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Abstract: Photodynamic therapy (PDT), emerging as a minimally invasive therapeutic modality with
precise controllability and high spatiotemporal accuracy, has earned significant advancements in
the field of cancer and other non-cancerous diseases treatment. Thereinto, type I PDT represents an
irreplaceable and meritorious part in contributing to these delightful achievements since its distinctive
hypoxia tolerance can perfectly compensate for the high oxygen-dependent type II PDT, particularly
in hypoxic tissues. Regarding the diverse type I photosensitizers (PSs) that light up type I PDT,
aggregation-induced emission (AIE)-active type I PSs are currently arousing great research interest
owing to their distinguished AIE and aggregation-induced generation of reactive oxygen species
(AIE-ROS) features. In this review, we offer a comprehensive overview of the cutting-edge advances
of novel AIE-active type I PSs by delineating the photophysical and photochemical mechanisms of
the type I pathway, summarizing the current molecular design strategies for promoting the type I
process, and showcasing current bioapplications, in succession. Notably, the strategies to construct
highly efficient type I AIE PSs were elucidated in detail from the two aspects of introducing high
electron affinity groups, and enhancing intramolecular charge transfer (ICT) intensity. Lastly, we
present a brief conclusion, and a discussion on the current limitations and proposed opportunities.

Keywords: aggregation-induced emission; type I photosensitizers; phototheranostics

1. Introduction

Photodynamic therapy (PDT) was first defined in the middle of the 20th century when
R. Lipson and S. Schwartz discovered the cancer diagnostic and therapeutic effects of a
hematoporphyrin derivative (HpD) [1]. Since then, exploration in the field of PDT has
continued without cessation [2,3]. Possessing the distinguished merits of non-invasiveness,
high spatiotemporal precision, accurate controllability, and low systemic toxicity, PDT
is currently captivating an unprecedented level of research interest as a pioneering and
intriguing therapeutic modality, with significant advancements in PDT witnessed in the
areas of cancer and various non-oncological disease therapies [4,5]. For example, the
effectiveness of PDT in the treatment of skin, neck and superficial bladder cancers [6], as
well as pathogen-[7,8] (e.g., propionibacterium acnes [9], human papilloma virus [10,11])
caused infectious diseases, has been experimentally or clinically validated.

Basically, PDT mainly relies on the oxidative reactive oxygen species (ROS), including
singlet oxygen (1O2), superoxide radical (O2

•−), hydroxyl radical (OH•), hydrogen peroxide
(H2O2), etc., to play the therapeutic role, as ROS not only can cause direct killing of
cancer cells or pathogens via destruction of the cellular components, but can also induce
vascular damage as well as acute local and systemic immune response, to jointly eliminate
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tumors [12]. In the PDT process, ROS are generally produced via two types of photo-
triggered reactions (namely, type I and type II) between the photosensitizers (PSs) and
surrounding substrates [13]. To be specific, the type I reaction follows hydrogen atom
abstraction or electron transfer manner, subsequently leading to the formation of radicals
and H2O2; alternatively, energy transfer from the electronically excited triplet-state PSs
to the ground-state molecular oxygen is involved in the type II process accompanying
1O2 production [14]. In theory, these two competing photoreaction pathways can occur in
parallel, but the type of PSs, oxygen concentration, as well as adjacent substrates, always
cause one pathway to be dominant in the practical PDT process [15]. Owing to the relatively
low excited energy required to form 1O2 from molecular oxygen, most of the reported
PSs are inclined to undergo the oxygen-dependent type II PDT process, the therapeutic
efficacy of which, however, is fatally impaired by the untoward predicament of the hypoxic
microenvironments of the pathological tissues, such as the interior of a solid tumor or
bacterial infection site [16,17]. By contrast, type I PDT has been proven to hold great
potential in breaking through this inherent bottleneck, since diminished oxygen supply is
required in a type I reaction [18].

The distinctive hypoxia tolerance and favorable therapeutic performance of type I
PDT in hypoxic pathological tissues have largely spawned the evolution of type I PSs
over the past several decades [19]. To date, profiting from the enormous efforts of people
dedicated to the pursuit of puissant type I PDT, multifarious materials have been devel-
oped as type I PSs, including but not limited to metal oxides [20] (e.g., TiO2), carbon-based
nanomaterials [21,22] (e.g., carbon dots, g-C3N4), organic–inorganic hybrids [23,24] (e.g.,
metal–organic framework), transition metal complexes [25] (e.g., Ru(II) complexes), and
organic molecules [26,27]. Unlike inorganic materials which suffer from poor biodegrad-
ability, complicated pharmacokinetics and worrisome biosecurity, organic molecules with
their distinct advantages of favorable biocompatibility, satisfactory metabolism, facile pro-
cessability, excellent reproducibility, structural diversity and easy tunability, stand out
as a promising option for practical bioapplications [28,29]. In particular, some organic
PSs are capable of enabling fluorescence imaging (FLI)-guided PDT due to their intrinsic
fluorescence emission feature, which represents an important category of photo-driven
theranostics [30–32].

