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Abstract: This paper reports a novel micro/nanostructure co-hot embossing technique. Gold-capped
nanostructures were used as localized surface plasmon resonance (SPR) sensors and were integrated
into a microfluidic channel. The advantage of the co-hot embossing technique is that the SPR sensors
do not need to be aligned with the microfluidic channel while bonding to it. The integrated SPR
sensor and microfluidic channel were first characterized, and the sensitivity of the SPR sensor to the
refractive index was found using different concentrations of glycerol solutions. The SPR sensor was
also used to quantify latent membrane protein (LMP-1) when modifying anti-LMP-1 at the surface of
the SPR sensor. Different concentrations of LMP-1 samples were used to build a calibration curve.

Keywords: hot embossing; microfluidics; localized surface plasmon resonance (SPR); immunoassay

1. Introduction

Latent membrane protein 1 (LMP1) is an important biomarker of the Epstein–Barr
virus (EBV), which is related to nasopharyngeal carcinoma (NPC) when transfected. NPC
is a rare tumor of head and neck, originating in the nasopharynx. NPC is a common
occurrence in the regions of East Asia and Africa. With this in mind, it is recommended
to frequently check for EBV when NPC-suspected persons are in these regions [1,2]. To
reliably detect LMP1 in patients leaving a hospital, portable biosensors are necessary.

Many types of biosensors (e.g., electrochemical [3–6], immunobeads motion [7–9],
mechanical, optical types [10–20] etc.) have been developed and show the potential for
becoming portable. From these efforts, optical type biosensors, such as localized surface
plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) have been
demonstrated to have high sensitivity and high accuracy. The phenomenon of LSPR is that
conductive electrons coherently oscillate to incident light. When the light propagates into
the metallic nanostructure, the electric field near the surface of the metal is enhanced and
has a maximum resonant frequency that can be determined by the size and shape of the
metallic structure, the type of metal, and the environmental dielectric constants [21–23].
Suitable metals, such as silver, Pd, and gold, are used to produce NPs with different shapes
for localized SPR generation, due to the exhibited spectrum in the visible range [24–28]. For
biological applications, gold is normally considered to be ideal due to its inert nature and
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biocompatibility [21]. Moreover, for biosensing, the high association between thiol groups
and gold makes biomolecular immobilization easier for metal surfaces.

Recently, a nanostructure on a polymer substrate produced by nanoimprinting and
then depositing metal on the nanostructure was developed for biosensing [29–31]. The
sensing chips can be quantified by analyzing the resonant spectrum and images [32].
Multiplex detection was also exhibited [33,34]. Biosensing applications were presented to
quantify DNA/RNA/micro (mi)RNA [35–38], proteins [39], autoantibodies [40], cells [41],
and NPs in living cells [42]. To reduce interference from environmental elements, the
integration of biosensors into the microfluidic channel is a good strategy to isolate sensing
environments [43–45]. Other advantages associated with using microfluidics are that these
systems use less sample material, are easy to integrate with microfluidics, and can utilize
multiplex detection. However, microfluidic channels are not easy to align and bond to
nanostructural SPR biosensors due to the microscale size and structural configurations. A
technician with special expertise is required to handle the process.

In this study, we developed a co-hot embossing method to simultaneously print nanos-
tructural biosensors and microstructural channels on cyclic olefin polymer (COP) film
without alignment. After depositing gold on the nanostructure and bonding polydimethyl-
siloxane (PDMS) to the microchannel, a biosensor integrated with the microfluidic channel
was obtained. Hot embossing molding method showed advantages in that the devices can
be quickly and massively produced on polymer substrates. The sensitivity of the devel-
oped localized SPR sensor embedded in the microfluidic channel was investigated using
glycerol solutions with different weight percentages. To demonstrate the biomolecular
sensing by the localized SPR sensing chip integrated in a microfluidic chip, the antibodies
were modified on the sensing region to quantify LMP-1 concentration based on resonant
wavelength shift of the localized SPR.

