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Abstract: A ratiometric electrochemical biosensor based on a covalent organic framework (COFThi-TFPB)
loaded with acetylcholinesterase (AChE) was developed. First, an electroactive COFThi-TFPB with
a two-dimensional sheet structure, positive charge and a pair of inert redox peaks was synthe-
sized via a dehydration condensation reaction between positively charged thionine (Thi) and 1,3,5-
triformylphenylbenzene (TFPB). The immobilization of AChE on the positively charged electrode
surface was beneficial for maintaining its bioactivity and achieving the best catalytic effect; therefore,
the positively charged COFThi-TFPB was an appropriate support material for AChE. Furthermore, the
COFThi-TFPB provided a stable internal reference signal for the constructed AChE inhibition-based
electrochemical biosensor to eliminate various effects which were unrelated to the detection of car-
baryl. The sensor had a linear range of 2.2–60 µM with a detection limit of 0.22 µM, and exhibited
satisfactory reproducibility, stability and anti-interference ability for the detection of carbaryl. This
work offers a possibility for the application of COF-based materials in the detection of low-level
pesticide residues.

Keywords: carbaryl; acetylcholinesterase; covalent organic framework; inhibition-based electrochem-
ical biosensor

1. Introduction

Carbaryl as a kind of carbamate pesticide has been widely applied in agricultural
products due to their short-term toxicity and high insecticidal activity [1–4]. However,
because of the bioaccumulation effect, a large amount of residual carbaryl in water, soil,
food and the environment enter the human body through the skin, respiratory tract,
digestive tract, etc., resulting in irreversible damage [5–8]. Therefore, it is crucial to
achieve rapid detection and reliable quantification of carbaryl. Traditional detection
methods, such as chromatography [9–12], surface-enhanced Raman spectroscopy [13–15],
immunoassay [16,17], etc., have been developed very well, with high sensitivity and accu-
racy in the determination of pesticide residues in water and agricultural products. How-
ever, the limitations lie in the complex sample handling process, the use of highly toxic
organic solvents and the expensive and complex instruments that require professional
testing [18–20].

Nowadays, acetylcholinesterase (AChE) inhibition-based electrochemical biosensors
have attracted great attention with regard to the detection of carbaryl and other carbamate
pesticides due to their advantages of non-toxicity, simplicity, miniaturized, high specificity
and high sensitivity [21–23]. For example, Loguercio et al. established the biosensor for the
detection of carbaryl by immobilizing AChE on the polypyrrole nanocomposite, showing
satisfactory results [24]. Zhang et al. used graphene as the support material to load AChE,
and the constructed sensor realized the chiral recognition of (+)/(−)-methamidophos [25].
Considering that acetic acid, the hydrolysate of acetylthiocholine (ATCh), can induce the
collapse of unstable metal-organic frameworks (MOFs), Li et al. prepared a biodegradable
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ZIF-8/MB composite using the one-pot method and realized ultrasensitive detection of
paraoxon by using AChE as the recognition molecule [26]. The mechanism of the AChE
inhibition-based electrochemical biosensors is that the carbamate pesticides make the
serine residue hydroxyl group of the AChE catalytic center be carbamylated, resulting
in a decrease in its activity or even making it completely inactive. Thus, the catalytic
hydrolysis of ATCh is weakened, leading to a decrease in the production of thiocholine
(TCh). The response current of TCh is inversely proportional to the concentration of
carbamate pesticides such as carbaryl; therefore, this causes the simple, efficient and
sensitive detection of carbaryl [27–31].

The following two points are of great significance for the construction of high-performance
AChE inhibition-based pesticide electrochemical sensors. Firstly, choose an appropriate
support material to immobilize the enzyme and maintain its activity [32–34]. Suitable
electrode support materials should allow a large number of enzymes to be loaded and
provide a good microenvironment for maintaining enzyme activity [35–37]. Yang et al.
reported that fixing AChE on the support material with a positive charge not only favors
the maintenance of its bioactivity, but also promotes electron transport between the AChE
and electrode surface [38]. Secondly, the influence of the background current and change-
able environmental conditions on sensor performance should be avoided [39–41]. The
traditional single-signal electrochemical sensors have low accuracy and sensitivity and poor
reproducibility because their electrochemical signal is easily affected by the background cur-
rent of the workstation and environmental conditions such as temperature and pH [42,43].
Fortunately, dual-signal ratiometric electrochemical sensors have emerged [44–46]. Wang
et al. coated an electroactive covalent organic framework (COFThi-TFPB) on the surface
of carbon nanotubes (CNTs) using the one-pot method, and the prepared COFThi-TFPB-
CNT nanocomposite was used for electrochemical ratiometric detection of AA. Since the
monomer thionine (Thi) was positively charged, the positively charged COFThi-TFPB could
self-peel into large-sized two-dimensional crystal nanosheets, and a pair of redox peaks
of the COFThi-TFPB was inert to the detection of AA; thus, it could be used as a reference
signal [47].

