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Abstract: In this article, a hybrid TiO2/Au/graphene layer-based surface plasmon resonance (SPR)
sensor with improved sensitivity and capability for cancer detection is presented. The finite element
method (FEM) was used for numerical analysis. The proposed SPR biosensor was structured based on
the angular analysis of the attenuated total reflection (ATR) method for the detection of various types
of cancer using the refractive index component. The resonance angle shifted owing to the increment
of normal and cancerous cells’ refractive index, which varied between 1.36 and 1.401 for six different
types of normal and cancerous cells. According to numerical results, the obtained sensitivities for skin
(basal), cervical (HeLa), adrenal gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-231)
cancer cells were 210 deg/RIU, 245.83 deg/RIU, 264.285 deg/RIU, 285.71 deg/RIU, 292.86 deg/RIU,
and 278.57 deg/RIU, respectively. Furthermore, the detection accuracy (DA), figure of merits (FOM),
and signal-to-noise ratio (SNR) were also obtained, with values of 0.263 deg−1, 48.02 RIU−1, and 3.84,
respectively. Additionally, the distribution of the electric field and the propagation of the magnetic
field for resonant and non-resonant conditions of the proposed structure were illustrated. It was found
that an enhanced field was exhibited on the surface of the plasmonic material for resonant conditions.
We also measured the penetration depth of 180 nm using decayed electric field intensity. Furthermore,
the impact of using a TiO2/Au/graphene layer was demonstrated. We further conducted analyses of
the effects of the thickness of the gold layer and the effects of additional graphene layers on overall
sensitivities for six different types of cancer. The proposed TiO2/Au/graphene layered structure
exhibited the highest overall sensitivity in terms of detecting cancerous cells from healthy cells.
Moreover, the proposed sensor was numerically analyzed for a wide range of biological solutions
(refractive index 1.33–1.41), and the sensor linearity was calculated with a linear regression coefficient
(R2) of 0.9858. Finally, numerical results obtained in this manuscript exhibited high sensitivity in
comparison with previously reported studies.

Keywords: cancer detection; surface plasmon resonance biosensor; FEM; angular interrogation;
biosensor; numerical approach

1. Introduction

Recently, cancer has become one of the main causes of mortality all over the world.
Nearly 10 million deaths are caused worldwide due to cancer, according to the World
Health Organization (WHO) [1]. The world’s population is estimated to reach approx-
imately 8.3 billion by 2025, of which more than 20 million modern cases of cancer will
be reported each year [2]. Cancer is a disease that causes the rapid and uncontrollable
creation of abnormal cells, and soon, these abnormalities spread throughout the whole body
and damage different body organs, including healthy tissue and valuable organs, finally
resulting in death. Due to the leading causes of death being by various types of cancers
worldwide, early detection has become essential for diagnosing these diseases [3]. Early
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detection of cancer means the detection of tumors in the early stages of its development,
and it is expected that with this strategy, the process of recovery will advance [4]. According
to a UK research group, spotting cancer at an early stage enhances the chance of survival
and increases treatment success [5,6]. In the time it takes for signs to become apparent, the
expansion of cancer may already have initiated, causing it to be harder to treat. In this
respect, a number of biosensor screening tests have been developed for the early detection
of cancer, and significant improvements have been made in biosensing applications to
detect cancer cells from healthy cells to detect cancer early and reduce mortality [7,8].

