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Abstract: Exosomes have been gaining attention for early cancer diagnosis owing to their biological
functions in cells. Several studies have reported the relevance of exosomes in various diseases, includ-
ing pancreatic cancer, retroperitoneal fibrosis, obesity, neurodegenerative diseases, and atherosclerosis.
Particularly, exosomes are regarded as biomarkers for cancer diagnosis and can be detected in bioflu-
ids, such as saliva, urine, peritoneal fluid, and blood. Thus, exosomes are advantageous for cancer
liquid biopsies as they overcome the current limitations of cancer tissue biopsies. Several studies have
reported methods for exosome isolation, and analysis for cancer diagnosis. However, further clinical
trials are still required to determine accurate exosome concentration quantification methods. Recently,
various biosensors have been developed to detect exosomal biomarkers, including tumor-derived
exosomes, nucleic acids, and proteins. Among these, the exact quantification of tumor-derived
exosomes is a serious obstacle to the clinical use of liquid biopsies. Precise detection of exosome
concentration is difficult because it requires clinical sample pretreatment. To solve this problem, the
use of the nanobiohybrid material-based biosensor provides improved sensitivity and selectivity. The
present review will discuss recent progress in exosome biosensors consisting of nanomaterials and
biomaterial hybrids for electrochemical, electrical, and optical-based biosensors.

Keywords: biosensors; cancer; exosomes; nanomaterials

1. Introduction

Cancer is characterized by various complex symptoms depending on the type and site
of occurrence [1,2]. Therefore, accurately predicting and diagnosing cancer can change the
prognosis of patients considerably [3,4]. The current most effective way to diagnose cancer
is to identify cancerous tissue and cancer cells through surgical biopsy. However, a surgical
biopsy cannot be used to diagnose all types of cancer [5]. The presence of several cancerous
tumors, such as breast cancer, can be confirmed via X-ray and ultrasound examination
with expected surgical follow-up, whereas for nonspecific and deep organ cancers, such as
pancreatic cancer, computed tomography and magnetic resonance imaging are required for
diagnosis and staging. However, even these methods cannot easily differentiate between
tumor and inflammation, and a surgical biopsy is difficult to perform [6,7]. Moreover,
as cancer is not static, the loss of time and money during the biopsy process is a major
limitation for the patient [8], and additional complications or side effects, such as cancer
metastasis, may occur [9].

Recently, we have observed a paradigm shift towards liquid biopsy-based molecular
analysis to supplement surgical biopsy [10,11]. A liquid biopsy is performed on the body
fluid of a patient and facilitates the direct detection of cancer cells circulating in the body,
tumor DNA, or tumor-derived material, with the advantages of real-time observation [12],
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noninvasiveness [13], and low cost [8,14]. This can reduce the burden of biopsy on the pa-
tient. The primary markers for liquid biopsy are the transmembrane receptor glycoprotein
podoplanin [15,16], circulating tumor DNA [17,18], and exosomes [19,20].

Podoplanin is a transmembrane mucin-like glycoprotein expressed in various types of
cancers and influences tumor cell migration and metastasis [15,21]. A circulating tumor
cell chip composed of podoplanin antibody has been used to capture malignant pleural
mesothelioma cells in preclinical models [22]. Blood levels of circulating tumor DNA are
known to be higher in patients with cancer than in healthy individuals [23]. Analysis
of circulating tumor DNA has improved clinical outcomes in some cancer types, such
as nonsmall cell lung cancer [24] and breast cancer [25]. Extracellular vesicles (EVs) are
cell-derived vesicles composed of a lipid bilayer, which retain protein and nucleic acid
information of the parent cell, attracting attention as markers of cancer and disease [26–28].
EVs exist in a variety of sizes. Therefore, they can be divided into exosomes, small EVs
with a size of 30–100 nm, and ectosomes, microvesicles, and apoptosis, which are large
EVs with a diameter of 100–1000 nm or more. In general, small EVs are known to affect
the transport of molecules related to cellular activity [29], while large EVs contain proteins
and lipids involved in disease progression [30]. Therefore, it is an attractive material
as a marker for liquid biopsy for diagnosing diseases. However, it has been reported
that exosomes are more abundantly distributed compared to large oncosomes in studies
targeting cancer cells [31]. Therefore, exosomes, which are small EVs, are evaluated as more
valuable from an oncological point of view. In addition, from the viewpoint of early cancer
diagnosis, cancer cell-derived exosomes are secreted at high concentrations in the early
stages of tumor development [32]. Furthermore, exosomes are easy to identify, attracting
attention as optimal biomarkers in liquid cancer biopsies. Recently, efforts have been made
to detect exosomes based on various detection platforms, such as on electricity- [33–39],
electrochemical- [40–48], and optical-based platforms [49–56].