Here, an electrochemical sensor based on the COFThi-TFPB [48–51] loaded with AChE
for the detection of carbaryl is proposed. The positively charged COFThi-TFPB can be
easily stripped into two-dimensional nanosheets, and modified on the surface of a bare
glassy carbon electrode (GCE) without adhesives or conductive agents. The positively
charged COFThi−TFPB is conducive to effectively maintaining the bioactivity of AChE
and achieving the best catalytic effect. Its inherent redox peak at 0/−0.22 V is inert to the
detection of carbaryl, which could be used as a reference signal to further improve the
sensitivity and accuracy of the detection. The prepared sensor shows good reproducibility,
stability and anti-interference ability. This work proposes an efficient strategy to immobilize
enzymes using an electroactive COF as a support material.

2. Experimental Procedure
2.1. Materials and Reagents

1,3,5-triformylphenylbenzene (TFPB) and thionine (Thi) were purchased from Jilin
Yanshen Technology Co., Ltd., (Beijing, China). N,N-dimethylformamide (DMF), N,N-
dimethylacetamide (DMA), mesitylene, tetrahydrofuran (THF), acetic acid (AcOH), acetyl-
cholinesterase (AChE), acetylthiocholine (ATCh) and other chemicals were purchased from
Inokay Co., Ltd. (Beijing, China). Carbaryl was purchased from Mokai Nike Technology
Co., Ltd. (Jiangxi, China).

2.2. Instruments

Scanning/transmission electron microscopy images (SEM/TEM) were obtained via
the HITACHI S-3400N SEM and JM-2010 (HR) TEM (Chiyoda City, Japan), respectively.
Atomic force microscopy (AFM) images were obtained via the instrument model BRUKER
Nanoscope V (MultiMode 8) (Billerica, MA, USA) multifunctional scanning probe micro-
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scope. Fourier transform infrared spectroscopy (FTIR) was recorded on model Perkin-Elmer
Spectrum 100 spectrometer (Waltham, MA, USA). N2 adsorption/desorption isotherm mea-
surements were operated using a BELSORP-mini II instrument (Microtrac, Haan/Duesseldorf,
Germany) under the liquid nitrogen temperature of 77 K. Powder X-ray diffraction (XRD)
analysis was performed on the D/Max 2500 V/PC X-ray powder diffractometer (Rigaku,
Tokyo, Japan) with a scanning step of 1◦/min. All electrochemical studies were performed
on an electrochemical workstation (CHI 760D, Shanghai, China).

2.3. Preparation of COFThi-TFPB

Firstly, 0.2 mM TFPB and 0.3 mM Thi were added to a mixture with 2 mL of 1,4-
dioxane, and 1 mL of mesitylene and DMF, and ultrasound was performed for 15 min.
Next, it was transferred to a 25 mL reaction kettle with 0.2 mL (concentration: 6 M) acetic
acid (used as an initiator), and placed in an oven at 120 ◦C for three days. Finally, the
dark-blue COFThi-TFPB was obtained by centrifugation and freeze-drying [52].

