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Abstract: Conducting metal oxide (CMO) supports lossy mode resonance (LMR) at the CMO-dielectric
interface, whereas surface plasmon resonance (SPR) occurs at the typical plasmonic metal-dielectric
interface. The present study investigates these resonances in the bi-layer (ITO + Ag) and tri-layer
(ITO + Ag + ITO) geometries in the Kretschmann configuration of excitation. It has been found that
depending upon the layer thicknesses one resonance dominates the other. In particular, in the tri-layer
configuration of ITO + Ag + ITO, the effect of the thickness variation of the sandwiched Ag layer is
explored and a resonance, insensitive to the change in the sensing medium refractive index (RI), has
been reported. Further, the two kinds of RI sensing probes and the supported resonances have been
characterized and compared in terms of sensitivity, detection accuracy and figure of merit. These
studies will not only be helpful in gaining a better understanding of underlying physics but may also
lead to the realization of biochemical sensing devices with a wider spectral range.

Keywords: optical fiber sensor; surface plasmon resonance; lossy mode resonance; indium-tin oxide;
silver; sensitivity; detection accuracy

1. Introduction

Surface plasmon resonance (SPR) is generated at metal and dielectric interface by
transverse magnetic fields (TM) or p-polarized light [1]. It is impossible to excite the
SPR mode by direct light due to the momentum mismatch between the SPR mode and
incident light [2]. In order to efficiently excite these modes, we need a momentum matching
scheme. Several such schemes have been proposed, e.g., passing light through a high
RI prism, using a grating, etc. [3]. Further, there exist two coupling configurations for
SPR excitation—Otto and Kretschmann [4,5]. Owing to its ease of implementation, the
Kretschmann configuration is preferred often.

The growing field of SPR has attracted significant research attention over the years due
to its wide range of applications, which includes nano-antennas [6], imaging [7], biosensing,
and so on and so forth [8]. Several extensive theoretical and experimental studies have been
conducted on SPR-based sensors in the past [9–13]. A sensor’s novelty is determined by the
particulars of the plasmonic material used and the design implemented. Waveguide-based
sensors have attracted a lot of attention due to their industrial applications. These sensors
use a plasmonic material deposited as a thin film around the waveguide (e.g., an optical
fiber). These materials can be classified into three categories based on the resonances
they support. The first class of materials is plasmonic materials, which support SPR and
have a real permittivity that is negative and larger in magnitude than both the imaginary
permittivity and the permittivity of the surrounding medium. In the second category of
materials, the real part of the material permittivity is positive and greater than both its
imaginary part and the permittivity of the surrounding medium. The LMR phenomenon is
observed in this category of materials. The third class of materials also exists for which the
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real part of the permittivity is close to zero and the imaginary part is large. Such a material
supports long-range surface exciton-polariton [14]. The present work only focuses on the
first and second classes of materials.

LMR results out of the coupling between lossy mode and evanescent wave at a
particular thickness of the thin film [15]. Only a few studies are reported on the application
of LMR to sensing because the selection of the appropriate material for the thin film is
critical [16–19].

Different types of waveguide structures have been utilized to realize SPR and LMR-
based sensors. In particular, plasmonic fiber grating based, U-shaped and D-shaped optical
fiber-based biosensor are explored extensively [19–21]. The simultaneous generation of
LMR and SPR on the same planer platform has also been reported [22].

Indium tin oxide (ITO) is one of the CMO materials that supports LMR. It is a trans-
parent material with an optical band gap of 3.6 eV, which restricts band-to-band transitions.
The electronic and optical properties of ITO can be tuned during fabrication, resulting
in a significant variation in its characteristics [23]. This property can be used to shift the
resonance wavelength of LMR. Unlike SPR, the excitation of LMR has the advantage of
not requiring specific polarization for incident light. Additionally, it is possible to generate
multiple dips in the transmission spectrum. LMR dips are usually found in the IR and UV
regions but, with the proper optimization of thin-film and with the use of other materials,
they can also be observed in the visible region [14]. The IR dip is observed due to oscilla-
tions in charge density along the metal-dielectric interface. In contrast, a charge density
oscillation along the thickness of the metal film is responsible for UV dip [16].