Biosensor technology is a flourishing field to fulfill the need for sensitive and rapid
detection problems [9]. At first, Clark et al. proposed the first biosensor [10] for de-
tecting blood glucose levels. Later, various methods were developed, and insignificant
improvements have been shown for biosensor applications. These reported studies could
be advantageous in numerous critical applications, for instance, electrochemistry [11,12],
immunocytochemistry [13,14], microfluidic devices [15,16], and Raman spectroscopic imag-
ing [17,18]. Recently, numerous microfluidic-based biosensors have been developed. For
instance, for the purpose of detecting various refractive index solutions, a hollow silica
capillary (HSC) of extremely sensitive refractive index structure has been created as a small,
very sensitive optic-fiber SPR sensor implanted in a microfluidic chip [19], which can be
used to quantitatively determine biological compounds using a microfluidic chip. The
detection of latent membrane protein 1 (LMP1) for an Epstein–Barr virus (EBV) diagnosis
was achieved by using a nanofluidic preconcentrated Fano resonance biosensor with low-
abundance materials integrated with a nanoslit to the proper concentrations for nanoslit
SPR sensing with four distinct methods using the constructed device [20]. Moreover, the
DNA sequence of latent membrane protein 1(LMP1) can be detected using a microfluidic
polymerase chain reaction (PCR) and a gold nanoslit-based surface plasmon resonance
(SPR) sensor. Electrostatic interactions caused the LMP1 DNA probe to be adsorbed onto
the integrated device’s SPR chip for additional detection. By amplifying gene fragments
at the front end and detecting them at the back end, this all-in-one device can shorten
the time needed for analysis without sacrificing accuracy or sensitivity [21]. A localized
surface plasmon resonance (LSPR) sensing array and parallel microfluidic channels were
combined to create a multiplex detection system, and human immunoglobulin G was used
to demonstrate multiplex detection (IgG) and IgM and IgA. These are for the purpose of
demonstrating the idea that parallel sensing devices can be utilized to detect various targets,
and varying quantities of human IgG, IgA, and IgM were generated [22]. Finally, Celina
M. Miyazaki et al. [23] have explained a highly integrated centrifugal lab-on-a-disc (LoaD)
platform for automating every step of the process, from plasma extraction to subsequent
aliquoting to five parallelized reaction channels for quantitative SPR detection by a low-cost
smartphone with a sample to attain automatic SPR detection of targets from bio samples.

At present, for cancer detection, a number of optical fiber sensors based on surface
plasmon resonance (SPR) have been developed due to their portability, compactness, and
better sensing performance [24–28]. For instance, Prakhar Dutta et al. [29] demonstrated
a centrifuge powered by solar energy that effectively separates blood cells from blood
samples using a steady centrifugal force for analyte measurement. Moreover, the peak shift
of the resonant spectrum of a nanoplasmonic device (nanoslit SPR chip) through a spec-
trometer was used. Therefore, surface plasmon resonance is a well-established technique
and has shown great potential in various areas such as temperature monitoring, pollution
monitoring, chemistry, meteorology, and biomedical applications [25,26]. For biological
applications, sensitive and label-free detection is possible with nanostructure-based sen-
sors. Sharp and asymmetric Fano resonances were produced in transmission spectra by a
transverse magnetically polarized pulse in these gold nanostructures. A thermal-annealed
template-stripping SPR sensor has been shown to be more sensitive to intensity than prior
nanoslit and nanohole arrays made using focused ion beam (FIB) and electron-beam lithog-
raphy (EBL) techniques, according to Kuang-Li Lee et al. [30]. Additionally, the couplings
of direct slit transmission or localized surface plasmon resonance (LSPR) in the nanoslits
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and Bloch wave surface plasmon polariton (BW-SPPs) on the periodic metal surface cause
transmission peaks and dips in the spectrum. The interaction of direct slit transmission (a
continuous state) and BW-SPPs (a discrete state) results in a Fano resonance profile. The
prospect of optical fiber sensors has also been explored for detecting the various cancer
types. In [31], Asli et al. demonstrated an SPR-based photonic crystal fiber (PCF) sensor
to analyze skin, blood, adrenal gland, breast, and cervical cancer cells in the visible wave-
length. Interferometer cascading with a fiber Bragg grating (FBG) [24] was experimentally
demonstrated by Sun et al. for detecting breast cancer (HER2) using the refractive index
component. Photonic crystal waveguide-based disease detection by Chopra et al. [32]
had shown detection of basal, HeLa, and MDA-MB-231 cancer cells using the refractive
index change due to cancer using a higher wavelength [32]. Similarly, another work on a
photonic crystal platform for cancer detection was done by Sani et al. [33] based on normal
and cancer cells with refractive index variation. In 2020, Mollah et al. [34] proposed an
early blood cancer detection model. Again, some data regarding cancer cell mapping and
refractive index variation can be found in [31,35]. Moreover, for a better understanding of
the photodamage in human lung epithelial cancer cells exposed to nanosecond pulses of
light, a fractional model was developed, and the laser irradiation of the human cells under
study, with light controlled by a Chen chaotic system, was used to monitor variations in
energy transference and control optical damage [36]. Finally, Belal et al. [37] proposed a
BlueP/MoS2 structure-based cancer detection method recently, but the reported sensitivity
is only 185 deg/RIU, whereas our proposed sensor exhibits 58% higher angular sensitiv-
ity. Although several other optical cancer detections process has been proposed, angular
SPR-based detection is a more sensitive and much less complex structure to fabricate.