2.4. Preparation of AChE/COFThi-TFPB/GCE

Firstly, the surface of the glassy carbon electrode (GCE) was treated with Al2O3,
ethanol and ultrapure water until smooth and clean. Then, 5 µL of the 2 mg/mL COFThi-TFPB
was dropped on the electrode surface. After drying, AChE/COFThi-TFPB/GCE was pre-
pared by dropping 0.4 mM AChE on the modified electrode. The detection mechanism of
carbaryl is shown in Scheme 1.
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3. Results and Discussion
3.1. Characterization of COFThi-TFPB

SEM (Figure 1a), TEM (Figure 1b) and AFM (Figure 1c) showed that the COFThi-TFPB
owned a film-like lamellar structure, and the thickness was about 1.42 nm, which was
very favorable for the immobilization of AChE [53,54]. Next, an FTIR spectrum and
XRD pattern were used to demonstrate the successful synthesis of the COFThi-TFPB. The
spectrum of the COFThi-TFPB showed that a new peak of -C=N- appeared at 1658 cm−1,
whereas the disappearance of N−H in –NH2 at 3292 cm−1 and C=O in –CHO at 1689 cm−1.
Meanwhile, the stretching vibration peaks corresponding to –CH in –CHO at 2714 cm−1 and
2834 cm−1 disappeared. These results demonstrated that the COFThi-TFPB was synthesized
successfully (Figure 1d). The XRD pattern further confirmed the successful synthesis
of the crystalline COFThi-TFPB (Figure 1e). Diffraction peaks at 6.67◦, 8.48◦, 11.34◦, 25.8◦

and 45.6◦ corresponded to (100), (110), (210), (152) and (111) crystal planes. The N2
adsorption/desorption isotherm of the COFThi-TFPB showed that the specific surface area
was 67.4 m2 g−1 (Figure 1f).
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3.2. Electrochemical Behaviors of COFThi-TFPB/GCE and AChE/COFThi-TFPB/GCE

To successfully construct an electrochemical sensor for ratiometric detection of carbaryl,
the introduced internal reference signal should have good stability and a suitable oxidation
potential. Therefore, the electrochemical performance of the COFThi-TFPB was evaluated by
cyclic voltammetry (CV). As shown in Figure 2a, compared with the TFPB/GCE (b) without
a peak, both the COFThi-TFPB/GCE (c) and Thi/GCE (a) had two pairs of redox peaks at
the same potential, indicating that the peaks on the COFThi-TFPB/GCE came from the
electroactive Thi. Next, the CV of the COFThi−TFPB/GCE was investigated at different scan
rates. It could be seen that the positions of their redox peaks were basically unchanged
with the increase in scanning rate (Figure 2b). The redox peak at −0.2/−0.07 V was caused
by the electrochemical reaction of Thi in the COFThi-TFPB, and the redox peak at 0/−0.22 V
was due to the conjugated structure of Thi in the COFThi-TFPB [55]. With the increase in
scanning rate, the peak current density of the two redox peaks of the COFThi-TFPB also
increased and showed a good linear relationship, indicating that the reaction process was a
typical surface control process (Figure 2c). Based on the linear regression equation between
the anodic/cathodic peak potential and natural logarithm of the scan rate (Figure 2d), it
could be calculated that the electron-transfer number (n) was 1, and the electron-transfer
coefficient (αs) was 0.369 when the redox potential was 0/−0.22 V [56].

Then, CV and electrochemical impedance spectroscopy (EIS) tests were performed
using 5.0 mM [Fe(CN)6]3−/4− in a 0.1 M KCl solution as a probe to investigate the electro-
chemical behaviors of the COFThi-TFPB/GCE and AChE/COFThi-TFPB/GCE. As shown in
Figure 3a, compared with the bare GCE (curve a), the peak current of [Fe(CN)6]3−/4− on
the COFThi-TFPB/GCE (curve b) was slightly increased, and the peak-to-peak potential dif-
ference was slightly decreased. This result might be attributed to the electrostatic attraction
between the negative [Fe(CN)6]3−/4− and the positive COFThi-TFPB. In the meantime, the re-
dox peak of [Fe(CN)6]3−/4− on the AChE/COFThi-TFPB/GCE (curve c) owned the smallest
peak current and the largest peak-to-peak potential difference. It was mainly due to the poor
conductivity of AChE, which would hinder the electron transport between [Fe(CN)6]3−/4−

and the surface of the electrode [57,58]. The charge transfer resistance (Rct) values of the
bare GCE, COFThi-TFPB/GCE and AChE/COFThi-TFPB/GCE were 31.3 Ω, 8.5 Ω and 288.1 Ω,
respectively (Figure 3b). In conclusion, compared with the COFThi-TFPB/GCE, the peak
current of [Fe(CN)6]3−/4− on the AChE/COFThi-TFPB/GCE decreased and the Rct value
increased, which directly proved the successful fixation of AChE on the COFThi-TFPB/GCE.
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3.3. Optimization of the Experimental Conditions