LMR is also found suitable for sensing applications. The performance and novelty of
the sensor are determined by the material and sensing probe design used. Because of the
excellent characteristics of optical fibers, these are being used as substrates for depositing
ITO thin films to constitute the sensor [24].

Our present study examines the characteristics of bi- and tri-layer fiber optic sensing
probes based on ITO that enable simultaneous excitations of SPR and LMR both. In bi- and
tri-layer geometries, we investigate ITO + Ag and ITO + Ag + ITO structures, respectively.
Applied biosensing, chemical analysis, quality assurance of food, and wavelength filtering
are some of the potential applications for the proposed sensing probe.

2. The Model

To generate LMR, the lossy mode must be coupled with the evanescent wave. At a
particular angle or wavelength, the effective index of the evanescent wave matches with
the effective index of the lossy mode. The effective RI of the evanescent wave is given by

ne f f = np sin(θi) (1)

where np is the RI of the substrate, and θi is the incident angle of the light. This relationship
shows that the RI of evanescent waves can be controlled by the incident angle of incident
light and/or corresponding wavelength.

Figure 1 schematically shows the proposed sensing probe in the Kretschmann con-
figuration. The probe consists of a multimode fiber with a core diameter of 400 µm and a
numerical aperture of 0.22. The 1 cm fiber cladding has been removed from the fiber probe.
On top of the unclad (exposed) core, layers of ITO and Ag have been considered.

At one end of the fiber, light from a polychromatic source is launched, and the spec-
trometer records the corresponding transmission spectrum at the other end. At a certain
wavelength, called the resonance wavelength, the spectrum exhibits a minimum transmit-
ted power. A change in the sensing medium (i.e., RI of the analyte) will alter the resonance
wavelength. The sensitivity of the sensor is defined as the shift in resonance wavelength
corresponding to the change in the RI of the analyte. Another important characterization
parameter, figure of merit (FOM) is defined as the ratio of sensitivity to the full width at
half maximum (FWHM) of the transmission dip. Additionally, detection accuracy (DA) is
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another important parameter that measures the sharpness of the resonance. The following
expression relates these parameters (sensitivity, FOM, and DA) with each other [25].

FOM =
Sensitivity

FWHM
= Sensitivity × DA (2)

where DA ∝ 1
FWHM .

Some materials are highly sensitive but have low FOM. In contrast, others have poor
FOM. Hence, materials need to be carefully selected.
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Figure 1. Schematic of the presented SPR setup (TH: tungsten halogen, 3D-MO: microscopic objective
with 3D movement).

For multilayer structures, the transfer matrix method is used to calculate the transmis-
sion spectrum. Consider a kth layer of thickness dk, having complex RI nk, and dielectric
coefficient εk. The transfer matrix for N layer system is expressed as

M =
N

∏
k=2

Mk =

[
M11 M12
M21 M22

]
=

[
cos(βk) −i sin(βk/qk)

−i qksin(βk) cos(βk)

]
(3)

where βk and qk are defined as (2πdk/λ)
(
εk − n1

2sin2θ1
)1/2 and

(
εk − n1

2sin2θ1
)1/2/εk,

respectively and θ1 is the incident angle of the ray, while λ is the wavelength of the incident
light. The reflection coefficient rp of p-polarized (TM polarized) incident wave through the
film is expressed as:

rp =
(M11 + M12qN)q1 − (M21 + M22qN)

(M11 + M12qN)q1 + (M21 + M22qN)
(4)

The reflectance, R, for TM polarized light is given as

R =
∣∣rp
∣∣2 (5)

A detailed description of this matrix method is given elsewhere [6,13]. The rays
launched within the well-defined range of angle would be guided and the range is given
by θ1 = sin−1(ncl/n1) to θ2 = π/2.