In recent times, the enormous enhancements in the fabrication technology and the
sensitivity of the SPR-based prism-coupled Kretschmann configuration sensors have re-
markably improved. Additionally, having a graphene layer on the sensing medium exhibits
both excellent conductivity and the ability to stably absorb biomolecules. The main reason
behind the absorption of a biomolecule with a graphene layer is the carbon-based rings
that widely exist in biomolecules. In addition to having a special molecular structure, the
p-stacking interactions between graphene hexagonal cells and carbon-based ring struc-
tures are widely present in bio/nanomolecules [38,39]. Due to the bio-functionalization
of graphene-based nanomaterials with multiple cells and biomolecules, along with their
improved solubility, biocompatibility, and selectivity, graphene and its derivatives exhibit
some interesting applications in mass spectroscopy, optical and electrochemical sensors
and electronic device bio-imaging [40–44]. A precondition for such a diagnosis is the
evaluation of cancer biomarkers. A graphene-based electrochemical array with a number of
functionalized molecules acting as probes is used to construct sensors for circulating tumor
cells. Indeed, drug-resistant cells, circulating tumor cells, and other cancer cells may all be
detected using graphene sensors. According to their varying affinities, seven distinct types
of molecules may be fixed onto the graphene surface to serve as probes for differentiating
different cell types [45]. This sensor array makes contact with different cell surfaces, and
a corresponding high-affinity probe seizes the target cells. Such a perfect biosensor can
distinguish between cells at the single-cell level, and various concentrations elicit different
reactions. As a result, the sensor has outstanding performance and can identify cells with
great sensitivity. The graphene array-based electrochemical biosensor exhibits outstanding
accuracy, great sensitivity (lowest detectable limit: one cell), and superior stability for cell
detection and precise cancer diagnosis [45]. Therefore, employing a sensing medium on
the surface of the graphene layer would improve the diversity of biosensing applications
as well as enhance the biological detection capability. As a result, the proposed biosensor
in this paper has been designed employing such layers.

In this paper, the main aims are to determine the refractive index changes in cancer
cells for early cancer detection purposes. For this reason, the design and analysis of a
BK7/TiO2/Au/graphene-based SPR sensor model is proposed for detecting skin (basal),
cervical (HeLa), adrenal gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-
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231) cancer cells using the refractive index component. The novelty of the proposed work
is that proper FEM-based numerical approaches are used to propose a model of a highly
sensitive hybrid SPR-based biosensor for the detection of cancerous cells from healthy cells,
and the resultant sensitivity of our proposed sensor is also compared with some recently
reported SPR-based biosensors. Moreover, a demonstration of the practical fabrication
process, the impact of material layers, an analysis of the gold layer thickness, an analysis
of the graphene layer, and a wide range of biological solution detections with sensor
linearity measurements are also presented. The numerical results demonstrate that the
proposed sensor exhibits sensitivity in the detection of skin (basal), cervical (HeLa), adrenal
gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-231) cancer cells, with
values of 210 deg/RIU, 245.83 deg/RIU, 264.285 deg/RIU, 285.71 deg/RIU, 292.86 deg/
RIU, 278.57 deg/RIU, respectively. Furthermore, the detection accuracy (DA), figure of
merits (FOM), and signal-to-noise ratio (SNR) are also obtained, with values of 0.263 deg−1,
48.02 RIU−1, and 3.84, respectively.