The most eye-catching representatives are PSs with aggregation-induced emission
(AIE) characteristics [33]. In addition to the common advantages of organic PSs, as a
class of novel organic fluorophores, AIE PSs uniquely exhibit incomparable attributes of
aggregation-induced emission and aggregation-induced generation of ROS (AIG-ROS),
due to their twisted structures as well as their ornamentation with rich rotators or vi-
brators [34]. To be specific, AIE PSs usually show faint fluorescence emission and ROS
generation in the dissolved state, because of the intramolecular motion-resulted excited
energy consumption [35]. This nonradiative thermal dissipation, however, can be ef-
fectively suppressed upon aggregation due to the restriction of intramolecular motion
(RIM), which consequently promotes fluorescence as well as the ROS generation-involved
intersystem crossing (ISC) channel at the aggregate state [36]. In addition, the twisted
conformation of AIE PSs can also significantly weaken the intermolecular π-π stacking
after aggregation and, thus, ultimately contribute to AIE and AIG-ROS features [37]. Since
most organic PSs are structurally hydrophobic and inevitably tend to form aggregates in
aqueous physiological environments, by taking full advantage of aggregation, AIE PSs
have earned a wider scope of application in the biomedical field, in contrast with tradi-
tional aggregation-caused quenching (ACQ) PSs, which usually suffer from diminished
fluorescence emission and decreased ROS production at the aggregate state because of their
rigidly planar conformations-caused competitive energy consumption [38].

By virtue of these unique superiorities of AIE luminogens (AIEgens) in serving as
ideal PSs, an increasing number of AIE-active type I PSs have been rationally designed,
and the resultant high-efficiency type I PDT has been successfully achieved in various
application scenarios in recent years [39,40]. In this review, we will attempt to summarize
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the recent advancements of type I AIE PSs, emphasizing their molecular design strategies
and rationales. First, as a theoretical basis, the basic photophysical and photochemical
mechanism of the type I reaction is introduced. Based on this, current design strategies
to obtain high-performance type I AIE PSs are highlighted and elaborated in detail from
two aspects: introducing functional groups with high electron affinity, and enhancing
intramolecular charge transfer (ICT) intensity. Then, the wide bioapplications of type I AIE
PSs in the photodynamic eradication of tumors and pathogen-caused infectious diseases,
as well as inhibition of harmful algae bloom, are separately showcased. Last, the current
limitations, challenges, and perspectives for the future development of type I AIE PSs
are discussed.

2. Basic Principles of Type I PDT

In general, PSs, light source, and substrates, are recognized as three essential elements
in PDT [4]. According to the Jablonski diagram shown in Figure 1, the PSs at ground
singlet state (S0) will, firstly, be excited to the unstable excited singlet state (S1) upon light
irradiation, and then return to their ground state via radiative or non-radiative decay
in the manner of fluorescence emission or heat production. Notably, provided that the
energy gap between S1 and T1 (∆ES1–T1) is small enough, the excited singlet state PSs
can preferably reach the relatively stable excited triplet-state (T1) by undergoing the ISC
process, in which state the PSs can survive long enough to carry out different photochemical
reactions (including type I and type II) with surrounding substrates, to yield ROS [6]. Here,
type I process will be emphasized.
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Unlike the type II reaction involving a direct energy transfer to the triplet-state molecu-
lar oxygen to produce 1O2, the type I process refers to the production of H2O2 and radicals
(e.g., O2

•−, OH•) via several cascade electron transfer and hydrogen atom abstraction
procedures [1]. Specifically speaking, the type I pathway usually begins with an initial
one-electron reduction of the triplet-state PS (3PS*) with the production of a PS radical
anion (PS•−) (Reaction 1), which can further transfer one electron to molecular oxygen to
produce O2

•− (Reaction 2). By virtue of the disproportionation catalyzed by superoxide
dismutase (SOD) (Reaction 3) or another one-electron reduction by PS•− (Reaction 4), O2

•−

can be reduced to H2O2. Then, the generated H2O2 can ultimately be transformed into
highly oxidative OH• by reacting with O2

•− or Fe2+, known as the Haber–Weiss reaction
(Reaction 5) and Fenton reaction (Reaction 6), respectively [41]. In this respect, the Fenton
reaction can be augmented since the Fe3+ produced in this process can be reduced to Fe2+

by O2
•− for recycling (Reaction 7) [42].
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By making full utilization of the disproportionation reaction, Haber–Weiss reaction,
or Fenton reaction, type I PDT has been proven to exhibit superior therapeutic outcomes
in hypoxic environments, in contrast with type II PDT. This can be explained from the
following aspects: (1) O2

•− (few seconds) is recognized as having a much longer half-life
than 1O2 (10−5 s), which endows O2

•− with a relatively long diffusion distance compared
with others [43,44]; (2) featured with robust oxidative characteristic, OH• is the most
biologically aggressive reactive oxygen centered radical that can cause direct damage to
various vital biomacromolecules, thus, exerting amplified PDT response [45–47]; (3) unlike
the heavy O2 consumption of the type II pathway, the O2 needed in the type I pathway can
be recycled among its reactions, which can enable the limited O2 in hypoxic conditions to
be fully utilized, and endow type I PDT with good hypoxia tolerance [18].

3. Design Strategies of Type I AIE PSs

Encouraged by the distinguished merits of AIE and AIG-ROS of AIE PSs, as well
as the great potential that type I PSs hold in practical applications, type I AIE PSs have
emerged with abundance in the last five years. As depicted in Figure 1, the ISC process
is the foremost step that bears the brunt of following ROS generation, thus, a high ISC
rate (kISC) ensuring ample excited triplet-state production is considered as a precondition
to boost the photosensitizing properties of PSs. To date, a large number of studies have
emerged demonstrating how to promote the ISC process of AIE PSs on the basis of the ISC
rate equation (Figure 1), such as a donor (D)–acceptor (A) structured molecular engineering
strategy for minimized ∆ES1–T1, and spin–orbit coupling (SOC) enhancement strategy for
improved SOC, etc. [30]. However, regarding specifically promoting the generation of type
I free radical species rather than type II, authoritative and specific strategies are currently
still relatively deficient, although several examples of type I AIE PSs have been provided.
According to the basic principles of electron transfer in the type I pathway, herein we
summarize and classify the currently reported approaches of building type I AIE PSs into
two strategies: introducing functional groups with high electron affinity, and enhancing
ICT intensity.