2. Materials and Methods
2.1. Micro/Nanostructural Mold Preparation

The micro/nanostructural mold was made by two-time lithography including e-beam
lithography and traditional photo-lithography. Firstly, the nanoslit structure was patterned
by e-beam lithography. The period of the nanoslit was 500 nm, the crest was 100 nm in
width, the depth was 100 nm, and the total size was 150 µm × 150 µm on a silicon wafer.
The microfluidic mold was made on the wafer and aligned with a grating structure. A
depth of the microfluidic mold of 10 µm was obtained.

2.2. Hot Embossing Process

The fabricated micro/nanostructure was used as a mold for hot embossing. The COP
film (ZF16-188, ZeonorFilm, Tokyo, Japan) with a thickness of 188 µm was cut to 3 × 4 cm,
sandwiched between the mold and a flat glass wafer, and put into the hot embossing
machine. Initially, the top/bottom plate was set to heat up to 180/140 ◦C, and a pressure of
0.20 MPa was provided for 90 s. After releasing the pressure, the top/bottom plate was
cooled to 100/80 ◦C, and then the COP film was peeled off the mold.

2.3. Optical System and Sensing Mechanism

To measure the resonant wavelength of the localized SPR sensing chip, an optical setup
was developed as shown in Figure 1a. A halogen lamp with 100-W broadband white light
was used to illuminate the SPR chip. The white light was first polarized in the transverse
magnetic (TM) direction and propagated to a 10× objective lens. The TM wave light was
focused on the SPR region in the microfluidic chip and collected by another 10× objective
lens on the opposite side. The collected light was guided into a spectrometer through an
optical fiber. The resonant spectrum was recorded by a computer. Figure 1b–e shows the
detection mechanism.
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Figure 1. (a) Optical setup and (b–e) the detection mechanism.

3. Results and Discussion

The microstructure and nanostructure printing on the COP thin film were character-
ized by a surface profiler. Results in Figure 2 show that the microfluidic channel height was
8.7 µm, and the nanoslit was 100 nm in height.
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Figure 2. Surface profile of the microstructure and nanostructure. (a) Schematics of the microfluidic
devices. The profiles of (b) microstructure and (c) nanostructure were measured.

After characterizing the structure, a thin gold film was deposited on the nanostructure
to become the localized SPR sensor. First, 3M tape (8003p, 3M, Saint Paul, MI, USA) with
a proper opening, illuminated by a CO2 laser, was prepared as the shadow mask. The
shadow tape was aligned and stuck onto the COP substrate for depositing gold only on the
nanostructure area as shown in Figure 3a. DC sputter with power of 0.06 kW was used to
deposit the gold for different deposition times, and transmission rates of visible light in DI
water were measured as shown in Figure 3b. At a deposition time of 60 s, the transmission
rate began to dramatically decrease at wavelengths of 550~700 nm. As a result, an optimal
deposition time of 50 s was chosen for further experiments. After removing the tape, the
microstructure and nanostructure were captured using a regular camera and scanning
electron microscope (SEM), respectively, as shown in Figure 3c,d, respectively. The period
of the nanoslit was 500 nm, and the crest was 100 nm in width.

After the gold deposition on the nanostructure, the COP film was bound to a piece
of cured PDMS to become the microfluidic channel. The COP film was first treated with
oxygen plasma, and then bathed in a (3-aminopropyl) tiethoxysilane (APTES)/DI water
solution at 1% v/v for 20 min. After rinsing and drying, the COP film was ready for bonding.
Holes were punched in the cured PDMS to connect tubes for inlets and outlets, and then
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it was treated with oxygen plasma. Subsequently, the PDMS and COP film were hard
contacted and left on a 90 ◦C hotplate for 30 min for bonding. Images of the microfluidic
channel are shown in Figure 3e,f. PDMS is not suitable to make nanoslits because due to
the high elasticity of PDMS, after depositing metal, the metal film will have a lot of cracks.
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Figure 3. (a) Covering the opening with shadow tape and depositing gold. (b) The thickness of the
gold deposition was related to the resonant spectrum. A thicker gold film possesses lower light
transmission. (c–f) Macroscopic to microscopic views of the microstructure and nanostructure.

