S4/GCNNS and (e) EDS spec-
trum of Co3S4/GCNNS, (f) elemental percentages in Co3S4/GCNNS and, (g) elemental maps of
Co3S4/GCNNS.

3.1.5. TEM

TEM images of GCNNS and Co3S4/GCNNS were acquired to examine the structure
of the materials in detail, and the results are displayed in Figure 6. As shown in Figure 6a,
GCNNS consists of very thin, wrinkled nanosheets. The lack of transparency observed in
some regions is due to the presence of multilayers. TEM images of Co3S4/GCNNS acquired
at different magnifications are shown in Figure 6b,c. It is observed that sphere-shaped
Co3S4 are attached to the surface of GCNNS nanosheets and confirm the formation of the
composite. Figure 6e,f show the high-resolution TEM (HRTEM) images captured from the
Co3S4/GCNNS composite; the fringes with d spacing values of 0.28 nm, 0.23 nm, 0.19 nm,
and 0.16 nm can be ascribed to the (311), (400), (422), and (440) crystallographic planes of
Co3S4 (JCPDS card no# 42-1448). The GCNNS fringes with d spacing values of 0.68 nm
and 0.34 nm correspond to the (100) and (002) planes (JCPDS card no# 87-1526). It can be
observed that the Co3S4 fringes are closely surrounded by GCNNS fringes in the composite,
indicating the strong interfacial contact between the materials, which is favorable for the
faster electron transfer to promote the electrocatalytic reduction of H2O2. As shown in
Figure 6d, the SAED pattern of Co3S4/GCNNS has a concentric ring structure, revealing
the polycrystalline nature of the composite. TEM analysis confirms the successful coupling
of GCNNS and Co3S4 in the composite.
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3.2. Electrochemical Characterization of Modified Electrodes
3.2.1. Response of Co3S4 and Co3S4/GCNNS Modified GCE Electrode in NaOH

The formation of the Co3S4 and Co3S4/GCNNS layer on the GCE surface was exam-
ined by recording cyclic voltammograms of the modified electrodes in 0.1 M NaOH at
different scan rates of 10–100 mV/s and is shown in Figures 7a,b, respectively. The cyclic
voltammograms of Co3S4 show four characteristic peaks, including two anodic peaks at
0.22, and 0.50 V and two cathodic peaks at 0.20 and 0.51 V, as shown in Figure 6a, and are
consistent with the literature [15,45]. As the scan rate increases, the peak currents increase.
These peaks arise from reversible electrochemical redox reactions of cobalt in different
oxidation states in the Co3S4. Although the mechanisms of these reactions in Co3S4 are not
well understood, they are expected to be similar to the well-reported redox reactions of
Co(OH)2 since the CV profile is similar. There is only a slight deviation in the anodic and
cathodic peak potentials of Co3S4 from that of Co(OH)2. Oxygen and sulfur also belong
to the same group [46]. Furthermore, GCE modified with Co3S4/GCNNS (0.2 mg/mL)
was characterized in the same way, as illustrated in Figure 6b. The corresponding anodic
peak observed in Co3S4 can also be seen in the composite in the positive potential scan, and
there is an increase in the peak currents, and the peak at 0.22 V becomes prominent. During
the negative potential scan, two cathodic peaks corresponding to that in the pure Co3S4 are
visible, and the reduction peak currents have increased. The results confirm the presence of
cobalt in both Co3S4 and Co3S4/GCNNS electrodes and suggest an improvement in the
redox activity of the Co3S4 by the composite formation with GCNNS.
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10–100 mV s−1 (a) at the Co3S4, (b) at the Co3S4/GCNNS, (c) CVs obtained for the response of modi-
fied electrodes in K4[Fe(CN)6]/K3[Fe(CN)6] and (d) Nyquist plots of electrodes obtained in K4[Fe
(CN)6]/K3[Fe(CN)6] at (a) bare GCE (b) Co3S4, (c) GCNNS and (d) Co3S4/GCNNS-modified GCEs.