3.1. Introducing High Electron Affinity Groups

After gaining insight into the mechanism of the type I process, it can easily be observed
that before transferring the electron to O2 to yield O2

•−, 3PS* first needs to capture one
electron from its surroundings. Thus, employing functional groups with high electron
affinity will contribute to this step, since they can serve as electronic transfer intermediates.
For example, Zhao et al. [48] designed and synthesized two isomeric type I AIE PSs,
named α-TPA-PIO and β-TPA-PIO, by employing phosphindole oxide (PIO) as an electron
acceptor, and triphenylamine (TPA) as an electron donor (Figure 2a). It was proven that
owing to the high electron affinity of the PIO core, both of the triplet α-TPA-PIO and
β-TPA-PIO could attract one electron from the surrounding substrates and accordingly
convert to the intermediate radical anions, α-TPA-PIO•− and β-TPA-PIO•−, respectively,
which could be stabilized by several resonance structures (Figure 2b). As expected, α-
TPA-PIO and β-TPA-PIO were demonstrated to exhibit admirable free radical but low
1O2 generation efficiency (Figure 2c–e), evidently suggesting that the introduction of
high electron-affinity PIO indeed favors type I ROS generation by stabilizing an external
electron to form radical anion intermediates. Notably, β-TPA-PIO, which possessed stronger
electron-accepting ability as indicated by its lower reduction potential, exhibited higher
type I ROS generation efficacy than α-TPA-PIO (Figure 2f), thus, confirming the superiority
of strong electron affinity in dominating the type I pathway. In addition, the higher type
I ROS generation efficiency of β-TPA-PIO also gave the credit to the larger SOC value,
as well as the multichannel ISC pathways revealed by quantum mechanical calculation
(Figure 2g,h). By virtue of the good targeting ability to endoplasmic reticulum (ER) of cells,
β-TPA-PIO could efficiently induce ER-stress-mediated apoptosis and autophagy via type
I PDT, even in a hypoxic environment. Moreover, distinct in vivo fluorescence imaging
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of the tumor, and remarkable tumor ablation, could successfully be achieved under light
irradiation (Figure 2i). Therefore, this work presented a feasible protocol for type I AIE PSs
by introducing high electron-affinity groups to capture and stabilize the external electron,
which provided the photochemical basis of type I PDT.
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Figure 2. (a) The chemical structures of α-TPA-PIO and β-TPA-PIO. (b) Resonance structures of the
PIO radical ions. (c) Relative fluorescence intensity of hydroxyphenyl fluorescein (HPF) for OH•

detection. (d) Electron spin resonance (ESR) signals of 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-
oxide (BMPO) for free radical ROS detection of α-TPA-PIO and β-TPA-PIO with or without bovine
serum albumin (BSA). (e) Relative fluorescence intensity of singlet oxygen sensor green (SOSG) and
decomposition rates of 9,10-anthracenediyl-bis(methylene) dimalonic acid (ABDA) for 1O2 detection
of α-TPA-PIO, β-TPA-PIO and MB. (f) Cyclic voltammograms of α-TPA-PIO and β-TPA-PIO. SOC
value and ISC process of (g) α-TPA-PIO, and (h) β-TPA-PIO. (i) Images of mouse and tumors at 24 h
post-injection of β-TPA-PIO. Reprinted with permission from [48], copyright 2020, Royal Society
of Chemistry.

3.2. Enhancing ICT Intensity
3.2.1. Donor Engineering Based on Anion-π+ AIE Systems

As mentioned above, the type I pathway usually starts at the one-electron transfer step
from adjacent substrates to 3PS*. Therefore, it can be speculated that providing electron-rich
environments is beneficial for 3PS* to capture the external electron and undergo the type I
process upon light irradiation. This assumption has been substantiated by Ding et al. [49].
They successfully modulated the photoreaction of a type II PS from the type II to the
type I pathway by encapsulating the PS using electron-rich poly(ethylene glycol)-b-poly(2-
(diisopropylamino)ethyl methacrylate (PEG-b-PDPA) as the coating substrate. Motivated
by this work, a series of anion-π+ AIE PSs were successively constructed in the pursuit
of efficient type I ROS generation, among which anion groups were introduced to offer
electron-rich environments [50,51].

In view of the photomechanical basis of the type I process, strong ICT intensity of PSs
was also conjectured to be helpful in donating to the type I pathway under the condition of
an electronic-rich environment, since enhanced ICT could facilitate the ISC process, thus,
promoting ROS generation capacity. In this regard, studies have revealed that anion-π+