It was known that when at the optimum pH value, the binding ability of the enzyme
molecule to the substrate was the strongest and the enzyme reaction rate was the highest;
however, if the pH was too large or too small, the enzyme might be inactivated [59,60].
Therefore, the pH value of the solution was optimized. As shown in Figure 4a, when
pH = 7.0, the current density of the AChE/COFThi-TFPB/GCE was the largest in the 0.1 M
PBS with 0.6 mM ATCh and 5 µM carbaryl. Then, the amount of the COFThi-TFPB modi-
fied on the electrode surface was optimized (Figure 4b), which showed that the optimal
volume was 5 µL (concentration: 2 mg/mL). Next, considering that the amount of loaded
AChE and the concentration of substrate molecule ATCh had important influence on the
detection results, they were also optimized. It could be observed that it was best to set the
concentration of AChE and ATCh at 0.4 mM and 0.6 mM in the subsequent experiments,
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respectively (Figure 5a,b). Figure 5c showed the relationship between the catalytic activity
inhibition of AChE and the incubation time. The inset is the formula for calculating the
percentage of inhibition (I%), where jP,control was the original current density recorded by
the AChE/COFThi-TFPB/GCE in 0.1 M PBS (pH = 7.0) with 0.6 mM ATCh, jP,exp was the
residual current density recorded after immersing in 0.1 M PBS (pH = 7.0) with 0.6 mM
ATCh and 5 µM carbaryl for 0, 4, 8, 12, 16, 20 and 30 min. All in all, when the concentra-
tion of AChE was 0.4 mM, ATCh was 0.6 mM and the incubation time was 20 min, the
performance of the AChE/COFThi-TFPB/GCE sensor was the best.
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3.4. Electrochemical Detection of Carbaryl Based on AChE/COFThi-TFPB/GCE

Firstly, the affinity of AChE fixed on the COFThi-TFPB to ATCh was investigated.
Figure 6a shows the relation curve between response current density and time after contin-
uously adding ATCh. It could be seen that there was a good linear relationship between
the oxidation peak current density and the concentration of ATCh between 0.01 mM
and 0.27 mM. However, the slow-response current density at higher concentrations of
ATCh indicated a Michaelis–Menten process. According to the slope and intercept of
the linear regression equation in Figure 6b, the Michaelis–Menten constant (Km) was
calculated to be 0.24 mM. This value was lower than 0.622 mM as measured by the
AChE/COF@MWCNTs/GCE [61], suggesting good affinity between the enzyme and
the substrate. Then, a ratiometric electrochemical sensor based on the AChE/COFThi-TFPB
was used to detect carbaryl in 0.1 M PBS (pH = 7.0) containing 0.6 mM ATCh. As shown in
Figure 7a, the peak current density of the COFThi-TFPB at -0.05 V was basically unchanged
with the addition of carbaryl, whereas the peak current density of TCh at 0.6 V gradually
decreased. This was because the toxic effect of carbaryl on AChE led to a decrease in the
amount of TCh, and then, the electrochemical signal was weakened. The inset in Figure 7a
shows the linear relationship between jTCh/jCOF and the concentration of carbaryl, where
the linear range of the carbaryl sensor was 2.2–60 µM and the detection limit was 0.22 µM.
The performance of the AChE/COFThi-TFPB/GCE sensor was compared with other sensors
(Table 1). It could be seen that the detection limit of this sensor was lower than that based
on Au/PAMAM/GLUT/AChE (3.2 µM) and MWCNT/PANI/AChE (1.4 µM).
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Figure 7. (a) The DPV response of AChE/COFThi-TFPB/GCE in 0.1 M PBS (pH = 7.0) containing
0.6 mM ATCh with different concentrations of carbaryl. (Inset: fitting curve between current den-
sity and the concentration of carbaryl). (b) The selectivity of AChE/COFThi-TFPB/GCE in 0.1 M
PBS (pH = 7.0) with 0.6 mM ATCh, 10 µM carbaryl and 50 µM interferences. (c,d) The stability
and reproducibility of AChE/COFThi-TFPB/GCE in 0.1 M PBS (pH = 7.0) with 0.6 mM ATCh and
5 µM carbaryl.