2. Design Methodology
2.1. Sensor Structural Design

The proposed BK7/TiO2/Au/graphene-based heterostructure biosensor works on the
basis of the Kretschmann configuration [46]. The following sensor is illustrated in Figure 1
and was designed for a monochromatic wavelength (λ) of 633 nm (He-Ne laser) [47].
Table 1 illustrates the material refractive index properties as well as each layer thickness
used in the proposed sensor modeling. A p-polarized © light having a wavelength (λ) of
633 nm was incident at an acceptance angle on a prism (BK7), and the angular interrogation
technique was applied to determine the resonance angle. As the incident light wave passes
through multiple layer interfaces, reflection intensity decays at the output, and in the
resonance condition, the output reflectance intensity achieves its minimum value. The
output reflectance intensity can be monitored using a charge-coupled device (CCD) or
complementary metal-oxide (CMOS) [47]. For calculating the prism (BK7) refractive index
for incident wavelength (λ) Equation (1) has been used, as follows [46].

nBk7 =

√
1 +

1.03961212λ2

λ2 − 0.00600069867
+

1.01046945λ2

λ2 − 103.560653
+

0.231792344λ2

λ2 − 0.0200179144
(1)
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For the second layer, titanium dioxide (TiO2) was used as an adhesion thin film to
provide strong interaction between the prism and plasmonic metal layer and enhance the re-
fractive index sensitivity due to its high refractive index and good chemical stability [48–51].
Gold (Au) material was used as a plasmonic material on the third layer due to its larger
resonance angle shifts for the dielectric medium’s refractive index change. In addition to
that, gold (Au) is also a chemically highly stable material [41,52]. The refractive index of the
gold (Au) layer was obtained from Equation (2), known as the Drude–Lorentz model [53]
for an incident wavelength (denoted as λ) of 633 nm, where the collision wavelength (λc) is
8.9342 × 10−6 m and the plasma wavelength (λp) is 1.6826 × 10−7m [53].

nAu =

√√√√(1− λ2 × λc

λ2
p(λc + λ× i)

)
(2)

Table 1. Proposed sensor structural design parameter at the wavelength of 633 nm.

Layer Material Refractive Index Thickness Ref

1st layer Prism (BK7 ) 1.5151 1.5 µm [46]

2nd layer TiO2 1.99 10 nm [49]

3rd layer Gold (Au) 0.13783 + 3.6196 × i 50 nm [46,53]

4th layer Graphene
(monolayer) 3 + 1.1491 × i 0.34 nm [46,54,55]

Final layer Analyte layer na 1.448 [31,32]

The refractive index of graphene for the incident wavelength (λ) was calculated using
Equation (3). Graphene exhibits the best optomechanical and optoelectronic properties of
high confinement, low loss, vast surface-to-volume ratio, and turnability. Due to having
carbon atoms organized in hexagonal shapes, graphene ensures good interactions with
the biological sample molecules or analytes. Again, the enhancement of the electric field
at the nano interface occurs due to the enhanced coupling when graphene is introduced
to the metallic films [41–44]. Furthermore, among 2D materials, graphene has versatile
biocompatibility and more remarkable absorption abilities [56].