However, in most research cases, the detection of exosomes is focused on the selective
detection of specific cell-derived exosomes. From the perspective of liquid biopsy for cancer
diagnosis, increasing the concentration of exosomes in the body suggests the possibility
of developing cancer and related diseases. However, because exosomes in the body are
secreted by various cells, they show slightly different differences in the composition, size,
shape, and distribution of surface proteins [57]. Therefore, to diagnose cancer based on a
transparent relationship with cancer, such as the case where melanoma-derived exosomes
were detected in bodily fluid samples based on the CSPG4 protein expressed in melanoma,
phenotypic issues need to be specified prior to experimentation. Recently, studies have been
conducted to characterize the phenotype of exosomes using IR spectroscopy [58,59], optical
methods [60–62], and cryo-transmission electron microscopy-based analysis methods [57].

In recent decades, various studies have been conducted to develop biosensors in the
field of disease diagnosis, such as blood glucose sensors and pregnancy diagnostic kits.
Biosensors focus on the rapid and quantitative detection of target molecules and can detect
targets with high affinity based on biological receptors, such as enzymes, antibodies, and
aptamers, which are designed nucleic acid sequences. A biosensor is largely composed
of a detection unit, which is composed of a receptor, and a signal conversion unit. The
signal generated from the detection unit is converted by the signal conversion unit into
various signals, e.g., electrical and optical, thereby enabling quantification of the detected
signal [63]. Since the discovery of the relationship between biomolecules and diseases,
biosensors have been actively studied for the early diagnosis and treatment of diseases.

Existing enzyme-linked immunosorbent assays (ELISAs) and polymerase chain reac-
tion (PCR) analyses can perform high-sensitivity analysis; however, they require expensive
equipment and long analysis times. Moreover, the introduction of electrical and electro-
chemical analysis platforms has the advantage of being suitable for point-of-care diagnosis
because it does not require labeling of the target molecule. However, previously reported
biosensors have several limitations, such as low electrochemical signal strength, low stabil-
ity, and low sensitivity to biomolecules [64].
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To increase signal sensitivity, a highly sensitive bioprobe can be developed by increas-
ing the surface area of the electrode or increasing the number of probes by increasing
the surface roughness [65], which is aimed at increasing the activity, electrochemical elec-
tron transport, etc. Moreover, the introduction of nanomaterials to the electrode interface
causes new nan-physical phenomena, such as plasmons, metal-enhanced fluorescence
(MEF), and surface-enhanced Raman spectroscopy (SERS), leading to the development
of a new type of biosensor [66,67]. Nanomaterials, such as noble metal nanoparticles,
carbon nanoparticles [37], chalcogen compounds [33], and metal-organic frameworks [51],
have excellent physical properties, leading to numerous developments in the manufacture
of nanobiosensors.

Recently, the application of nanobiohybrid materials in manufacturing biosensors to
overcome these problems has been discussed [68]. The application of conductive polymers
and porous materials improves the electron transport reaction; based on the plasmonic and
optical properties, the electrochemical signal increases, and the activity of biomolecules can
be maintained for a long time [69,70]. In addition, by extending the sensor surface, more
probes can be immobilized to improve the sensitivity [71]. Therefore, a biosensor to which
nanobiomaterials are applied can be utilized to detect lower and wider exosomes based on
their concentration in the body [72].

Although various studies for detecting exosomes have been conducted, a sensor that
universally detects exosomes and can be commercialized has not been reported yet. This
review aims to summarize the existing biosensor platforms for detecting exosomes. It will
also suggest future directions for sensor research concerning exosome detection in liquid
biopsies by identifying the limitations of current technologies. For the development of
a biosensor composed of a hybrid of nanomaterials and biomaterials in precious metals,
transition metals, carbon-based materials, and organometallic framework- (MOF) based
materials will be introduced as key cases.