3.2.2. K4[Fe(CN)6]/K3[Fe(CN)6] Response of Modified Electrodes and Electroactive
Surface Area (EAS)

The electrochemical behavior of bare GCE, Co3S4, GCNNS, and Co3S4/GCNNS-
modified GCE was investigated with K4[Fe(CN)6] and K3[Fe(CN)6] redox probes. Cyclic
voltammograms of the modified electrodes were recorded in 0.1 M KCl containing 1 mM of
K4[Fe(CN)6]/K3[Fe(CN)6] each, from a potential range of 0.6 to −0.2 V vs. Ag/AgCl at a
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scan rate of 50mV/s and are shown in Figure 7c. A well-defined reversible redox peak for
the K4[Fe(CN)6]/K3[Fe(CN)6] system is observed. Bare GCE showed an oxidation peak
current of 10.2 µA, and the redox peaks are separated by 67 mV (∆Ep). The oxidation peak
current was increased when GCE was modified with Co3S4 to a value of 14.88 µA, although
the ∆Ep value has increased to 140 mV. Meanwhile, the GCNNS-modified electrode yielded
an oxidation current of 18.57 µA, 1.25 times higher than Co3S4, and displayed a peak
separation of 90 mV lower than for Co3S4. The increase in the response of GCNNS to
Fe2+/Fe3+ is because the nanosheet morphology of GCNNS favors electron transfer between
the analyte and the electrode. These results illustrate the superior electrocatalytic activity of
GCNNS towards the Fe2+/Fe3+ couple compared to Co3S4. The Co3S4/GCNNS-modified
GCE showed a maximum peak current of 28.20 µA, 1.89 and 1.51 times higher than
Co3S4 and GCNNS with a ∆Ep of 82 mV. Interestingly, the hybridization of Co3S4 with
GCNNS resulted in a significant increase in the oxidation peak current and a reduced ∆Ep
compared to its counterparts, strongly indicating the enhanced electrocatalytic aspects and
the importance of the synergistic effects of the composite. The electroactive surface area
(EAS) of the fabricated electrodes was calculated using the Randles–Sevcik Equation (1),

Ip = 2.69× 105n3/2 AD1/2Cν1/2 (1)

where Ip is the peak current at the respective electrode, n is the number of electrons involved
(1 for [Fe(CN)6]3−/4−), A is the EAS of the electrode in cm2, D is the diffusion coefficient
(6.7 × 106 cm2/s), C is the concentration of the redox couple (1 mM), and ν is the scan
rate (50 mV/s). The EAS of GCE, Co3S4, GCNNS, and Co3S4/GCNNS-modified GCE
was estimated to be 0.067, 0.097, 0.12, and 0.18 cm2, respectively. The Co3S4/GCNNS-
modified GCE has the highest EAS, 1.9 times higher than Co3S4 and 1.5 times higher than
GCNNS which gives the composite electrode high electrocatalytic activity compared to
their pure counterparts.

3.2.3. Electrochemical Impedance Studies

The impedance changes occurring at the electrode surface were further investigated
using electrochemical impedance spectroscopy. Nyquist plots of bare GCE, Co3S4, GCNNS,
and Co3S4/GCNNS-modified GCE electrodes were recorded in 0.1 M KCl containing 1 mM
K4[Fe(CN)6]/K3[Fe(CN)6], and the obtained plots are shown in Figure 7d. The impedance
data were simulated using the Randles equivalent circuit model and are shown in Figure 7d
(inset), where RS is the ohmic resistance of the electrolyte, RCT is the charge transfer
resistance, Cdl is the double layer capacitance, and ZW is the Warburg impedance. The semi-
circular region in the Nyquist plots corresponds to the electron transfer limited process, and
the diameter is equal to the RCT. The RCT values of the electrodes were determined to be
15.80, 6.28, 2.88, and 1.40 kΩ for bare, Co3S4, GCNNS, and Co3S4/GCNNS modified GCEs,
respectively. When modified with Co3S4 or GCNNS, the RCT values become lower than
bare GCE values. Meanwhile, Co3S4/GCNNS has the lowest RCT value, demonstrating
fast electron transfer mediated by the composite, compared to the pure counterparts.
The heterogeneous electron transfer rate constant (ket) of K4[Fe(CN)6]/K3[Fe(CN)6] at the
modified electrode is calculated using Equation (2),

ket = RT/n2F2 ARCTC0 (2)