3 +
i×Cλ

3
(3)

where C is 5.446 µm−1 and the mono graphene layer thickness is 0.34 nm [46,54,55].
Finally, the sensing medium layer marked in Figure 1 was used as an analyte or sample
placing region for the proposed SPR sensor. Depending on the variation of biological
samples, the analyte optical (the refractive index properties) of the sensing medium were
varied according to the skin (Basal), cervical (HeLa), adrenal gland (PC12), blood (Jurkat),
and breast (MCF-7 and MDA-MB-231) healthy and cancer cells’ refractive index variations.
The data of the analyte’s refractive index in Table 2 was obtained from a recently reported
work [31,57,58]. The normal cancer cell size varies depending on the type of cancer cell.
For instance, the cervical cancer cell is 17.66 µm, the basal cancer cell is 30 µm, and the
breast cancer cell is 17.48 or 18.72 µm [59]. Although the size of cancer varies depending
upon the region of the human body, the sensing mechanism of cancer cells is in the
form of liquid biopsy or infiltration blood fluid samples, and it requires a very minimum
quantity [59]. Liquid biopsy is a minimally invasive method that uses samples of blood,
cerebrospinal fluid, urine, sputum, ascites, and, in theory, any other bodily fluid. It is
gradually emerging as a practical substitute for monitoring cancer patients in real-time and
evaluating biomarkers that are often only examined in tissue biopsies [60–63].
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Table 2. Normal and cancerous cell analyte refractive index data.

Cancer Type Cell Specifications Concentrations Cell Refractive Index (na)

Skin Healthy basal cell (30–70%) 1.360
Cancerous basal cell 80% 1.380

Cervical Healthy HeLa cell (30–70%) 1.368
Cancerous HeLa cell 80% 1.392

Blood Healthy Jurkat cell (30–70%) 1.376
Cancerous Jurkat cell 80% 1.390

Adrenal gland Healthy PC12 cell (30–70%) 1.381
Cancerous PC12 cell 80% 1.395

Breast Healthy MDA-MB-231 cell (30–70%) 1.385
Cancerous MDA-MB-231 cell 80% 1.399

Breast Healthy MCF-7 cell (30–70%) 1.387
Cancerous MCF-7 cell 80% 1.401

2.2. Mathematical Modeling

The p-polarized or TM-polarized light reflectance intensity measurement is crucial for
the sensing purpose of the SPR sensor. Surface plasmon waves (SPWs) are transverse waves
with an oscillating electric field normal to the surface. The transverse magnetic polarization
TM state describes how the surface plasmon spreads as an electromagnetic wave parallel to
the x direction with a magnetic field orientated parallel to the y direction. Since surface
plasmons only have an electric field component, which is normal to the surface, therefore,
the initial prerequisite for SP excitation is the condition of the TM polarization state, which
is required to produce the distribution of charges on the metal contact and to satisfy the
boundary conditions necessary to excite SPR detailed in [64,65]. The reflectance intensity
of the proposed sensor can be expressed as follows [66,67]:

Rp =
∣∣∣r2

p

∣∣∣· (4)

rp =

(
M11 + M12qN

)
n1 −

(
M21 + M22qN

)(
M11 + M12qN

)
n1 +

(
M21 + M22qN

) (5)

Here, rp represents the reflection coefficient for TM-polarized incident light wave, as
the proposed sensor is a multilayered structure. Therefore, for a multilayer structure, the
transfer matrix function, Mij, is given as follows [66,67]:

Mij =
(

ΠN−1
k=2 Mk

)
=

(
M11 M12
M21 M22

)
(6)

where

Mk =

[
cosβk −(i sinβk)/qk

−iqk sinβk cosβk

]
(7)

qk =

(
µk
εk

)1/2
(8)

Cosθk =
(εk − n2 sin2 θ1)

1/2

εk
(9)

βk =
2πdk
λ

(εk − n2 sin2 θ1)
1/2

(10)

Here, the arbitrary phase constant is βk, and θk is the angle of the entrance for the kth

layer. Again, for the kth layer, the thickness and dielectric constant are denoted as dk and εk,
respectively. Furthermore, as the refractive index increases in the analyte medium, the SPR
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angle shifts right, increasing the output reflection intensity. The following phenomenon is
explained using Equation (11), which shows the relationship of the SPR angle and analyte
as follows [54,66,68]:

θspr = sin−1 ηeff ηa

ηp

√
η2

eff+η
2
a

(11)

Furthermore, some crucial sensing parameters in the sensing application include the
angular shift sensitivity (S), the figure of merits (FOM), and detection accuracy (DA) [66].
The proposed sensor sensitivity was calculated using Equations (12)–(14), where the ∆θspr
is the SPR angle or resonance angle change, and ∆n is the refractive index variation. The
full-width half maxima (FWHM) define 50% of the reflectance curve spectral width. The
performance of the sensor measuring formulas is as follows [66]:

S =
∆θspr

∆n
[deg/RIU] (12)

DA =
1

FWHM
[1/deg] (13)

FOM =
S

FWHM
[1/RIU] (14)

Furthermore, the signal-to-noise ratio (SNR) of the real SPR sensing system critically
depends on how well one measures the signals with real instruments. It was calculated as
follows [47,69]:

SNR =
∆θSPR

FWHM
(15)

Finally, using Equations (13)–(15), the overall sensor parameters of detection accu-
racy (DA), the figure of merits (FOM), and signal-to-noise ratio (SNR) were found to be
0.263 deg−1, 48.02 RIU−1, and 3.84, respectively, and the full-width half maxima (FWHM)
was found to be 3.8 deg.

2.3. Numerical Modeling

The design and analysis of the proposed model demonstrated in this paper is a finite
element method (FEM)-based numerical simulation. To simulate the proposed model,
COMSOL Multiphysics version 5.5 was utilized, and we simulated the 2D geometry of the
proposed sensor. The structure of the proposed (BK7/TiO2/Au/graphene) SPR biosensor is
illustrated in Figure 2b, which shows a light source having a wavelength of 633 nm incident
on the top of prism BK7. Again, the Floquent periodicity periodic boundary conditions
(marked in Figure 2 with red color) and periodic port conditions were applied. For this
FEM model, the extremely fine physics-controlled sized mapped mesh having a minimum
element size of 6×10−5 µm and a maximum element size of 0.03 µm were selected, as
illustrated in Figure 2a. Furthermore, to perform the angular interrogation technique, we
varied the incident angle of the source, selecting the parametric sweep operation, where
the incident angle was simulated for 60 to 89 deg with 0.1 deg incremental deviation.
The reflectance intensity was calculated for each incident angle to detect the resonance
angle, and by observing the minimum reflectance intensity at the output, we identified the
resonance angle from the output intensity curve. The frequency-domain solver was selected
to solve the model using a frequency of 3× 108/ λ Hz. Finally, by observing the shift in the
output reflection intensity curve for the analyte layer refractive index variation, the sensor
performance and sensitivity were calculated. In addition to that, to compare the proposed
model in SPR and non-SPR conditions, we also demonstrated the electric field intensity
and magnetic field propagation both at the resonance and non-resonance angle, which is
illustrated in Figure 3. In the resonance condition, due to the strong localization and the
maximum excitations of surface plasmons in the plasmonic layer, the electric field and
magnetic field are enhanced [54]. In Figure 3a,b, the enhanced electric field intensity can be
found on the plasmonic gold layer under resonance conditions, whereas in non-resonance
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conditions, no electric field intensity on the plasmonic layer was observed. Similarly, for the
3D magnetic field propagation of the z component (A/m), a strong excitation was observed
at a resonance angle and at a non-resonance angle. No excitation on the plasmonic layer was
detected. Some similar FEM models for simulating multiple layers were also demonstrated
in [46,66,70].
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Finally, to demonstrate that our proposed numerical sensor area and resonance con-
ditions work properly, we analyzed the prism layer thickness for values of 0.5 µm, 1 µm,
and 1.5 µm. As the angular resonance condition does not depend on the prism height,
we therefore cannot find any change in the resonance angle due to the changes in prism
layer thickness, as illustrated in Figure 4. Again, the layers of TiO2/Au/graphene have
a particular thickness, as shown above. Therefore, we used a similar TiO2/Au/graphene
thickness layer.