2. Pretreatment and Characterization of Cell-Derived Exosomes
2.1. Isolation of Exosomes in Samples

Extracellular vesicles, including exosomes, can be derived from various cells in the
body [73]. In most sensor studies for exosome detection, exosomes derived from cancer
cells cultured in laboratory conditions were evaluated [34,49,74], and in order to extend
this to detection in clinical samples, exosomes were used before being applied to sensors.
They need to be isolated and quantified from various biofluids such as blood, urine, and
peritoneal fluids. There is a method of precipitating exosomes by ultracentrifugation
of 100,000× g or more [75] for the isolation of exosomes and using common proteins
(CD63, CD9, CD81) and hair cell-derived proteins present on the surface of exosomes
as markers. Representative examples include an immune-based separation method for
capturing exosomes in body fluids [76] and a size-based method for filtration using a
membrane filter [77] considering that the diameter of general exosomes is 100 nm or less.
In addition, studies have been conducted to isolate exosomes based on size-exclusion
chromatography [78] and density gradient ultracentrifugation [79].

To isolate exosomes from mesenchymal stem cell cultures, we proposed a sucrose cush-
ion ultracentrifugation method that improved the existing differential ultracentrifugation
method [80] (Figure 1A). The existing ultracentrifugation method is one of the most repre-
sentative and used methods for exosome separation, but several steps of centrifugation are
required for precise separation. In addition, proteins in cells and cultures can interfere, and
an increase in centrifugation steps results in a loss of exosome yield. The culture medium
was centrifuged stepwise at 300× g and 10,000× g to remove cell debris and microvesicles
in the proposed experimental method. Then, the medium was loaded in a 30% sucrose
cushion solution similar to the exosome density, and centrifugation was performed under
100,000× g conditions. The proposed method recovered approximately 1.5–2 times more
exosomes than the conventional method, while maintaining ultracentrifugation as the
first step.
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Figure 1. (A) Ultracentrifugation and sucrose cushion ultracentrifugation processes to isolate ex-
osomes from stem cell cultures, (B) schematic diagram of an immunoaffinity-based separation
process to precisely capture melanoma-derived exosomes. This was reproduced with permission
from [80], published by Nature, 2018, and reprinted with permission from [81]. Copyright 2018,
Taylor & Francis.

Sharma et al. proposed an immunoaffinity isolation method to capture exosomes in
body fluids of melanoma patients [81] (Figure 1B). Based on the CSPG4 protein specifically
expressed in melanoma, mAb 763.74 that binds to it was introduced to detect cancer-derived
exosomes selectively. The antibody was first biotinylated and incubated with the exosome
sample, and the biotinylated antibody-labeled exosome was captured through a column
filled with streptavidin beads. For the recovery of unbound exosomes, the corresponding
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process was performed iteratively. The proposed isolation method was able to selectively
capture melanoma-derived exosomes from venous blood samples in melanoma patients.
The parent cell-specific protein-based immunoaffinity assay will be able to purify target
cell-derived exosomes from various exosome samples.

2.2. Analysis of the Exosome Phenotype

Extracellular vesicles, such as exosomes, exhibit diversity in size, shape, protein
composition, density, and distribution. Studies to characterize exosomes based on these
characteristics have continued, but standards for clearly distinguishing them have not
yet been established. Furthermore, because the classification of exosomes with submicro
sizes by laboratory methods is limited [82], in general, dynamic light scattering (DLS),
nanoparticle tracking analysis (NTA), and scattering flow cytometry methods used for
exosome analysis can only check the physical information of exosomes [83]. In addition,
the problem of exosome contamination is pointed out in the fluorescence-based analysis
method. Finally, immunoblotting and western blotting methods can identify the constituent
proteins of exosomes, but cost and time are limiting factors in identifying all proteins.
Recently, an analysis method using IR spectroscopy, optical analysis with a specific label,
and cryo-transmission electron microscopy has been reported. The characterization of these
exosomes is meaningful as a factor for confirming the physical properties of exosomes
according to diseases.

Yliperttula et al. proposed the characterization of extracellular vesicles based on
infrared and Raman spectroscopy [59]. Evaluation of the particle-to-protein ratio based
on NTA and bicinchoninic acid assay (Pa/Pr) for EVs purified by different purification
methods from two different cells: identification of protein using western blotting and
lipid-to-lipid ratio using ATR-FTIR. Unnecessary protein removal was performed through
protein ratio measurements (Li/Pr) and Raman spectroscopy-based spiking. In the pro-
posed study, it was possible to compare the number of exosome particles according to
the purification method based on comparing Pa/Pr and protein markers. In addition, the
purity of exosomes was evaluated through spectral comparison of ATR-FTIR and Raman
spectroscopy, and ATR-FTIR showed an error rate of 6.61–10.26% in the blind test compared
with NTA.