The selectivity of the AChE/COFThi-TFPB/GCE sensor was investigated in 0.1 M PBS
(pH = 7.0) with 0.6 mM ATCh, 10 µM carbaryl and 50 µM interferences. It could be seen
that these interferences had little effect on the peak current density (Figure 7b). Then, one
AChE/COFThi-TFPB/GCE was used to measure the corresponding peak current density
of 5 µM carbaryl in 0.1 M PBS (pH = 7.0) with 0.6 mM ATCh for 30 days. The relative
standard deviation (RSD) was only 1.15%, indicating that the AChE/COFThi-TFPB/GCE
sensor had good stability (Figure 7c). The RSD of 5 µM carbaryl detected by six independent
AChE/COFThi-TFPB/GCEs was 1.45% in 0.1 M PBS (pH = 7.0) with 0.6 mM ATCh (Figure 7d).
The good stability and reproducibility might be attributed to the fact that the positively
charged COFThi-TFPB could immobilize the AChE enzyme and maintain its activity, and its
oxidation peak played a self-correcting role in the detection of carbaryl.
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Table 1. Performance comparison of several carbaryl electrochemical sensors.

Electrode LOD (µM) Linear Range (µM) Reference

GC/rGO/AChE 0.0019 0.2–10 [62]
Au/PAMAM/GLUT/AChE 3.2 1–9 [63]
Nafion/AChE/CHIT/IAM 0.004 0.005–5.0 [64]

AChE–MWCNTs/GONRs/GCE 0.0017 0.005–5.0 [65]
AChE/PDDA-MWCNTs-GR/GCE 0.001 0.255–14.9 [66]

MWCNT/PANI/AChE 1.4 9.9–49.6 [67]
GO-IL/GCE 0.02 0.1–12.0 [68]

ZXCPE 0.3 1–100 [69]
CB-NP electrode 12 25–125 [70]

IL/CC 1.4 10–75 [71]
AChE/COFThi-TFPB/GCE 0.22 2.2–60 This work

3.5. Detection of Carbaryl in Vegetable Samples

In addition, the AChE/COFThi-TFPB/GCE sensor and high-performance liquid chro-
matography (HPLC) were used to detect carbaryl in real samples to demonstrate the
practical application capability of the sensor. Firstly, a 100 g lettuce sample was chopped
and put into a juicer containing 100 mL of 0.1 M PBS (pH = 7.0). Then, the obtained mixture
was filtered, and the filtrate was used as the actual sample. Next, different concentrations
of carbaryl were added to the actual sample, and the carbaryls in the actual samples were
determined by the AChE/COFThi-TFPB/GCE sensor and HPLC. The obtained results are
shown in Table 2. It could be seen that the carbaryl content in the actual samples obtained
by the AChE/COFThi-TFPB/GCE sensor was close to the results of the HPLC test, which
proved that the AChE/COFThi-TFPB/GCE sensor has the potential to detect carbaryl in
real examples.

Table 2. The detection of carbaryl in lettuce juice by AChE/COFThi-TFPB/GCE and HPLC.

Sample Added (µM) Found (µM) Average
Value (µM) Recovery (%) RSD (%, n = 3) HPLC (µM) RSD (%, n = 3)

1 0 - - - - -
2 5 4.85, 5.03, 4.96 4.95 99 1.8 4.98 1.8
3 10 10.2, 10.8, 9.8 10.27 102.7 4.9 10.33 4.9
4 20 20.7, 20.1, 20.5 20.4 102 1.5 20.45 1.5

4. Conclusions

The development of efficient, good, stable and reproducible AChE inhibition-based
electrochemical biosensors might rely on the immobilization of the enzyme on suitable
support materials and the introduction of internal reference signals to eliminate irrelevant
effects in detection. In this work, a ratiometric electrochemical sensor was constructed
by using the positively charged COFThi-TFPB with an inert redox peak as the support
material to load the AChE enzyme. The COFThi-TFPB could immobilize the AChE enzyme
and maintain its activity. On the other hand, its inherent redox peak at 0/−0.22 V was
inert to the detection of carbaryl, which could be used as a reference signal to further
improve the sensitivity and accuracy of the detection. The linear range of this sensor was
2.2–60 µM, the detection limit was 0.22 µM, and it had good selectivity, reproducibility and
stability. This suggests that this material has the potential to be applied to detect low-level
pesticide residues.
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