PSs fabricated with a strong ICT characteristic would produce type I ROS more efficiently.
For instance, through enhancing the ICT strength of the anion-π+ system, Wang et al. [50]
successfully obtained robust type I AIE PSs. They firstly synthesized a novel series of
anion-π+ structured AIE PSs (TBZPy, MTBZPy, TNZPy, MTNZPy) with enhanced electron-
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donating ability. As Figure 3a illustrates, TPA and its methoxy-substituted derivative
(MTPA), as well as electron-rich heteroatoms (S, N) containing benzo-2,1,3-thiadiozole
(BZ)/naphtho[2,3-c][1,2,5]thiadiazole (NZ) moieties groups, served as collaborative AIE-
active donors, and the styrylpyridine cations worked as electron acceptors to ensure the
ICT intensity; simultaneously, the iodide anion and collaborative donors with strong
reducibility were in charge of providing an electron-rich environment to 3PS*. Due to the
gradually enhanced electron-donating ability from TBZPy to MTNZPy, MTNZPy possessed
the strongest ICT intensity, in the order of TBZPy < MTBZPy < TNZPy < MTNZPy, which
was manifested by their absorption spectra in different solvents. It was demonstrated
that the generation of 1O2 species gradually decreased, in line with the enhancement
of ICT strength, while both total ROS and type I ROS generation efficiency of AIE PSs
matched the trend of ICT strength (Figure 3b–e), suggesting the pivotal role of strong ICT
strength in facilitating type I ROS species generation. Further experiments revealed that
the obtained type I AIE PSs (TNZPy, MTNZPy) could target mitochondria and lysosomes
simultaneously, and exhibited low dark toxicity and admirable PDT therapeutic efficiency
for HeLa cells in both normoxic and hypoxic conditions (Figure 3f,g), attributing to the
highly efficient type I ROS production inside cells. Additionally, their good performances
in FLI-guided PDT were subsequently demonstrated in in vivo tumor models. Similarly,
the feasibility of this strategy was also confirmed by Zhu and coworkers [51]. In their work,
type I ROS generation was significantly boosted by enhancing the electron-donating ability
to promote the ICT intensity of electron-rich anion-π+ AIEgens.
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Figure 3. (a) Chemical structures and the order of ICT effect of TBZPy, MTBZPy, TNZPy, and MTNZPy.
(b) 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA), (c) ABDA, (d) Dihydrorhodamine 123 (DHR
123) and (e) HPF for total ROS, 1O2, O2

•−, OH• detection, respectively. The survival rate of HeLa
Cells for a range of concentrations of TNZPy and MTNZPy in (f) normoxic environments and
(g) hypoxic environments under light irradiation. Reprinted with permission from [50], copyright
2020, Wiley-VCH.

3.2.2. Acceptor Planarization

In addition to enhancing the electron-donating ability of donors in anion-π+ AIEgens,
Wang et al. [52] proposed a parallel strategy of acceptor planarization to enhance the ICT
intensity, achieving the transformation from type II PSs to type I PSs. They designed and
synthesized three AIE compounds, namely, 2TPAVDPP, TPATPEVDPP and 2TPEVDPP,
using a planar core (vinyl-substituted DPP) as the electron acceptor. As a contrast, the
previously reported DPP-TPA with thiophene-substituted DPP working as the twisted
acceptor core, was also synthesized (Figure 4a). The optimized conformation (Figure 4b)
revealed that the dihedral angle between DPP and donor–acceptor linker was around 15◦

for DPP-TPA, while it decreased to nearly 0◦ for those three AIE PSs, indicating that the
variation of donor–acceptor linker from thienyl (DPP-TPA) to vinyl (2TPAVDPP, TPAT-
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PEVDPP and 2TPEVDPP) would bring about better planarity and larger π-conjugation.
It was further demonstrated that 2TPAVDPP, TPATPEVDPP and 2TPEVDPP with a pla-
nar acceptor exhibited superior type I and inferior type II ROS generation capacity than
DPP-TPA, as expected (Figure 4c–f). These results showed that better planarity and larger
π-conjugation could effectively promote type I ROS production by enhancing ICT and D−A
interaction to facilitate the ISC process, providing an alternative approach for constructing
type I AIE PSs.
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4. Applications of Type I AIE PSs

On the basis of the mechanism described above, type I PSs exhibit relatively low exter-
nal O2 requirements, owing to the recyclable O2 utilization in the type I ROS generation
process. Intrinsically, type I AIE PSs enable the crafty integration of aggregation-induced
fluorescence emission and enhanced ROS generation with minimized O2 dependence,
presenting significant theranostic potential in different biomedical applications, includ-
ing, but not limited to cancer ablation, bacterial infection elimination, and harmful algal
bloom suppression.

4.1. The Anti-Tumor Applications

Due to the aggressive proliferation of cancer cells and insufficient blood supply, hy-
poxia often takes place in the microenvironments of solid tumors, thus, severely hindering
the generation of type II ROS as it is highly dependent on ambient O2 concentration. Con-
versely, type I PDT has manifested great potential in ablating hypoxic tumors, profiting
from its lower O2 demand nature. Based on this, AIE PSs featuring type I ROS-generating
properties will be ideal candidates for potent PDT, with superb therapeutic outcomes.
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4.1.1. FLI-Guided Type I PDT

For the purpose of redshifted absorption and emission wavelengths, as well as boosted
theranostic performance, AIE PSs and other organic PSs are generally engineered to con-
tain multiple aromatic rings and/or large conjugated units in their molecular structures,
giving rise to their high hydrophobicity. In order to facilitate the in vivo biological appli-
cations, hydrophobic AIE PSs are commonly encapsulated within nanovehicles based on
amphiphilic biocompatible matrices to form well-dispersed AIE nanoparticles (NPs) in
aqueous physiological environments [53]. Additionally, bright fluorescence, excellent ROS
production and enhanced permeability and retention (EPR) effect-driven tumor location
can be successfully achieved, simultaneously, after nanofabrication, since the aggregation
of AIE PSs within the intraparticle limited room is capable of effectively astricting their
active intramolecular motions, thus, blocking nonradiative thermal dissipation and sav-
ing the excited state energy for the fluorescence and ISC pathway [28,31]. In addition
to passively targeted tumor enrichment by the EPR effect, actively targeting transport
of AIE PSs favored by specific recognition will be able to further enhance PDT efficacy.
From those, Lou et al. [54] developed an amphiphilic polymeric matrix with conjugated
targeting peptides to co-assemble with a type I AIE PS of TTB to fabricate tumor-specific
targeting TTB NPs for amplifying type I photodynamic cancer treatment. In addition,
Duo et al. [55] put forward an innovative protocol for efficiently targeted delivery of type I
AIE PSs to tumor tissues by taking full advantage of the hypoxia condition in solid tumors
and selective hypoxia tropism of some bacteria. For this approach, a novel bacteria-based
AIE hybrid system was built, enabling the powerful delivery of type I AIE PS of TBP-2 into
the hypoxic tumor microenvironments for hypoxia-tolerant PDT of orthotopic colon cancer.