The localized SPR sensor was calibrated with different refractive index solutions,
which were glycerol/water solutions with v/v percentages of 0%, 2.5%, 5%, 7.5%, 10%,
12.5%, 15%, 17.5%, and 20%. The normalized resonant wavelengths of these glycerol
solutions in the localized SPR sensing area are plotted in Figure 4a. Results indicated
that with higher concentrations of the glycerol solution, the transmission spectrum of the
SPR sensor showed more red-shifting in the TM direction because the refractive index
was higher. The experimental peak values of these resonant wavelengths versus refractive
indexes are plotted in Figure 4b. The peak values were linearly regressed, and a wavelength
sensitivity of 423 nm/RIU was obtained. We also plotted the theoretical peak values in
Figure 4b, and they show certain shifts compared to the experimental results. This is
because the Fano-type resonant peak is an asymmetrical spectrum, and the theoretical peak
value is an average value of peak and dip values. The experimental values only considered
the peak values of the resonant spectrum.
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To demonstrate immunosensing by the developed SPR chips in the microfluidic
channel, 1 mg/mL anti-LMP-1, and LMP-1 samples at concentration of 3 × 101, 3 × 102,
3 × 103, 3 × 104, and 3 × 105 ng/mL in a phosphate-buffered saline (PBS) solution were
prepared. First, the microfluidic channel was filled with the 1 × PBS solution, and the
resonant spectrum was measured and recorded. Subsequently, the 1 mg/mL anti-LMP-1 in
PBS solution was allowed to flow into the microfluidic channel to modify anti-LMP-1 to
the sensing region of the SPR chip. After incubating the anti-LMP-1 solution for 2 h, the
resonant spectrum of the SPR chip was recorded, and the peak value was observed to have
a 1.2-nm red-shift, compared to that with only the PBS solution. Different concentrations of
LMP-1 samples were then continuously allowed to flow into the microfluidic channel at a
flow rate of 10 µL/h for 10 min to dynamically conjugate the LMP-1 onto the anti-LMP-1
in the sensing region. The resonant spectra of these samples are plotted in Figure 5a.
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Figure 5. (a) Observation of resonant spectrum shifting when antigen and antibody were sequentially
conjugated onto the nanoslit surface. (b) Analytical results of resonant spectra when the sensing chip
was immersed in various concentrations of sample solutions. (Black dots and lines are averaged
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After repeating the experiment three times, the average red-shift of each sample versus
the base 10 logarithm of each concentration of LMP-1 solution was plotted in Figure 5b.
The red-shift was linearly proportional to the logarithmic concentration, and an R-squared
value of 0.98 was found. The results indicated that the developed biosensing chip can be
used to quantify biomolecular concentration.

4. Conclusions

In this study, the designed microfluidic channel and nanoslit structure, microfabricated
on a silicon substrate, were used as the mold for hot embossing. The micro- and nanostruc-
ture could be simultaneously transferred to COP film without alignment. After depositing
gold onto the nanoslit and bonding with cured PDMS, the localized SPR sensor in a mi-
crofluidic channel was obtained. An optical system with a spectrometer was developed to
collect the resonant spectra of localized SPR signals in the TM direction. The peak value
of the resonant spectrum was analyzed for quantification of SPR sensing. The sensitivity
of the SPR sensor was characterized using different concentrations of glycerol solutions.
An immunoassay of the SPR sensor was also quantified through LMP-1 and anti-LMP-1
interactions. A calibration curve was also obtained by measuring different concentrations
of LMP-1. It was demonstrated that the developed co-hot embossing technique can be used
to fabricate a localized SPR sensor and microfluidic channel by one-time printing. It was
also proven that the SPR sensor integrated with the microfluidic channel can quantify a
label-free immunoassay.
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