Varga et al. proposed a method for quantifying extracellular vesicles in biofluids
using Flu-SEC and microfluidic resistive pulse sensing combined with size exclusion
chromatography and a specific fluorescent label [60]. Experiments were conducted using a
fluorescent antibody (PE-antiCD235a) that specifically binds to the red blood cell membrane
protein glycophorin A, and wheat germ agglutinin markers bound with Alexa647 dye were
analyzed for particle size distribution using MRPS and lipids using FTIR spectroscopy.
Additionally, protein composition was analyzed. Finally, fluorescence signal analysis
according to the binding of the red blood cell-specific antibody to the two concentrations of
red blood cell-derived EV was performed through Flu-sec, and it was possible to determine
that the sample EV was red blood cell-derived EV. The proposed system has the advantage
of being able to quantify EVs without using equipment, such as HPLC.

Based on direct stochastic optical reconstruction microscopy (dSTORM), we proposed
a method for visualizing extracellular vesicles and analyzing the domains present on the
EV surface [62]. Using cells expressing CD63 with a green fluorescent protein tag and CD81
with a mCherry tag, we observed whether cell-derived EVs expressed the fluorescent tag
protein of parental cells through dSTORM. EVs derived from parental cells with fluorescent
protein expression factors expressed fluorescently tagged tetraspanin domains, and it was
confirmed that the fluorescently tagged CD81 antibody binds to the EV surface even in
wild-type EVs. The existence of microdomains on the EV surface was cross verified through
cryogenic electron microscopy, and dSTORM visualized EVs in 3D with high resolution
while overcoming the problems of general optical microscopy, which has limitations in
EV observation due to the diffraction limit, and can quickly check the surface properties
of EVs.
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3. Nanobiomaterial-Based Exosome Biosensor

Several studies on the electrochemical, electrical, colorimetric, and fluorescence de-
tection of exosomes have been reported. The developed sensor, based on electrochemistry
and electricity, has the advantages of being small-sized, label-free [84], and having a fast
detection time [85]. The colorimetric and fluorescent biosensor can visually confirm the
presence of target molecules, making their combination a suitable analytical method for
point-of-care diagnosis [86]. However, most sensors have low sensitivity compared to
ELISA and RT-PCR technologies, which have proven their performance in disease diagno-
sis [87]. This section introduces nanomaterials to improve the sensitivity of next-generation
point-of-care biosensors for exosome detection.

3.1. Novel Metal-Based Biosensor

Precious metal materials, such as gold, silver, platinum, and iridium are crucial in
electrochemical and optical biosensors, owing to their excellent biocompatibility [88,89],
electrochemical and electrical properties, and unique photoelectric properties [90,91]. The
electrical properties of electrochemical sensors facilitate the functionalization of the metal
surface, and the introduction of nanoparticles can increase the active area of the target
and probe, leading to improved sensitivity of the sensor [92]. Regarding optical sensors,
a sensor that utilizes the change in color intensity according to the structure of the metal
nanoparticles is being developed [93]. In the field of fluorescence, metal nanoparticles
are combined with a fluorescent probe to improve stability [94], with the size of metal
nanoparticles enhancing binding to ligands [95]. This could improve the response speed
of the sensor. The sensor applications involving these precious metal nanoparticles are
focused on improving the sensitivity of the sensor; precious metal particles of the same
material show different characteristics depending on the size and shape of the particles.
This could be a good option for further improvement [96].

Wu et al. fabricated a gold nanoisland (AuNIs)-based localized surface plasmon
resonance (LSPR) biosensor decorated with silver nanoparticles to detect glioblastoma-
derived exosomes [97]. The proposed sensor (Figure 2A), composed of a biotinylated
antibody targeting MCT4 on the exosome surface, has excellent corrosion resistance, ease
of nanostructure fabrication, and the ability to generate plasmon resonance through light
in the mid-range of visible light and in the visible light of Ag. Dynamic range and stability
were increased by generating plasmon resonance in the blue range, which is at the end of
the spectrum, and the antibody was fixed on the sensor surface via S-Ag binding of biotin
and silver. Based on the binding of the antibody and exosome, a signal was generated by
changing the refractive index of the surroundings. Based on the LSPR response versus
exosome concentration (Figure 2B), the Au@AuNIs of the proposed sensor amplified
the LSPR signal compared to normal AuNIs. In the mouse model, this sensor detected
exosomes in the linear range of 7 × 102~8.8 × 107 particles/mL, and simultaneously
showed a detection limit of 7 × 102 particles/mL.