where R is the gas constant (8.314 J.mol−1.K−1), T is the temperature (298 K), n is the number
of electrons transferred per molecules of the redox probe (n = 1 for the [Fe(CN)6]3−/4−),
F is the Faraday constant (96,485 C), A is the area of the electrode (0.07 cm2), RCT is
the charge transfer resistance at the respective electrode, and C0 is the concentration
of the redox couple in the bulk solution (1 mM). The ket of GCE, Co3S4, GCNNS, and
Co3S4/GCNNS-modified composite electrodes were found to be 2.37 × 10−4, 5.97 × 10−4,
13.03 × 10−4, and 26.71 × 10−4 cm2 s−1, respectively. The high ket value achieved by
Co3S4/GCNNS highlights the facile and faster electron transfer reaction at this electrode
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surface than at Co3S4 or GCNNS. The results confirm that an efficient electrical network
through Co3S4 anchored on the surface of GCNNS facilitates electron transfer in the
composite-modified GCE. To further investigate the charge transfer, the photoluminescence
(PL) of the materials was measured and is shown in Figure S2. At an excitation wavelength
of 330 nm, both GCNNS and Co3S4/GCNNS show PL peaks around 450 nm. The GCNNS
showed the highest PL intensity, indicating the faster recombination of photogenerated e-

and h+ [38]. The decrease in PL intensity in the composite is due to the quenching of carrier
recombination by Co3S4, and these electrons can be transferred at the interface. The results
indicate that the heterogeneous electron transfer rate in Co3S4/GCNNS is larger than in
GCNNS and is beneficial for H2O2 sensing.

3.3. Electrochemical Detection of H2O2
3.3.1. Electrochemical Reduction of H2O2 at Co3S4/GCNNS Modified GCE

The electrocatalytic properties of the fabricated electrodes towards H2O2 reduction
were initially investigated using CV in a 0.2 M phosphate-buffered solution (PBS) of pH 7.2.
Figure 8 shows the cyclic voltammograms obtained for bare and modified electrodes in the
absence or presence of 1 mM H2O2, recorded between a potential range of 0.4 to −0.95 V at
a scan rate of 50 mV/s. A bare GCE shows no redox features in the presence of H2O2 in
Figure 8 (curve a). Figure 8 (curve b) shows that the GCE modified with GCNNS reduces
H2O2 at a potential of −0.65 V to yield a peak current of −12.21 µA. The amino or cyano
groups caused the activity on the surface of the GCNNS. The abundance of N atoms with
lone pairs in their sp2 orbitals in the GCNNS also aids in the adsorption of tiny molecules,
such as H2O2 [27,32]. In this case, this favorable interaction between the analyte and
the material facilitates electrocatalytic reduction. On the other hand, the electrochemical
reduction of H2O2 at the Co3S4-modified GCE has the advantage of a lower reduction
potential, as shown by Figure 8 (curve c). H2O2 is reduced at 200 mV less negative potential
than the GCNNS electrode, but the peak current is less (−8.14 µA).
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Figure 8. CVs obtained for the reduction of 1 mM H2O2 at (a) bare GCE, (b) GCNNS, (c) Co3S4,
(d) Co3S4/GCNNS and (e) at Co3S4/GCNNS in the absence of H2O2, in 0.2 M PBS (pH 7.2) at a scan
rate of 50 mV/s.

At the Co3S4/GCNNS electrode, a sharp and enhanced reduction peak can be observed
at a potential of −0.6 V for the electroreduction of H2O2 in Figure 8 (curve d), while the
electrode shows no response in the absence of H2O2, as seen in Figure 8 (curve e). The
composite electrode delivers a large current of −58.2 µA, 4.7 times higher and 7.1 times
higher than GCNNS and Co3S4-modified GCEs, respectively. Interestingly, the H2O2
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reduction potential at Co3S4/GCNNS is reduced to 50 mV less negative than that at the
GCNNS electrode. The cyclic voltammetric results show that the GCE modified with
Co3S4/GCNNS shows the best performance towards H2O2 reduction.