Considering that the effective killing range of ROS is typically confined to the immedi-
ate vicinity of PSs on a subcellular scale, an appropriate organelle-targeting location of PSs
is, therefore, highly desired for implementing final PDT outcomes. Different subcellular
organelles play their own unique roles in maintaining the normal physiological function of
cells. It has been acknowledged that the organelles, including cell membrane, mitochondria,
lysosomes, ER, and nucleus, are all valid sites for performing PDT [56]. To date, diverse
subcellular organelle-targeted type I AIE PSs-based anti-tumor systems have been exploited
in succession [57]. For instance, Feng et al. [58] developed a class of cationic AIE PSs pos-
sessing a specific tumor cell mitochondrial targeting feature to facilitate both type I and
type II PDT. Zhao et al. [48] reported two type I AIE PSs to obtain selective accumulation
in the ER and effectively arouse ER-stress-mediated cell apoptosis and autophagy upon
PDT, by producing highly oxidizing type I radicals under light illumination. In addition,
Tang et al. [59] proposed a useful molecular design guideline for constructing efficient AIE
PSs and tailoring their organelle specificity.

Among the various subcellular organelles, of particular importance is the cell nucleus
as it dominates the cellular gene expression, metabolism and proliferation [60]. Moreover,
the DNA and RNA parts of the nuclei are very sensitive to type I ROS due to its extremely
high chemical reactivity [61]. In view of this, Wang et al. [61] explored, for the first time, a
nucleus-targeting PDT strategy based on type I AIE PSs, by making full use of theranostic
agents and nanocarrier systems (Figure 5a). Two AIE PSs, named TFMN and TTFMN,
with typical D–A structures and sufficient molecular rotors, were firstly designed and
synthesized. Compared with TFMN, TTFMN was equipped with additional TPE moiety
in structure, which endowed it with much better AIE peculiarity. Various ROS indicators
were employed to distinguish the ROS species produced by TFMN and TTFMN, through
fluorescence spectroscopy and ESR measurements, which was discriminated to type I
ROS of OH•. Moreover, the TTFMN showed stronger ESR signal intensity than TFMN
(Figure 5b), indicating its better generation capacity of OH•, which was attributed to its
superior AIE tendency and smaller ∆ES1–T1. With the help of a lysosomal acid-activated
nuclear localization signal peptide (TAT)-modified amphiphilic polymer, the resultant
TTFMN-loaded NPs (TTFMN-NPs) exhibited nucleus-anchoring delivery ability, visualized
by the intrinsic fluorescence property of TTFMN (Figure 5c). Further in vivo investigations
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uncovered that TTFMN-NPs with good biosecurity and long blood circulation time could
specifically accumulate at tumor sites (Figure 5d). Upon white light irradiation, TTFMN-
NPs induced high-efficiency tumoricidal results with a 75.1% tumor growth inhibition rate
(Figure 5e,f). This work offered a new perspective in the construction of type I PS-based
and nucleus-targeted nanotheranostic systems.
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At present, most AIE PSs can only be effectively excited by short wavelength of UV
or visible lights. However, the shallow penetration depth of the excited light presented
a major scientific challenge for AIE PSs to treat deep-seated tumors. Based on this, the
combination of rare earth doped upconversion NPs (UCNPs) would provide an effective
solution to this problem, since UCNPs can serve as a near-infrared (NIR) light transducer
to harness and convert the NIR laser to UV-visible light, enabling the construction of robust
NIR laser excitable nanotheranostic systems [62]. Encouraged by the synergistic effect of
combining UCNPs and AIE PSs toward cancer therapy, Wang et al. [63] creatively designed
and developed a triple-jump photodynamic nanotheranostic agent, termed MUM NPs,
by integrating a type I AIE PS of MeOTTI into the multifunctional nanoplatform built
by UCNPs and manganese dioxide (MnO2), for enhanced theranostic outputs in PDT
(Figure 6a). Specifically, MeOTTI was engineered to afford the type I ROS capacity verified
by the ESR test (Figure 6b). With the aid of UCNPs whose emission spectrum matched
well with the absorption spectrum of MeOTTI, the resulting Förster resonance energy
transfer (FRET) effect between UCNPs and MeOTTI not only achieved the excitation light
extension from UV-visible to NIR region, but also significantly elevated the ROS generation
efficiency (Figure 6c). Attractively, the introduction of the MnO2 component was aimed at
depleting the intracellularly upregulated glutathione (GSH), thus, significantly facilitating
the production of highly oxidative type I ROS in cells. Meanwhile, the yielded Mn2+

was also able to catalyze the intracellular H2O2 to generate OH•, as well as for magnetic
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resonance imaging (MRI). Therefore, the triple-jump type I ROS generation of MUM NPs
could be smoothly achieved inside the tumor cells after NIR laser irradiation. This splendid
triple-jump photodynamic theranostic protocol was confirmed by a series of cell and animal
experiments (Figure 6d,e).
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theranostic protocol. (b) ROS generation type of MeOTTI determined by ESR test. (c) ROS production
efficiency of MeOTTI NPs and MUM NPs at the same MeOTTI concentration under the irradiation
of different light sources. (d) Cell viability of 4T1 cells treated with different conditions. (e) Tumor
inhibition ratios of mice after different treatments, namely: (i) PBS, (ii) MUM NPs, (iii) 980 nm laser
and white light, (iv) MeOTTI NPs and white light, (v) MUM NPs and white light, (vi) MUM NPs,
980 nm laser and white light (n = 5, * p < 0.001). Reprinted with permission from [63], copyright 2021,
Wiley-VCH.