Su et al. reported a fluorescence-based method for exosome detection [49]. They
proposed a three-dimensional DNA motor-based exosome analysis platform. The DNA
motor consisted of gold nanoparticles bound to a fluorescently labeled substrate strand,
and the motor strand was locked with an aptamer (Figure 2C). In response to the target
molecule and aptamer, dehybridization of the aptamer bound to the motor strand pro-
moted endonuclease activity in the motor strand. The activated endonuclease cleaved the
fluorescently labeled substrate strand, thereby restoring the fluorescence [98]. This method
had a detection limit of 8.2 × 103 particles/mL in phosphate-buffered saline (PBS) and
showed high selectivity (Figure 2D).
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Geng et al. developed microfluidic chip-based LSPR-based plasmonic biosensors
composed of gold nanoellipsoid arrays [50]. The proposed sensor was fabricated using an
anodized aluminum oxide to fix the gold nanospheroids template, by an electron beam as
a thin film, which enabled the inexpensive and mass production of metal nanostructures
capable of detection in 50-µL samples. Sensor performance evaluation was performed with
exosomes in the concentration range of 1.8 × 103~1.8 × 107 particles/mL, with a detection
limit of 1.8 × 103 particles/mL.

3.2. Transition Metal Chalcogenide-Based Biosensors

Two-dimensional (2D) transition metal dichalcogenides (TMDC), such as molybdenum
disulfide (MoS2) and MoSe2, and nanocomposites, such as MXene, have an excellent surface-
to-volume ratio, low bandgap energy, low cytotoxicity compared to carbon materials, and
functional and catalytic properties of TMDC [99–101]. MXene is a nanomaterial used in
electrical, electrochemical, and optical biosensors owing to its adjustable band structure,
excellent electrical conductivity, and high surface chemical activity [102–104]. As the
layered structure is formed by 2D TMDC and MXene van der Waals forces, formed layers
can be separated, and single- or multiple-layer structures exhibit different conductivity and
bandgap characteristics. Therefore, TMDC materials are widely used on the sensor surface
because their unique properties improve the sensitivity of a sensor [105–107].

Dai et al. proposed an electrochemiluminescence (ECL) and photothermal dual-mode
biosensor based on black phosphorus quantum dots (BPQD) and MXene [74]. Figure 3A
shows the schematic of the proposed sensor. BPQDs have attracted attention in the field of
ECL and are known to increase the ECL strength by acting as a catalyst for Ru(dcbpy)3

2+
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oxidation. BPQD, monomolecularly combined with Ru(dcbpy)3
2+ through electrostatic

interactions, shortens the electron transport distance and reduces energy loss, thereby
increasing the efficiency of the sensor. As both MXene and BPQD that are used as support
have photothermal properties, the sensor is now an ECL/photothermal biosensor that can
detect exosomes in the linear range of 1.1 × 105~1.1 × 1010 particles/mL, with a detection
limit of 3.7 × 104 particles/mL (Figure 3B).
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MXene, (B) sensor performance evaluation under ECL and photothermal conditions, (C) schematic
diagram of electric biosensor composed of MoS2 and IDMGE, and (D) evaluation of sensor detection
performance through exosome concentration versus capacitance response. This was reproduced with
permission from [33,74], published by Elsevier, 2020 and 2022, respectively.

Lee et al. proposed a DNA aptamer and a MoS2-based interdigitated micro-gap
electrode (IDMGE) system for exosome detection (Figure 3C) [33]. IDMGE has a larger
surface area than the electrode area and enhances the capacitance signal through the micro-
gap electrode spacing. Application of the CD63 aptamer as a probe allows for lower
production cost and faster synthesis while replacing the CD63 antibody. The proposed
biosensor could detect exosomes in samples diluted with 100% human serum with a
detection limit of 2.2 × 103 particles/mL (Figure 3D).