The remarkable enhancement in the reduction peak currents can be attributed to
the synergistic effect between Co3S4 and GCNNS that might have fastened the electron
transfer with the H2O2 at the electrode surface. Co3S4 has good catalytic activity towards
the reduction of H2O2 as it reduces the analyte at a lower potential. Still, the reduction
peak current is lower, possibly due to the lower conductivity and small surface area
of the Co3S4 micro flowers (0.097 cm2). When combined with GCNNS, the effective
surface area and conductivity are improved. As discussed earlier, the Co3S4/GCNNS
electrode has a high electroactive surface area (0.18 cm2), the lowest RCT value (1.40 kΩ),
indicating improved conductivity, and the highest charge transfer constant to facilitate
faster electron transfer between the electrode and the analyte. These parameters are
decisive in the superior electrocatalytic activity of the Co3S4/GCNNS electrode towards
H2O2 reduction. All of these observations emphasize the excellent electrocatalytic activity
of the Co3S4/GCNNS electrode.

The possible mechanism for the electroreduction of H2O2 at Co3S4/GCNNS can be
expressed as in Equations (3)–(8). H2O2 reduction at the composite electrode occurs via the
direct two-electron transfer pathway

(
H2O2 + 2e− → 2OH−

)
and is converted to H2O. In

the composite, both GCNNS and Co3S4 involve the reduction mechanism. The reaction at
the GCNNS surface can be expressed as in Equations (3)–(5), where the active sites are the
nitrogen-containing functional groups. While in Co3S4, H2O2 is reduced by the Co(II) ions
and is converted to Co3S4(OH). Co(III) in Co3S4(OH) is again electro-reduced to Co(II), and
Co3S4 is regenerated at the electrode surface. The corresponding mechanism is shown by
Equations (6)–(8).

H2O2 + e− → OHads + OH− (3)

OHads + e− → OH− (4)

OH− + H+ → H2O (5)

2Co3S4 + H2O2 → 2Co3S4(OH) (6)

2Co3S4(OH) + 2e− → 2Co3S4 + 2OH− (7)

OH− + H+ → H2O (8)

As indicated by XPS, there is electron transfer between GCNNS and Co3S4, which
could increase the active sites available for redox reactions. Additionally, the coordination
bonds formed between the cobalt ion and the lone nitrogen pairs stabilize Co3S4 on the
GCNNS surface, and since GCNNS readily adsorbs H2O2 on its surface, this also increases
the interaction of H2O2 with Co(II) active sites and thereby favors a stronger reduction.

The response of Co3S4/GCNNS to 1 mM H2O2 was further studied by varying the
scan rate from 10 to 60 mV/s, as shown in Figure 9a. Upon increasing the scan rates, the
cathodic peak currents were increased. The peak current vs. scan rate was plotted, as
shown in Figure 9b, and it showed a good linear relationship. The regression expression is I
=−0.66× ν – 22.58 with an R2 value of 0.99. This indicates that the reduction of H2O2 at the
Co3S4/GCNNS electrode is a surface adsorption-controlled process. The electrochemical
reduction behavior of the composite electrode towards 1 mM H2O2 in different pH ranges
from 3 to 11 was studied using CV in 0.2 M PBS at a scan rate of 50 mV/s. With an increase
in the pH, the reduction peak potential of H2O2 on the composite electrode shifts to more
negative values, as seen in Figure 9c. The shift in the peak potentials suggests that protons
are involved in the electrochemical reduction. The reduction peak currents increase upon
increasing the pH from 3 to 7 and decrease thereafter. The peak current achieves the
maximum at a pH of 7; hence it is chosen for the electrochemical studies to determine H2O2.
The relationship of reduction peak potential vs. pH is plotted in Figure 9d, showing a linear
relationship. The regression equation is E = −0.05 × pH − 0.28 with an R2 value of 0.99.
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The slope of the curve is around 59 mV, which matches the theoretical value for the two
protons and two electrons reaction.
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The loading levels of Co3S4 and GCNNS were varied to optimize the performance of
the composite electrode. First, the concentrations of Co3S4 varied between 0.1, 0.15, 0.2,
and 0.25 mg in 1 mg/mL GCNNS. The cyclic voltammograms recorded for 1 mM H2O2 are
shown in Figure S3a, in which the peak current increases up to a load of 0.2 mg; beyond that,
the current decreases, and the shape of the CV curve changes as the capacitance current
and onset potential increase. This is possible because above 0.2 mg, Co3S4 agglomerates
on the GCNNS surface, reducing the number of catalytically active sites available for
H2O2 reduction.