The transmitted power at the output end of the fiber is given by

Ptrans =

∫ θ2
θ1

R
Nre f (θ)
p n2

1

(
sinθcosθ/

(
1 − n2

1cos2θ
)2
)

dθ∫ θ2
θ1

n2
1

(
sinθcosθ/

(
1 − n2

1cos2θ
)2
)

dθ
(6)
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where
Nre f (θ) =

L
D tanθ

(7)

The number of reflections occurring in the sensing region is denoted by the
Equation (7), where L is the length of the unclad region and D is the diameter of the
fiber. The dielectric constant of the Ag and ITO layer is calculated by the Drude dispersive
model expressed as

ε(λ) = εr + iεi = 1 − λ2λc

λ2
p(λc + iλ)

(8)

and

ε(λ) = εr + iεi = 3.8 − λ2λc

λ2
p(λc + iλ)

(9)

respectively, where λp and λc is the wavelength corresponding to bulk plasma frequency
and collision wavelength. In the case of Ag, λp = 0.14541 µm and λc = 17.6140 µm,
whereas λp = 0.56497 µm and λc = 11.21076 µm for ITO. The Sellmeier equation has been
used to determine the RI of the fiber core [13]. We have assumed that above dispersion
relations are valid in the whole wavelength range of investigation.

In order to fabricate the sensing probe, we use multimoded plastic clad fibers. The
cladding can be removed by a few centimeters (a length of 1 cm of cladding is suitable
for sensing applications) and then cleaned in a vacuum chamber using ion plasma bom-
bardment and acetone. The unclad port of the fiber can be coated with metal or ITO after
cleaning. Depending on the deposition techniques we have used, the uniformity of the
films will vary. In order for the sensing probe to work correctly, the film uniformity must be
good. A high-quality film can be achieved using sputtering and e-beam evaporation. The
probe can be characterized by injecting light through one of the fiber faces and analyzing
its sensing performance using a spectrometer at the other end of the fiber [26–30].

3. Results

The following two cases have been discussed in this section- in the first case, the ITO
layer is deposited directly on the fiber core followed by the Ag layer (bi-layer sensing
probe), and in the second case, an additional layer of the ITO is deposited over the Ag
(tri-layer sensing probe).

3.1. Bi-Layer Configuration (ITO + Ag)

In this section, we numerically investigate a bilayer configuration of ITO + Ag coated
fiber probe. In the first round of the simulation, the thickness of the ITO layer is fixed at
80 nm, whereas the thickness of the Ag layer is varied from 10 nm to 60 nm.

In the transmission spectrum, we observe two resonance dips for probe configuration
with 80 nm ITO and 10 nm Ag for various values of analyte RIs, as shown in Figure 2a. Since
the real part of the dielectric constant of the ITO is positive and larger than its imaginary
part, at the lower wavelength region the condition of LMR generation is supported. Experi-
mental evidence supports the LMR generation at short wavelengths and SPR excitation
at long wavelengths [18]. The resonance dip in the visible region is caused by the LMR
phenomena, while the second dip is the result of SPR. We would like to note here that the
dielectric constant of ITO remains positive only for shorter wavelengths while at longer
wavelengths it becomes negative (see Equation (9)). Therefore, for longer wavelengths,
we see SPR resonance while in shorter wavelengths the probe supports LMR. These ob-
servations are well documented in the literature [14]. We would also like to note that for
SPR excitation we require an interface of materials with opposite permittivity (one positive
and other negative). An SPR dip can be observed even for a thin layer of Ag (i.e., 10 nm).
Figure 2b illustrates that the SPR dip is more pronounced at a larger thickness of Ag. The
thickness of the Ag layer, therefore, plays a critical role in the development of the SPR
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dip. In addition, as Ag thickness increases, the SPR dip becomes less sensitive to the RI
variations in the analyte, while the LMR dip’s sensitivity increases.
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Figure 2. Normalized transmission spectra of sensing probe with (a) ITO (80 nm) + Ag (10 nm) and
(b) for various thicknesses of Ag for 80 nm ITO and analyte RI ns = 1.33.