3.3. Carbon-Based Biosensors

Carbon-based materials, such as fullerenes, carbon nanotubes (CNTs), graphene,
and carbon dots, exhibit different properties depending on the arrangement of carbon.
CNTs are one-dimensional carbon nanomaterials with excellent thermal and chemical
stability, excellent conductivity, and a larger aspect ratio than ordinary materials [108,109].
Graphene is a representative 2D carbon nanomaterial with excellent thermal stability,
optical properties, and conductivity, and its performance as a sensor can be improved based
on the characteristics of the 2D materials that have a large specific surface area [110–112].

An electrical biosensor uses changes in current, voltage, impedance, and capacitance
that occur because of a binding event between a working electrode composed of an antibody
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and an aptamer that recognizes a target biomolecule as detection signals [113]. This type
of sensor does not require a separate label to detect a target and is used as a sensor for
point-of-care diagnosis owing to its advantages of low power, easy miniaturization, and
the requirement of a small amount of sample for analysis. Field-effect transistor (FET)
measurement platforms that use transistors are representative. Recently, interdigitated
electrode systems [114], large-area electrode systems, and new carbon materials are being
actively studied to improve sensitivity. The application of one-dimensional materials, such
as CNTs, conductive polymer nanowires, and silicon nanowires, is known to improve the
sensitivity of FET sensors and increase the current switching characteristics [115,116]. In
particular, the application of a modified carbon material improved the performance of the
biosensor owing to its ability to control the insulation and conductivity of the material.
Recently, studies have reported sensors to which 2D materials, such as graphene and
graphene oxide, have been applied. These materials enable easy control of thickness, while
improving their electrical properties [117].

Ye et al. proposed a membrane-based biosensor consisting of graphene hydroxide
and a CD44 antibody [34]. Graphene hydroxide induces a strong current signal based on
its large specific surface area and excellent conductivity, and forms holes on the surface
according to the stacked structure of graphene. Subsequently, graphene was functionalized
with an antibody against the CD44 protein, which is abundantly present on the surface
of breast cancer-derived exosomes, to detect cancer cell-derived exosomes. The proposed
sensor was able to detect exosomes in the linear range of 2.5 × 104~1 × 109 particles/mL,
with a detection limit of 9 × 103 particles/mL.

Tsang et al. developed a graphene back-gate field-effect transistor composed of
1-pyrene butyric acid N-hydroxysuccinimide ester (PBASE) and an anti-CD63 antibody [35]
(Figure 4A). Graphene has excellent biocompatibility and can improve the identification of
biomolecules by having carboxyl, hydroxyl, and epoxy groups. The PBASE linker bound
to graphene immobilizes the antibody on the graphene surface and changes the dielectric
constant by changing the thickness according to exosome binding (Figure 4B). Figure 4C
shows the time-dependent sensor signal change according to the exosome concentration
in PBS. The proposed sensor coupled with the CD63 tetraspanin of exosomes detected
exosomes with a detection limit of 1.8 × 105 particles/mL.

Zhang et al. proposed a field-effect transistor composed of reduced graphene oxide
and an anti-CD63 antibody probe [36]. Due to its fast reaction and low detection limits,
reduced graphene oxide has been used to detect DNA and tobramycin. The proposed
sensor could detect exosomes diluted in HepG2 cell samples with a detection limit of
3.3 × 104 particles/mL.

Ramadan et al. fabricated an exosome sensor with carbon dots (CD) and anti-CD63
antibodies and applied it to graphene field-effect transistors (Figure 4D) [37]. The appli-
cation of nanostructures improves biomaterial accessibility on the sensor surface, and the
spherical structure of CD promotes higher diffusion than planar structures. In addition,
CD can complement the performance of graphene field-effect transistors owing to their
low toxicity, high biocompatibility, and high surface-area-to-volume ratio. CD bound to
graphene showed a greater Dirac voltage shift than under normal graphene conditions,
as exosomes were bound, which is consistent with the negative charge effect of exosomes
(Figure 4E,F). The manufactured biosensor can detect exosomes with a detection limit of
105 particles/mL.
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3.4. Metal-Organic Framework-Based Biosensors

MOFs are porous materials with large surface areas composed of organic linkers
and metals or metal clusters, and have been utilized in drug delivery [118], chemical
sensors [119], and catalysis [120] owing to their excellent chemical durability and flexibility
in structural adjustment. MOFs have several advantages over metal nanoparticles and
graphene and have been applied in biosensors. The MOF surface provides excellent
binding to probes, such as antibodies and aptamers, based on a conjugated π-electron
system [121]. Additionally, the application of flexible porosity and organic materials can
increase the active area of the sensor and provide additional reactivity [122]. Finally, as a
carrier, MOFs exhibit good binding properties between nucleic acids and substances, such
as ions and enzymes, and can be encapsulated and stored. Therefore, the stability of the
enzyme applied to the sensor can be improved, or the distribution of nanoparticles can
be controlled. These organic and inorganic composites can improve the performance of
sensors as nanobiohybrid materials [123].