Furthermore, the weight of GCNNS was varied to 0.5, 1, and 1.5 mg for a weight of
Co3S4 of 0.2 mg/mL water, and the recorded CV curves are shown in Figure S3b. At a
loading of 0.5 mg/mL, the peak reduction current is lower; with an increase in the GCNNS
level, there is an increase in peak current, but above 1 mg/mL, the activity decreases. This
is due to the agglomeration of the nanosheets and the loss of active sites on the electrode
surface due to the increased loading. Therefore, the optimal combination to produce
the best-performing Co3S4/GCNNS composite electrode was determined to be 0.2 mg
Co3S4 and 1 mg GCNNS in 1 mL distilled water, which was then used for subsequent
electrochemical studies.

3.3.2. Sensitive Determination of H2O2

As illustrated in Figure 10a, differential pulse voltammetry (DPV) was achieved for the
successive injection of 1 µM of H2O2 in 0.2 M PBS (pH 7.2) at the Co3S4/GCNNS electrode.
The reduction current rose linearly with each addition of H2O2. Still, the reduction potential
remained constant at −0.52 V. This suggests that it is possible to sensitively measure H2O2
at Co3S4/GCNNS without impacting its reduction potential. The regression relation I
= −0.05 × c − 1.24 represents the calibration plot between the reduction current and
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concentration of H2O2 in Figure 10b, and it displays a strong linear relationship with an R2

value of 0.99.
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3.3.3. Amperometric Sensing of H2O2 at Co3S4/GCNNS Modified GCE

Wide-range amperometry was employed to evaluate the application of the Co3S4/
GCNNS electrode in the detection of H2O2, as depicted in Figure 11a. The amperometric
i–t curve was obtained at a constant potential of −0.7 V, and the concentration of H2O2
varied from 10 nM to 1.5 mM in 0.2 M PBS of pH 7.2. During each addition of H2O2, a
well-defined increase in the current was observed. The sharp increase in the current is due
to the electroreduction of H2O2 at the Co3S4/GCNNS electrode. A steady state of the final
reduction current was reached in 3 s, indicating the rapid response of the electrode to H2O2.
The amperometric response also demonstrates the excellent electrocatalytic performance of
the Co3S4/GCNNS composite electrode. The linear increase in the reduction current with
the increasing H2O2 concentration validates its practical application as an H2O2 sensor.
As shown in Figure 11b, the calibration curve for the sensor was plotted between the
H2O2 concentrations and the reduction currents obtained. The regression equation for the
calibration curve is obtained as I = −0.08 × c − 2.02 showing good linearity with an R2

value of 0.99. The limit of detection of the sensor was calculated to be 70 nM (S/N = 3),
and it shows a sensitivity of 1.16 µAµM−1 cm−2 (slope/area). The analytical performance
of Co3S4/GCNNS is compared to various non-enzymatic sensors in Table S2. Shu et al.
developed a TiO2/SiO2 composite as a phosphorescence sensor for H2O2 [47]. Although
it detects H2O2 over a wide range of analyte concentrations, the LOD is as low as 0.16
µM. The graphene-CdS electroluminescence sensor detects H2O2 in a range from 5 µM
to 1 mM but has a low LOD of 1.7 µM [48]. Gan et al. explored MoS2 quantum dots as a
fluorescence sensor and determined H2O2 in a narrow range of 2–20 µM [49]. Calorimetric
detection of H2O2 has been demonstrated by porphyrin iron-grafted mesoporous silica
composites, but the detection limit is low as 67 µM [50]. Ding et al. presented an optical
sensor for H2O2 in the 1 µM to 10 mM range by growing Pt nanoparticles inside the pores
of fibrous silica particles and with a low LOD of 15 µM [51]. Co3S4/GCNNS has a very
high LOD and sensitivity than these sensors. Further, the performance of Co3S4/GCNNS
is compared with related electrochemical sensors (Table S2). Co3O4 hollow-sphere-based
H2O2 sensor has low LOD and sensitivity compared to Co3S4/GCNNS [52]. Au/Cu
bimetallic nanoparticles reported by Gowthaman et al. are expensive and have low LOD
and sensitivity [53]. Chen et al. presented Cu2S@Co3S4 for the excellent electrocatalytic
reduction of H2O2 using CV but did not explore the sensor aspects in detail [24]. GCN
hollow spheres operate in a short range and have low sensitivity and LOD [27]. Liu et al.
synthesized ZnO/GCNNS for H2O2 oxidation, but the sensor has a low LOD [31]. Atacan
et al. prepared CuO/GCN nanoflakes. They demonstrated the sensing of H2O2 using DPV
with high sensitivity, but the operation is limited to a short range, and the LOD is in the
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micromolar range. Recently, Ye et al. reported ZnFe2O4/GCN nano-micro composite for
H2O2 sensing but has a very low sensitivity and LOD compared to Co3S4/GCNNS [3]. It is
visible that Co3S4/GCNNS is an improvement over these proposed H2O2 sensors.