The thickness of the ITO layer, however, significantly impacts the development of
SPR and LMR resonances. As shown in Figure 3a, both resonances emerge with increasing
thickness of the Ag layer for the 50 nm thick ITO layer. If the thickness of the ITO layer is
less than 50 nm, SPR and LMR resonance dips still grow with the thickness of the Ag layer
as shown in Figure 3b. Both of these cases show that SPR dip is insensitive to the RI of the
sensing medium (transmitted power plot not shown).
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(a) ITO (50 nm) (b) ITO (30 nm) and RI of the surrounding medium is 1.33.

In Figure 4a, we have plotted the LMR and SPR dip sensitivity against the thickness of
the Ag layer for 80 nm thick ITO film. Both resonances are initially sensitive to changes
in RI, but their sensitivities are drastically influenced by the thickness of the Ag layer.
Nevertheless, the LMR sensitivity is improved as a result of the thicker Ag layer, while the
SPR sensitivity is reduced as depicted in Figure 4a. At a very large thickness of the Ag layer,
the SPR dip becomes insensitive to any RI variation of the analyte. This insensitive dip
can be used as a reference point for characterizing the sensor’s performance. The variation
in the resonance wavelength of the LMR and SPR dip is also shown in Figure 4b. As Ag
thickness is increased, the SPR resonance wavelength shifts slowly towards the smaller
wavelength side. Also, shown is the transmitted power at the resonance wavelengths in
Figure 4c. From the figure, we observe that the wavelength that corresponds to the LMR
transmitted power minimum decreases to a minimum at a particular thickness of the Ag
layer, and then increases. In contrast, the transmitted power for SPR dip is shifted toward
the lower wavelength side with an increasing layer thickness of Ag. Previously a similar
study is reported in [13], where resonance dip, observed in the visible region, was found
useful for sensing applications and the second dip that appeared in the NIR region was
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insensitive to the surrounding RI, but we will not focus on this insensitive SPR dip here,
since it is already detailed nicely in the literature [13].
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Further, we have studied the sensitivity and DA of both the resonances as a function
of the analyte RI for different values of the Ag layer thickness as shown in Figures 5 and 6.
The sensitivities of both the modes (LMR and SPR) increase with an increasing RI of the
sensing medium as shown in Figure 5a,b. These plots also suggest that LMR dip is far
more sensitive as compared to SPR dip. Figure 6 shows the corresponding DA variation as
a function of the thickness of the Ag layer. DA for LMR dip (Figure 6a) is also relatively
large as compared to that for SPR dip (Figure 6b). Also, note the opposite trends in
Figures 5 and 6 with variations in the Ag layer thickness. Hence there is a trade-off between
optimum values of sensitivity and DA for designing the bi-layer sensing probe.
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Figure 6. Detection accuracy of the (a) LMR and (b) SPR dip with the variation of RI of the sensing
medium for different thicknesses of the Ag and 80 nm thickness of the ITO layer.

3.2. Tri-Layer Configuration

In this section, we investigate the tri-layer configuration (ITO + Ag + ITO). In the
following tri-layer configuration, SPR is found to be more sensitive than the LMR dip. The
following sub-sections analyze two important cases.
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3.2.1. ITO (10 nm) + Ag (10 nm) + ITO (X nm)

This configuration examines the resonance characteristics of a tri-layer ITO + Ag + ITO
coated fiber sensor, where a 10 nm layer of ITO is considered on the fiber core that is
followed by a 10 nm thick layer of Ag, and then a third layer of ITO with varying thickness.
Two resonance dips appear in the transmission spectra when the third layer of ITO is 10 nm
thick, as shown in Figure 7a. The resonance dip in the visible range corresponds to LMR
and the second dip to SPR. Increasing the thickness of the third ITO layer (40 nm) causes
a new resonance dip to appear in the near-infrared region, known as LMR. The newly
developed LMR dip (middle dip) is not affected by the change in RI of the surrounding
medium, as shown in Figure 7b. Compared to the first LMR dip, the SPR dip (third dip)
shows much better sensitivity.
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Figure 7. Normalized transmission spectra of sensing probe with (a) ITO (10 nm)+Ag (10 nm)+ ITO (10 nm)
and (b) ITO (10 nm) + Ag (10 nm) + ITO (40 nm).