Chen et al. reported an MOF structure-based SPR detection platform for exosome
detection [51]. Figure 5A shows the schematic of the proposed sensor. Two-dimensional
materials, which have recently been in the spotlight, have high specific surface areas,
electron mobilities, and light absorptivities. Therefore, they are widely used to enhance
SPR signals [124]. However, the resolution and quality factors tend to decrease even
though the sensitivity of the sensor is improved by the interference of 2D materials [125].
The Cu-based MOF used by Chen et al. was synthesized using a hydrothermal method
and showed high near-infrared absorption due to the d-d band transition of Cu2+ and
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its 2D ultrathin nature. In addition, the reduction in the resolution and quality factor of
the SPR signal, which is a disadvantage of 2D materials, was improved. Specifically, the
refractive-index sensitivity increased from 98◦/RIU to 137◦/RIU (Figure 5B). The detection
system immobilizes the multifunctional peptide on a gold electrode modified with an MOF.
Thereafter, the PD-L1 exosome detection ability was confirmed. The detection limit was
16.7 particles/mL, and also showed selectivity in human serum samples. The recovery rate
of the sensor ranged from 93.43 to 102.35%.
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Li et al. used a CD63 antibody, a zeolite imidazolate framework-8 encapsulated in
glucose dehydrogenase (GDH), and a zirconium metal-organic framework loaded with a
K3[Fe(CN)6] molecule to enhance electroactivity [38] (Figure 5C). A high-sensitivity self-
powered biosensor was manufactured using the dual application. Attempts have been
made to utilize the metal-organic framework as a catalyst in drug delivery owing to its
large specific surface area and porosity. Recently, an investigation to maintain enzyme
activity for a long period through encapsulation has been performed [126]. In this study,
GDH@ZIF-8 was applied to the anode to improve the catalytic reaction and stability. To
the cathode, a framework in which K3[Fe(CN)6] molecules were encapsulated was applied
to induce voltage changes according to exosome detection. Owing to its high stability
and sensitivity, the proposed biosensor showed linearity for the exosome concentration of
1.0 × 103~1.0 × 108 particles/mL and was able to detect exosomes with a detection limit
of 3 × 102 particles/mL (Figure 5D). Another study conducted by Li et al. proposed an
electrochemical biosensor to cost-effectively detect exosomes based on MOF-applied paper,
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screen-printed electrodes, and aptamers [40]. UiO-66, composed of zirconium ions and
organic linkers, was applied to paper connected with screen electrodes, such as Zr-MOFs,
with high biocompatibility, and formed Zr-O-P bonds with phosphate heads, which are
abundantly present within the exosome phospholipid bilayer. Aptamers recognize the
CD63 protein in exosomes bound to Zr-MOF and trigger a hybridization chain reaction, and
act as DNAzymes to generate an electrochemical signal. The proposed sensor can detect
exosomes with a limit of 5 × 103 particles/mL, with low cost and convenient operability.

4. Future Perspectives

Thus far, we have summarized various biosensors to detect exosomes. Table 1 sum-
marizes the exosome sensor’s detection range and limits according to the nanoparticle,
detection method, and probe type. The exosome biosensors developed till now have largely
been electrochemical, electrical, colorimetric, and fluorescent. Electrochemical detection
does not require a separate marker to detect exosomes, is cost-effective, and has the advan-
tage of observing the live-state activity of cells and exosomes. However, it is difficult to
specify the source. The electrical detection of exosomes also does not require a separate
marker and is a useful detection method for on-site diagnosis owing to its low power
and easy miniaturization of the sensor. However, the electrical signal response based on
existing FETs and electrodes is simple, and disadvantages, such as difficulty in signal inter-
pretation, high signal-to-noise ratio, and difficult measurement in fluid conditions, must be
compensated for. Moreover, colorimetric and fluorescent biosensors require separate labels
to detect exosomes, have poor sensitivity in colored samples, and have photobleaching
potential for fluorescence signals, thereby limiting the lifetime of the sensor. Therefore,
future exosome-detection biosensors should be developed considering these characteristics.
In addition, sensors applied with aptamers as detection probes reported lower or similar
detection limits compared to antibody-based sensors, proving that they can replace anti-
bodies. Applying aptamer probes enables mass production at a lower price than antibodies
and provides advantages in sensor reuse [127,128]. Based on existing research cases for
detecting cancer cell-derived exosomes, exosomes can be utilized as a decisive factor for
early cancer diagnosis through biopsy and can act as an essential factor in the field of cell
analysis. Exosomes can be utilized as a decisive factor for the early diagnosis of cancer
through biopsy and can also serve as an essential factor in the field of cell analysis. The
surgical biopsy procedure used in the existing cancer diagnosis requires a long time and
high cost. However, using a biosensor would enable cost reduction and early diagnosis
of cancer. Therefore, the development of biosensors for the molecular diagnosis of cancer,
based on exosomes, is crucial.
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Table 1. Various nanomaterial-based exosome detection biosensors.