Again, in terms of width, we used periodic boundary conditions (PBCs). Periodic
boundary conditions (PBCs) are a set of boundary conditions that are often chosen for
approximating a large (infinite) system by using a small part called a unit cell. PBCs
are often used in computer simulations and mathematical models. Therefore, no effect
of changing the width of the sensor was found; this was also simulated for widths of 1
and 1.5 µm. Finally, the analyte layer thickness depends on the analyte samples and the
penetration depth calculated later in this section for this SPR sensor. Furthermore, the
authors of [71] demonstrated that the transfer matrix method (TMM) and the finite element
analysis, which exhibit exactly identical results, and the FEM-simulating structure is also
appropriate for the study of all TMM-based SPR sensors.
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2.4. Electric Field Analysis and Penetration Depth Calculation

To further confirm the strong SPR excitation of the proposed BK7/TiO2/Au (50 nm)/graphene
sensor, we employed the electric field distribution of the structure at a resonance angle
of 75.6 deg and at analyte 1.36 in Figure 5. As can be seen, a significant electric field
augmentation is produced at the sensing surface, and the intensity of the electric field
exponentially decreases to the sensing medium, which contains the target biomolecules.
The calculated PD for the proposed BK7/TiO2/Au (50 nm)/graphene is 180 nm, which
signifies that the interaction volume of the field in the sensing medium is larger. The
PD is defined as the distance traveled by the field normal to the layer in the sensing
medium, at which the field intensity decays to 1/e (37%) [72,73]. Similarly, another recently
reported graphene–MoS2-based structure exhibits a PD of 150 nm [73]. Thus, the electric
probing field close to the graphene layer is very intense and highly sensitive to biomolecule
interactions when using our proposed sensor.
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2.5. Practical Fabrication Process

This paper proposed and analyzed a hybrid BK7/ TiO2/Au/graphene-based biosensor
with a numerical modeling method, but the practical fabrication of the proposed sensor
can also be possible. The practical fabrication steps regarding the proposed sensor are
illustrated in Figure 6. Firstly, to fabricate the proposed sensor, Bk7 must be chosen as a
substrate, and the sol-gel spin method would be used to deposit a thin layer of TiO2 on the
prism’s base. Isopropyl titanate and isopropyl alcohol would be combined to create the
solution for this usage [74,75]. Then, a gold (Au) layer would be deposited on the top of BK7
using physical vapor deposition (PVD) or sputtering techniques. The thickness of the gold
layer would depend on the particle sputtering deposition time [66]. In a chamber pressure
of less than 1000 ◦C and at 3.6 Torr, a high-quality graphene film would be deposited on the
Copper (Cu) film utilizing the CVD process, where methane (CH4) gas would be used as a
carbon source [76–81]. The PMMA would be used for transferring the graphene deposited
layer onto the substrate, and during the 25 ◦C etching process with sulfuric acid (H2SO4),
the Cu foil would have to be removed. After the transfer of the graphene film by applying
acetone ((CH3)2CO), the PMMA layer would be removed [47].
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3. Material Impacts on the Proposed Biosensor
3.1. Impact of Material Layers on Sensitivity

In this section, the significance and impact of each deposited material layer for the
detection of cancer are demonstrated. The sensitivity comparison of the influence of
different layers is outlined in Figure 7, and the angular sensitivity data are tabulated in
Table 3. Here, for the impact of using only the Au layer, a simulation was conducted for
the BK7/Au/analyte structure. The simulation results demonstrated that, when using
only the Au layer, the angular sensitivity of the detection of skin (basal), cervical (HeLa),
adrenal gland (PC12), and blood (Jurkat) cancer cells remains much lower compared to the
proposed biosensor structure.
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sensitivity for various types of cancer detection.
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Table 3. Impact of material layers on the sensitivity of various types of cancer.