The occurrence of the new LMR as a function of the thickness of the third ITO layer is
shown in Figure 8a,b, where the sandwiched Ag layers are kept 10 nm and 20 nm thick,
respectively. Figure 8a,b illustrates that increase in the thickness of the Ag layer from 10 nm
to 20 nm shifts the resonance wavelength of the first LMR and SPR dips toward the longer
wavelength side. However, the resonance wavelength of the insensitive LMR dip (central
dip) remains nearly unchanged. Also, it seems that with the ITO layer thickness variation,
the central dip merges with SPR dip. Alternatively, it also suggests a switch-over behavior
between the two dips. This observation requires further exploration.
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Figure 8. Normalized transmission spectra of sensing probe with (a) ITO (10 nm) + Ag (10 nm) + ITO (X nm)
and (b) ITO (10 nm) + Ag (20 nm) + ITO (X nm).

As the thickness of the third ITO layer increases, the LMR dip’s sensitivity decreases,
whereas SPR’s sensitivity increases as shown in Figure 9. The sensitivity variations of SPR
and LMR dips in the tri-layer case are opposite to those in the bi-layer case (see Figure 4a).
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Figure 9. Sensitivity of the First LMR and SPR dip with the variation of the third ITO layer when the
first layer is ITO (10 nm) and the second layer is Ag (10 nm) and RI of the sensing medium varies
from 1.33 to 1.36 RIU.

Additionally, the DAs for the first LMR and SPR dip are shown in Figure 10a,b,
respectively, for varying thicknesses of the third ITO layer. The DA for LMR decreases with
sensing medium RI while the opposite trend is observed for SPR dip in Figure 10b.
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Figure 10. Detection accuracy of the (a) first LMR and (b) SPR dip with the variation of third ITO
layer for 10 nm thick first layer ITO and 10 nm thick Ag layer.

Furthermore, the variation of the FOM with sensing medium RI for two dips is
depicted in Figure 11a,b. The figure clearly shows the better performance of the SPR dip.
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Figure 11. FOM of the (a) first LMR and (b) SPR dip with the variation of the third ITO layer thickness
where the first layer is ITO (10 nm) and the second layer is Ag (10 nm).

3.2.2. (ITO (50) + Ag (X) + (ITO (50))

This section presents the normalized transmission spectrum for a tri-layer configura-
tion with an Ag layer sandwiched between two ITO layers of thickness of 50 nm each. In
this configuration too, two dips of LMR and one of SPR are observed, and the characteristics
of these resonances are dependent on the thickness of the Ag layer, as shown in Figure 12a,b.
Figure 12a shows transmittance variation with change in the sensing medium RI, while
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in Figure 12b, the RI of the sensing medium is kept fixed at 1.33 RIU and the thickness
of the Ag layer is varied. Figure 12a depicts that SPR dip is relatively more sensitive and
central LMR dip is completely insensitive. Figure 13 indicates that on further increase in the
thickness of the Ag layer, the resonance wavelength of SPR dips shifts toward the shorter
wavelengths; however, the resonance wavelength of the first LMR dip shifts toward the
longer wavelength. The LMR dip observed in the NIR region is insensitive to the analyte
RI variations. Moreover, the increased thickness of the Ag layer tends to annihilate the SPR
dip as shown in Figure 13.
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Figure 12. Normalized transmission spectra of sensing probe with (a) ITO (50 nm)+Ag (10 nm)+ ITO (50 nm)
and (b) for varying thickness of the Ag layer when both ITO layers are 50 nm thick.
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Figure 13. Normalized transmission spectra of sensing for varying thickness of the Ag layer when
both ITO layers are 50 nm thick.