In addition to being assisted by UCNPs, exploring AIE PSs with an outstanding two-
photon absorption property was another effective method to break through the obstacles
encountered by short-wavelength excitation [64]. Moreover, AIE PSs have proved to be
promising candidates for developing two-photon excitable PDT agents, as the two-photon
absorption cross section (δ2PA) of AIE PSs could obviously be raised by simply increasing
their loading amount in the NPs, exhibiting a unique aggregation-enhanced nonlinear
optical effect [65]. Generally, the wavelength in two-photon excitation is twice as long as that
of one-photon absorption, thus, making the NIR light-excitable photodynamic theranostics
feasible. In this regard, Tang et al. [66] constructed amphiphilic lipids-enveloping AIE
NPs by encapsulating a tactfully designed two-photon excitable type I AIE PS (TPE-PTB)
(Figure 7a). With strong D–A interaction and effective π-conjugation strength, TPE-PTB-
formed NPs resulted in a high δ2PA of 560 GM under 800 nm two-photon laser irradiation
(Figure 7b). Moreover, TPE-PTB NPs exhibited a far-red fluorescence emission with a
high quantum yield of 23%. These advantageous superiorities enabled TPE-PTB NPs to
image deep-seated tumors and vessels with a high spatial resolution on a mouse melanoma
model. Notably, type I ROS species of OH• could be effectively generated by AIE NPs
under 800 nm laser illumination (Figure 7c). Further mechanistic explanation showed
that TPE-PTB could take one electron from an environmental hydroxyl anion to form
anionic PS, for a subsequent series of photochemical reactions, to eventually generate OH•

(Figure 7d). As shown in Figure 7e, a live–dead staining experiment showed that TPE-PTB
NPs plus NIR laser irradiation could cause more than 90% cell death rate as analyzed
by flow cytometry, while no obvious cell death was found in other control groups. More
importantly, TPE-PTB NPs performed well for in vivo FLI-guided type I two-photon PDT,
with significant inhibition of tumor growth (Figure 7f). In addition, TPE-PTB was able to
be effectively cleared from the mouse body after completing the treatment, guaranteeing
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favorable in vivo biosecurity. A potent NIR-excited type I PDT nanoplatform based on
AIEgens was successfully constructed in this work.
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4.1.2. The Cooperation of Type I PDT and PTT

Despite the low O2 dependence of the type I process enduing it with hypoxia tolerance,
O2 is still requisite during type I PDT. Therefore, the efficiency of type I PDT can be further
improved by appropriately increasing the O2 concentration of the lesions. Recent reports
have demonstrated that the cooperation of type I PDT and photothermal therapy (PTT)
would be a superb strategy to conquer their respective shortcomings and boost therapeutic
outcomes [31,32]. This is because PTT can generate localized heat, not only for cancer
ablation, but also to increase the O2 supply in the tumor tissues by virtue of raising the
blood flow, thus, promoting type I PDT efficiency, which conversely, further improves the
treatment outcome of PTT [37]. However, the construction of the type I PDT-PTT combi-
national system based on a single organic molecule is a challenging task, since the energy
dissipation channels are generally competitive. Under this circumstance, AIE molecules
have a remarkable capability which can tailor the equilibrium of energy dissipation by
regulating the intramolecular motions. In 2022, Wang et al. [67] reported a multifunctional
type I AIE PS, namely, DCTBT, applying to a second near-infrared (NIR-II) FLI-guided type
I PDT, simultaneous with high-efficiency PTT functions, for pancreatic cancer, the king of
cancer [68–70]. A conjugated small molecule (CTBT) was modified with diphenylamine
moieties on both of the two ends, to endow DCTBT with sufficient intramolecular motions
for enhanced PTT efficiency, stronger electron D–A interaction for longer absorption and
emission wavelengths, and smaller ∆ES1–T1 for improved ROS generation ability (Figure 8a).
After employing different ROS indicators (Figure 8b–d), DCTBT NPs fabricated by using
DSPE-PEG2000 as the encapsulation matrix were demonstrated to have distinguished O2

•−

and moderate OH• generation efficiencies. Moreover, DCTBT NPs exhibited comparable
O2

•− generation ability to rose bengal (RB), which was much stronger than that of CTBT
NPs. In vitro photothermal experiments (Figure 8e) showed that DCTBT NPs achieved
concentration-dependent photothermal performance, and the highest temperature could
reach up to 62.8 ◦C under 808 nm laser irradiation for 5 min as the concentration rose to
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300 µg/mL, which implied the excellent photothermal performance of DCTBT NPs. With
the aid of the GE11 peptide, a specific ligand for epidermal growth factor receptor (EGFR),
target NPs, whose surface was decorated with DSPE-PEG2000-GE11, were prepared to facili-
tate the intracellular intake of lip-DCTBT NPs (the DCTBT-loaded liposomes). Considering
the remarkable NIR-II emission property, in vivo NIR-II FLI was performed for the real
time observation of NPs distribution and precise detection of tumors. As expected, the
target NPs showed more intensive fluorescence signal in contrast with non-target NPs
(without DSPE-PEG2000-GE11), which was beneficial for enhanced tumor targeting ability,
by virtue of the EGFR ligand. Notably, fluorescence signals were still observed at 48 h
post-injection, indicating the enormous potential of target NPs for long-term NIR-II FLI in
the real-time tracing of tumors (Figure 8h). After treatment, the target NPs group provided
the most significant tumor growth inhibition on both subcutaneous and orthotopic PANC-1
tumor-bearing mice models (Figure 8f,g), demonstrating that target NPs possessed extraor-
dinary anti-tumor efficacy through synergetic type I PDT-PTT pathways. Furthermore,
in all groups, no significant change of body weight of mice was discovered, as well as no
noticeable changes of the complete blood panel test and serum biochemistry in the target
NPs treated groups compared with the PBS treated groups, which proved the negligible
systemic toxicity of the lip-DCTBT NPs. This study not only provided a paradigm for
exploring advanced multifunctional type I AIE PS for the application of NIR-II FLI-guided
type-I PDT-PTT synergistic therapy, but also brought favorable insights into pancreatic
cancer treatment.
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Figure 8. (a) Schematic illustration of molecular design and properties, as well as the preparation
of target NPs and their application in NIR-II FLI-guided type I PDT-PTT pancreatic cancer therapy.
Variation in PL intensity (I/I0) of (b) DCFH for total ROS detection, (c) DHR123 for O2