Materials Nanoparticle Detection Method Probe Detection Range LOD Ref

Nobel metal

Gold nanoisland LSPR Antibody 7 × 102~8.8 × 107

particles/mL
7 × 102

particles/mL
[97]

Gold nanoparticle Fluorescence Aptamer 2 × 104~2 × 109

particles/mL
8.2 × 103

particles/mL
[49]

Gold nanoellipsoid LSPR Antibody 1.8 × 103~1.8 × 107

particles/mL
1.8 × 103

particles/mL
[50]

TMDC
and MXene

MXene Electrochemiluminescence Antibody 1.1 × 105~1.1 × 1010

particles/mL
3.7 × 104

particles/mL
[74]

MoS2 Electric Aptamer 104~108 particles/mL 2.2 × 103

particles/mL
[33]

Carbon

Hydroxylated
Graphene Electric Antibody 2.5 × 104~1 × 109

particles/mL
9 × 103

particles/mL
[34]

Graphene FET Antibody 1.8 × 105~1.8×107

particles/mL
1.8×105

particles/mL
[35]

Reduced
Graphene Oxide FET Antibody 3.3 × 104~3.3 × 109

particles/mL
3.3×104

particles/mL
[36]

Carbon
Dot-Enhanced

Graphene
FET Antibody 105~107 particles/mL 105 particles/mL [37]

MOF

Cu based SPR Peptide 104~5 × 106

particles/mL
16.7 particles/mL [51]

Zr based Electric Antibody 103~108 particles/mL 3 × 102

particles/mL
[38]

Zr based Electrochemical Aptamer 1.7 × 104~3.4 × 108

particles/mL
5 × 103

particles/mL
[40]

Author Contributions: T.L. and J.-H.L. conceived and designed the manuscript; M.L. wrote the
manuscript mainly. J.K. wrote the TMDC and MOF-based biosensor section; M.J. and C.P. wrote
the carbon-based biosensor section. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Korea Environment Industry & Technology Institute
(KEITI) through the program for the management of aquatic ecosystem health, funded by the Korea
Ministry of Environment (MOE). Additionally, (2020003030001) by the Industrial Core Technology
Development program (20009121, development of early diagnostic system of peritoneal fibrosis
with multiplex detection of exosomal nucleic acids and protein markers) funded by the Ministry of
Trade, Industry and Energy (MOTIE, Korea) and by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (2022R1A5A2027161) and by the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2021R1C1C1005583).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Biosensors 2022, 12, 648 14 of 19

Abbreviations

AuNIs Gold nano island
BPQD Black phosphorus quantum dot
CD Carbon dot
CNT Carbon nanotube
DLS Dynamic light scattering
ECL Electrochemiluminescence
ELISA Existing enzyme-linked immunosorbent assay
EVs Extracellular vesicle
FET Field-effect transistor
GDH Glucose dehydrogenase
IDMGE Interdigitated micro-gap electrode
LSPR Localized surface plasmons resonance
MEF Metal-enhanced fluorescence
MOF Materials-organometallic framework
MoS2 Molybdenum disulfide
MoSe2 Molybdenum diselenide
NTA Nanoparticle tracking analysis
PBASE Pyrene butyric acid N-hydroxysuccinimide ester
PBS Phosphate-buffered saline
PCR Polymerase chain reaction
SERS Surface-enhanced Raman spectroscopy
TMDC Transition metal dichalcogenides
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