Further, we study the DA, sensitivity, and FOM of each resonance dip. We demonstrate
that the DA, sensitivity, and FOM of the first LMR are improved as the Ag layer thickness
is increased, as illustrated in Figure 14a,b,c, respectively.

Biosensors 2022, 12, x FOR PEER REVIEW 10 of 13 
 

 
Figure 13. Normalized transmission spectra of sensing for varying thickness of the Ag layer when 
both ITO layers are 50 nm thick. 

Further, we study the DA, sensitivity, and FOM of each resonance dip. We demon-
strate that the DA, sensitivity, and FOM of the first LMR are improved as the Ag layer 
thickness is increased, as illustrated in Figure 14a,b,c, respectively. 

 

 
Figure 14. (a) DA, (b) sensitivity, and (c) FOM of the first LMR dip as a function of RI of the ana-
lyte. 

This investigation is extended to the third resonance dip, as depicted in Figure 15. 
With the increase in the thickness of the Ag layer, DA, sensitivity, and FOM of SPR dip 
are improved as shown in Figure 15a,b,c respectively. 

     
Figure 15. (a) DA, (b) sensitivity and (c) FOM of the SPR dip as a function of RI of the analyte. 

Furthermore, we have plotted the absolute square of the electric field component 
along the interface across all the thicknesses of probes in two configurations- ITO (10 nm) 
+Ag (10 nm) +ITO (40 nm) and ITO (50 nm) +Ag (10 nm) +ITO (50 nm). The corresponding 
wavelength values are given in figure captions. These figures clearly show a large en-
hancement in the field at SPR resonance (see Figures 16c and 17c). These also corroborate 
the observed high sensitivity for SPR resonance. 

N
or

m
al

iz
ed

 T
ra

ns
m

itt
ed

 P
ow

er

1.33 1.34 1.35 1.36
Refractive Index

5

5.5

6

6.5

7

7.5

8

8.5
Ag = 10 nm
Ag = 15 nm
Ag = 20 nm
Ag = 25 nm

1.33 1.34 1.35 1.36
Refractive Index

3.5

4

4.5

5

5.5

6

6.5

7
Ag = 10 nm
Ag = 15 nm
Ag = 20 nm
Ag = 25 nm

1.33 1.34 1.35 1.36
Refractive Index

0.6

0.65

0.7

0.75

0.8

0.85 Ag = 10 nm
Ag = 15 nm
Ag = 20 nm
Ag = 25 nm

(a) (b) (c) 

1.33 1.34 1.35 1.36
Refractive Index

1.5

2

2.5

3

3.5

4
Ag = 10 nm
Ag = 15 nm
Ag = 20 nm
Ag = 25 nm

1.33 1.34 1.35 1.36
Refractive Index

6

7

8

9

10

11

12

13

14

Ag = 10 nm
Ag = 15 nm
Ag = 20 nm
Ag = 25 nm

1.33 1.34 1.35 1.36
Refractive Index

10

15

20

25

30

Ag = 10 nm
Ag = 15 nm
Ag = 20 nm
Ag = 25 nm

(a) (b) 
(c) 

Figure 14. (a) DA, (b) sensitivity, and (c) FOM of the first LMR dip as a function of RI of the analyte.

This investigation is extended to the third resonance dip, as depicted in Figure 15.
With the increase in the thickness of the Ag layer, DA, sensitivity, and FOM of SPR dip are
improved as shown in Figure 15a,b,c respectively.
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Figure 15. (a) DA, (b) sensitivity and (c) FOM of the SPR dip as a function of RI of the analyte.