Biosensors 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 
Figure 11. Amperometric i-t curve obtained for the reduction of H2O2 at Co3S4/GCNNS in 0.2 M PBS 
(pH 7.2) at an applied potential of −0.7 V for (a) an addition of H2O2 of concentration from 10 nM to 
1.5 mM, (b) calibration plot of current vs. concentration of H2O2, (c) for the reduction of 1 µM H2O2 
in presence of 500 µM of potential interferences. 

3.3.4. Stability of Co3S4/GCNNS Modified GCE Sensor 
Cyclic voltammetric responses of Co3S4/GCNNS-modified GCE towards 1 mM of 

H2O2 in 0.2 M PBS (pH = 7.2) were obtained for many 1, 2, 3, 4, 5, 6, and 10 days to confirm 
the long-term stability and repeatability of the proposed sensor, and the recorded cyclic 
voltammograms are shown in Figure 12a. The H2O2 reduction current showed no notice-
able change, and the reduction potential remained unaltered, indicating the good stability 
of the fabricated sensor toward H2O2 reduction. Furthermore, the amperometric i–t curve 
of the Co3S4/GCNNS electrode was recorded for 4000 s at an applied potential of −0.7 V in 
0.2 M PBS (pH 7.2) and is shown in Figure 12b. The current response was constant 
throughout the experiment, showing good amperometric stability of the Co3S4/GCNNS 
electrode in PBS. 

 
Figure 12. (a) CVs obtained for the reduction of 1 mM of H2O2 at Co3S4/GCNNS modified GCE in 
0.2 M PBS for days from 1 to 10, (b) amperometric i–t curve obtained for Co3S4/GCNNS modified 
GCE for 4000s at an applied potential of −0.7 V in 0.2 M PBS pH 7.2. 

Figure 11. Amperometric i-t curve obtained for the reduction of H2O2 at Co3S4/GCNNS in 0.2 M
PBS (pH 7.2) at an applied potential of −0.7 V for (a) an addition of H2O2 of concentration from
10 nM to 1.5 mM, (b) calibration plot of current vs. concentration of H2O2, (c) for the reduction of
1 µM H2O2 in presence of 500 µM of potential interferences.

One of the most common problems when using sensors to determine H2O2 in real
samples is their response to the interfering species. To investigate the selectivity of
Co3S4/GCNNS towards H2O2 detection, the influence of other common components
in blood serum was examined by amperometry at −0.7 V in 0.2 M PBS of pH 7.2. It is
reported that the H2O2 concentration present in human blood serum is generally less than
10 µM. In contrast, creatinine and xanthine are present in blood serum at concentrations
below 119.3 µM and 2 mM, respectively. For non-diabetics, the normal glucose level is
between 3.9 and 7.1 mM. The uric acid concentration ranges from 208 to 428 µM, and the
urea concentration ranges between 2.5 and 7.5 mM [54–57]. On average, these species
are present at less than or around 500 times the serum H2O2 concentration. Therefore,
500-fold concentrations of these potential interferences are chosen to study the selectivity of
Co3S4/GCNNS towards the electroreduction of 1 µM H2O2. As shown in Figure 11c, after
attaining a stable response in PBS, 1 µM H2O2 was added to the PBS, and the corresponding
increase in the reduction current indicated the proper functioning of the Co3S4/GCNNS
electrode. Then, 1 µM H2O2 was added in another step to obtain the same increase in
reduction current as in the previous step. Further, every 60 s, 500 µM of urea, glucose,
creatinine, uric acid, and xanthine were added, respectively, to the region marked as a–e
(Figure 11c). As shown, no appreciable increase in the current was observed upon their
addition, confirming that they show no interference at the Co3S4/GCNNS electrode. The
amperometric current at the modified electrode increases for two consecutive additions of
1 µM of H2O2, indicating that the previously added species has no effect on the reduction
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of H2O2 at Co3S4/GCNNS. Furthermore, the influence of the common cations present in
the blood serum was studied by adding 500 µM of salts of each Na+, K+, Ca2+, Mg2+, and
Fe2+, respectively (f–j); nevertheless, no change in current was observed, still a spike of
1 µM of H2O2 increases the current response indicating the selectivity of Co3S4/GCNNS
electrode towards H2O2 than to these cations. Further 500 µM concentrations of anions,
Cl−, CO3