•− detection,
and (d) HPF for OH• detection. (e) Photothermal performance of DCTBT NPs of different concen-
trations upon laser irradiation (808 nm, 0.8 W/cm2, 6 min). (f) The average tumor weights of the
subcutaneous PANC-1 tumor-bearing mice after different treatments recorded on day 17 (** p < 0.01).
(g) The average tumor weights of the orthotopic PANC-1 tumor-bearing mice after different treat-
ments recorded on day 16 (** p < 0.01). (h) In vivo NIR-II fluorescence images of subcutaneous
PANC-1 tumor-bearing mice at different monitoring times after administration of lip-DCTBT NPs, a:
non target NPs, b: target NPs. Reprinted with permission from [67], copyright 2022, Elsevier.

4.2. The Antimicrobial Applications

Infectious diseases caused by pathogenic microbes including bacteria, fungi, and
viruses, pose serious threats to humans, since they usually cause severe diseases such as
foodborne illness, tuberculosis, sepsis, meningitis, and pneumonia, for which the situation
continues to worsen, along with the appearance of antibiotics-resistant microbes [71,72].
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In view of this rigorous challenge, PDT has stood out as a promising candidate for an-
timicrobial applications including the inactivation of multidrug resistant (MDR) microbe
species; ROS could provide an aggressive attack on microbes without the need for complete
entrance of PSs into the microbial interior, which can potentially avoid the generation of
microbial resistance [73]. In this respect, type I PDT has been widely employed due to
the longer half-life of O2

•−, as well as the strong oxidizing property of OH•. Possessing
the advantage of AIE and AIG-ROS, periodical achievements in the FLI-guided PDT of
pathogenic microbes have been attained, based on AIE-active type I PSs [74–76].

For example, Wang et al. [77] reprepared a functional nanofibrous membrane (TTVB@NM)
by doping a type I AIE PSs TTVB in an electroactive polymer (PVDF-HFP) matrix using
the electrospinning technique, and achieved the photodynamic elimination of pathogenic
droplets and aerosols under sunlight (Figure 9a). Due to the inherent positive charge, TTVB
was able to effectively stain several kinds of bacteria and fungi (Figure 9b). Under sunlight
irradiation, TTVB possessed outstanding type I ROS generation efficiency (Figure 9c–e),
owing to its typical D–A structure and electron-rich heteroatoms (S and N). After doping
into the PVDF-HFP, the obtained nanofibrous membrane (TTVB@NM) was demonstrated to
exhibit similar photophysical performances as TTVB, as well as favorable washability and
photostability, indicating great potential for effective antimicrobial effect. The antimicrobial
activity of TTVB@NM was subsequently verified by the significantly decreased survival
rates of four kinds of pathogenic droplets (Gram-positive bacteria S. aureus, Gram-negative
bacteria E. coli, fungi C. albicans, and M13 bacteriophage) after 1 h under sunlight irradiation
(Figure 9f). Further evaluation of the antimicrobial effect of TTVB@NM against pathogenic
aerosols was carried out by placing the pathogenic aerosols-loaded TTVB@NM outdoors
(Figure 9g). The results revealed that TTVB@NM could effectively inactivate pathogenic
aerosols containing bacteria (inhibition rate: > 99%), fungi (~88%), and viruses (>99%)
within only 10 min under sunlight irradiation (Figure 9h,i). The author also stated that
TTVB was measured to show moderate photothermal conversion performance, which
could play an adjuvant role for microbe inhibition.
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dark or under sunlight irradiation. Survival rate of microbes under sunlight irradiation for (h) 5 min
and (i) 10 min. Reprinted with permission from [77], copyright 2021, Elsevier.
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4.3. The Inhibition of Harmful Algal Bloom

Harmful algal bloom (HAB) has become a global environmental problem, causing
serious impact on aquatic ecology and economy [78]. The rapid growth of algae aggravates
O2 depletion and the release of harmful toxins, consequently threatening the survival
of aquatic animals, resulting in widespread freshwater and marine area pollution [79].
Although many physical and chemical methods have been developed to inhibit HAB,
their inherent drawbacks, such as low suppression rate, limited application area, and
the possibility of secondary and persistent pollution, have hindered their widespread
application [80]. In recent years, ROS-generating algaecides have aroused extensive interest
owing to their effective, eco-friendly and cost-efficient properties [81]. Therefore, exploring
PSs which show excellent elimination effect of algae upon light irradiation without causing
toxicity to other aquatic organisms, will be a promising strategy. Of particular interest
are the type I AIE PSs, which can exhibit excellent ROS generation ability under low O2
concentration, suitable for the relatively low O2 environment of algal bloom.