Furthermore, we have plotted the absolute square of the electric field component
along the interface across all the thicknesses of probes in two configurations- ITO (10 nm)
+Ag (10 nm) +ITO (40 nm) and ITO (50 nm) +Ag (10 nm) +ITO (50 nm). The corresponding
wavelength values are given in figure captions. These figures clearly show a large enhance-
ment in the field at SPR resonance (see Figures 16c and 17c). These also corroborate the
observed high sensitivity for SPR resonance.
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We would like to note that since in the present study a plastic-clad highly multimode
fiber is considered, the proposed probe is only good for room temperature applications.
Although slight variations in temperature do not influence the sensor performance, at high
temperatures the fiber cladding will melt down.

4. Discussion and Conclusions

In conclusion, ITO + Ag-based bi-layer and tri-layer fiber-optic sensors have been
studied. In the case of bi-layer geometry, two modes of resonances are possible. These
are called LMR and SPR, and these resonances can be used for sensing purposes. In this
bi-layer configuration, the LMR dip shows better sensitivity compared to the SPR dip. DA
of the LMR dip is also far better than that of the SPR dip. As the thickness of the Ag layer
increases further, the SPR dip becomes insensitive and only the LMR dip can be used for
sensing. We suggest that at this thickness, the SPR dip can work as a reference, and this
turns the sensor into a self-referenced sensor. By choosing the appropriate thickness of Ag,
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this configuration can be used in chemical, and bio-sensing, whereas the same configuration
can also be utilized in wavelength filtering.

Further, two configurations of tri-layer geometry are explored, wherein one SPR and
two LMR dips have been observed. In the first tri-layer configuration, the thickness of the
outmost ITO layer was varied, the first LMR dip that arises in the visible region is found
less sensitive as compared to the SPR dip. The other LMR dip (middle dip) that appears in
the NIR region is found insensitive to any change in analyte RI. This insensitive LMR dip
appears if the thickness of the third layer of ITO is increased. In the second configuration,
the thickness of the Ag layer was varied. Particularly, it has been shown that the resonance
wavelength of SPR dip shifts toward the shorter wavelength side; however, the resonance
wavelength of the LMR dip shifts toward the longer wavelength side. Furthermore, we
have plotted the electric field component along the interface across all the thicknesses of
probes in two tri-layer configurations to demonstrate field enhancement. The observation
of the insensitive second LMR dip and its manipulation with ITO layer thickness variation
are the main contribution of this work as this suggests a switching of resonance type
between LMR and SPR. Also, this work provides design rules of ITO-based bi- and tri-layer
structures which support the excitations of LMR and SPR. The results of the study are
summarized in Table 1. We see from the table that SPR dip exhibit a very high sensitivity of
14 µm/RIU and good DA and FOM.

Table 1. Summary of the results obtained in bi layer and tri layer configurations.

Configuration Wavelength of
Operation µm

Refractive
Index Range

Sensitivity
(µm/RIU) DA (µm−1)

Figure of
Merit (RIU−1)

ITO(10)/Ag(X) 0.4–0.8 (LMR) 1.33–1.36 ∼ 2.6 (X = 60 nm) ∼ 26 (X = 60 nm)
0.8–1.5 (SPR) 1.33–1.36 ∼ 1 (X = 20 nm) ∼ 7.5(X = 20 nm)

ITO(10)/Ag(10)/
ITO(X)

0.4–0.8 (LMR) 1.33–1.36 ∼ 1.1 (X = 40 nm) ∼ 4.7(X = 90 nm) ∼ 4 (X = 50 nm)
1.2–2.5 (SPR) 1.33–1.36 ∼ 14 (X = 120 nm) ∼ 4(X = 90 nm) ∼ 60 (X = 90 nm)

ITO(50)/Ag(X)/
ITO(50)

0.4–0.7 (LMR) 1.33–1.36 ∼ 0.7 (X = 25 nm) ∼ 7(X = 25 nm) ∼ 5 (X = 25 nm)
1.2–3 (SPR) 1.33–1.36 ∼ 14 (X = 25 nm) ∼ 3.5(X = 25 nm) ∼ 26 (X = 25 nm)
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