2−, CH3COO−, and C2O4
2− were each added at 60 s intervals, as shown in the

region; k–n, and only a negligible change in current was observed, whereas two successive
additions of H2O2 resulted in the increase of current due to the reduction of H2O2. The
results confirm that 500-fold additions of these entities do not alter the current response
due to H2O2 reduction, proving the high selectivity of the Co3S4/GCNNS electrode as an
H2O2 sensor.

3.3.4. Stability of Co3S4/GCNNS Modified GCE Sensor

Cyclic voltammetric responses of Co3S4/GCNNS-modified GCE towards 1 mM of
H2O2 in 0.2 M PBS (pH = 7.2) were obtained for many 1, 2, 3, 4, 5, 6, and 10 days to
confirm the long-term stability and repeatability of the proposed sensor, and the recorded
cyclic voltammograms are shown in Figure 12a. The H2O2 reduction current showed no
noticeable change, and the reduction potential remained unaltered, indicating the good
stability of the fabricated sensor toward H2O2 reduction. Furthermore, the amperometric
i–t curve of the Co3S4/GCNNS electrode was recorded for 4000 s at an applied potential of
−0.7 V in 0.2 M PBS (pH 7.2) and is shown in Figure 12b. The current response was constant
throughout the experiment, showing good amperometric stability of the Co3S4/GCNNS
electrode in PBS.
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3.3.5. Real Sample Analysis

The determination of H2O2 in human blood serum was performed at the Co3S4/GCNNS
electrode using DPV in 0.2 M PBS of pH 7.2 to check the practical applicability of the proposed
sensor, which is shown in Figure 13 (curve a). The reduction peak for H2O2 in the serum
sample appears around−0.52 V. The H2O2 concentration in the serum was found to be 3.2 µM,
which is within the normal range. An additional 50 µM of H2O2 was added to the serum, and
the reduction peak current increased without affecting the reduction potential, as shown in
Figure 13 (curve b). A recovery of 98.5 % was achieved. This indicates that the proposed sensor
can be employed for monitoring H2O2 in real samples.
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4. Conclusions

Co3S4/GCNNS were synthesized as a promising material for the electrocatalytic re-
duction of H2O2 by a simple and low-cost method. Physical and chemical characterizations
helped us to confirm the successful formation of the materials. Nanosheets of GCNNS and
micro flowers of Co3S4 were observed by SEM. From CV, the Co3S4/GCNNS composite
was observed to reduce H2O2 and provide 4.7 and 7.1 times higher reduction current com-
pared to pure Co3S4 and GCNNS, respectively, showing excellent electrocatalytic activity.
The hybridization between Co3S4 and GCNNS enhanced the electroactive surface area
and conductivity of the proposed sensor, which are crucial for superior electrocatalytic
activity. At the same time, as evident from XPS studies, the electronic interactions between
GCNNS and Co3S4 enhance the catalytically active redox centers on the Co3S4/GCNNS
surface for H2O2 reduction. Co3S4/GCNNS was further explored for the amperometric
sensing of H2O2 to show high performance over a wide range from 10 nM to 1.5 mM with
a high detection limit of 70 nM. The sensor showed a fast response and excellent selectivity
against potential interferences, and the practicality of the sensor was evaluated by the
determination of H2O2 in the human serum. The current work demonstrates the potential
of Co3S4/GCNNS as an ideal material for constructing high-performance H2O2 sensors.
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