Under this circumstance, Luo et al. [82] developed a water-soluble type I AIE PS with
self-degrading ability, termed TVP-A, which could selectively eliminate HAB upon expo-
sure to natural light (Figure 10a). TVP-A was constructed with a typical D–A structure with
a primary amino group modified onto the terminal pyridinium, endowing the molecule
with good water solubility. Moreover, the positively charged property also endowed TVP-A
with a specific algae-targeting feature, on account of the negatively charged cell membrane
of the algae. Upon white light irradiation, TVP-A exhibited superb ROS generation ability
through both type I and type II mechanisms, particularly OH•. In this work, they co-
incubated one cyanobacteria (M. aeruginosa) and two freshwater green algae (C. vulgaris,
and C. reinhardtii) with TVP-A at different concentrations, respectively, under 16 h light
(50 µEinstein/m2/s1)/8 h dark cycles to explore the effective concentrations in controlling
the HAB. It was found that the 50% effective concentration (EC50) value of TVP-A was
less than 1 ppm for these three kinds of algae (Figure 10b). As shown in Figure 10c, in
contrast with the commercial algaecide (Alg), which still had a large amount of algae
residue when the concentration was as high as 100 ppm, TVP-A exhibited ultra-efficient
control of HAB, with effective inhibition of the algae bloom C. reinhardtii at 5 ppm and a
clear color of water after five natural daily cycles at 10 ppm. The fluorescence change of
chlorophyll in C. reinhardtii was measured to prove the irreversible damage of chloroplast
due to the photodynamic process (Figure 10d). After 2 h of illumination, the fluorescence
intensity of chlorophyll decreased to less than 20%, indicating that TVP-A could rapidly
cause irreversible damage to these important organelles of algal cells, at especially low
concentration, upon illumination. Collectively, TVP-A could be employed as a powerful
agent for inhibiting HAB by destroying the chloroplast of algal cells. In addition, the strong
self-degradation ability of TVP-A (Figure 10e) suggested that it was an eco-friendly agent
with little environmental residue left under sufficient natural light irradiation, avoiding
secondary pollution to the environment. Meanwhile, the daily heart rates of fish in the
groups with or without TVP-A showed no significant difference (Figure 10f), generally indi-
cating the good biocompatibility of TVP-A within the working concentration. This strategy
afforded a favorable insight into developing novel type I ROS-generating algaecides for
green HAB governance.
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5. Conclusions and Perspectives

Profiting from the inherent advantages of AIE and AIG-ROS of AIE PSs, as well as the
predominant role that type I PDT exhibited in breaking through the bottleneck of conven-
tional type II PDT, after five years of development, AIE-active type I PS is emerging as a
rising star that holds great potential in illuminating the future of PDT. Based on the recent
significant advancements in novel AIE-active type I PSs, a systemic summary, involving
the photophysical and photochemical mechanisms of the type I pathway, molecular design
strategies, as well as practical bioapplications of type I AIE PSs, was provided in this
review. In addition to a high ISC rate ensuring sufficient excited triplet-state production to
undergo subsequent electron-transfer or energy-transfer pathway, approaches that could
preferentially trigger the type I electron-transfer, rather than the type II energy-transfer
process, are particularly needed in constructing type I PSs. Currently, according to the
cascade reactions of the type I pathway, introducing functional groups with a high electron
affinity to capture and stabilize the external electron, as well as enhancing the ICT intensity
of PSs through donor engineering or acceptor planarization, represent two strategies to
promote type I ROS generation. Guided by these strategies, a number of type I AIE PSs
have been constructed and successfully applied in the type I ROS-mediated eradication
of tumors and pathogen-caused infectious diseases, as well as the inhibition of harmful
algae bloom. Additionally, due to the excellent features of bright fluorescence at aggregated
state, rotator or vibrator-rich structure, and easy tailorability, FLI-guided type I PDT or
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even FLI-guided type I PDT-PTT synergistic theranostic platforms were also witnessed by
ingeniously adjusting the excited-state energy dissipation pathways of type I AIE PSs.

Promising as it is, there still exist challenges or perhaps opportunities to be considered,
regarding the further advance of type I AIE PSs. Primarily, although the design strategies
of promoting ISC for developing highly efficient AIE PSs have already been proposed,
the authoritative approach that specifically activates the following type I pathway is, to
date, still far from satisfactory. In this regard, the successful examples guided by those two
above-mentioned approaches are still limited, and their universal applicability remains
to be validated by more attempts, despite their success in designing some type I AIE PSs.
Hence, an in-depth understanding of the photochemical mechanisms of the type I pathway,
the accordingly effectual design principles, as well as more ingenious trails, are urgently
called for. Then, in order to avoid misjudgment about type I ROS generation capacity and
to accelerate the progressive advancement of type I AIE PSs, a standard method capable
of precisely assessing the quantum yield of type I ROS, particularly O2

•− and OH•, is
highly needed. This is because current detection methods can only provide qualitative data
instead of quantitative, and it is difficult to make direct comparison between the newly
synthesized PSs and the previously reported ones, when only depending on qualitative data.
Lastly, notwithstanding that some other bioapplications of type I AIE PSs, besides tumor
treatment, have emerged, for example, the inhibition of harmful algae bloom, continuing
efforts are still required for exploring a broader scope of application of type I AIE PSs,
such as anti-biofilm application. We expect this review can provide valuable insights into
the underlying photophysical and photochemical mechanism of the type I pathway, and
inspire researchers to develop authoritative design strategies and rationales for the novel
construction of ideal type I AIE PSs in the future.
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