Biosensor Structures
Skin Basal

Cancer Detection
(deg/RIU)

Cervical
HeLa Cancer

Detection
(deg/RIU)

Blood
Jurkat Cancer

Detection
(deg/RIU)

Adrenal Gland
PC12 Cancer

Detection
(deg/RIU)

Breast
MDA-MB-231

Cancer
Detection
(deg/RIU)

Breast MCF-7
Cancer Detection

(deg/RIU)

Only Au layer
(BK7/Au(50

nm)/analyte)
195 229.1667 242.8571 257.1429 292.8571 307.1429

Only Au/Graphene
layer

(BK7/Au(50
nm)/graphene/analyte)

205.0000 237.5000 250.0000 271.4286 285.7143 285.7143

Proposed
TiO2/Au/graphene
(BK7/TiO2/Au(50

nm)/graphene/analyte)

210.0000 245.833 264.2857 285.7143 292.8571 278.57

Similarly, to assess the impact of adding graphene, a simulation was undertaken
for the BK7/Au/graphene/analyte structure. The results demonstrate that, when using
graphene with Au, the sensitivity of the detection of skin (basal), cervical (HeLa), adrenal
gland (PC12), and blood (Jurkat) cancer cells increased compared to the results of only the
Au layer. However, using only graphene with gold (Au) does not exhibit values as high as
the proposed biosensor structure. Therefore, applying the TiO2 underneath Au enhances
the sensitivity of detection of skin (basal), cervical (HeLa), adrenal gland (PC12), and blood
(Jurkat) cancer cells. However, the proposed sensor exhibits less sensitivity for breast
(MCF-7) cancer cell detection compared with only Au and Au/graphene layers. However,
the proposed BK7/TiO2/Au/graphene/analyte structure exhibits overall high sensitivity
for all cancer cell type detection compared to only Au and Au/Graphene structures. Hence,
the proposed BK7/TiO2/Au/graphene/analyte biosensor structure is used in this paper for
the various types of cancer detection due to its high overall sensitivity for each cancer type.

3.2. Gold (Au) Thickness Effect on Sensitivity

In this paper, we propose a biosensor structure of BK7/TiO2/Au/graphene for cancer
detection, where the thickness of the gold layer is taken to be 50 nm. In this section, we
demonstrate the effects of the 50 nm gold layer on the various types of cancer detection. To
verify the influence of the 50 nm thick gold layer, we varied the gold layer thickness, using
thicknesses of 45 nm, 50 nm, and 55 nm within the proposed structure. The results of the
angular sensitivity change regarding the assessment of Au layer thickness are tabulated in
Table 4 and outlined in Figure 8. From the numerical analysis of these results, it can be seen
when comparing an Au layer of a thickness of 50 nm with 45 nm that the angular sensitivity
of 50 nm Au is higher for skin (basal), cervical (HeLa), adrenal gland (PC12), blood (Jurkat)
and breast (MCF-7 and MDA-MB-231) cancer detection. Similarly, for a 55 nm Au layer
thickness, higher sensitivity is initially exhibited for skin (basal) and cervical (HeLa) cancer
detection compared to a 50 nm Au layer thickness, but for breast (MCF-7 and MDA-MB-231)
cancer cell detection, the angular sensitivity drastically decreases. Therefore, the gold layer
thickness was selected to be 50 nm, as this thickness exhibits an overall higher sensitivity
for each type of cancer detection. In addition to the numerical analysis of the effect of
the thickness of the gold layer on angular sensitivity, it can also be explained analytically.
Some reflectance profile parameters are influenced by the characteristics of the metal layer
thickness, and the angular sensitivity (S) of the Kretschmann configuration is one of them,
which can be explained as follows[64]:

S =
εmr
√
−εmr

(εmr + n2
a)

√
εmr

(
n2

a − n2
p

)
− n2

an2
p

(16)
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Table 4. Analysis of gold (Au) layer thickness on the angular sensitivity of the proposed
BK7/TiO2/Au/graphene/analyte biosensor for cancer detection.

Biosensor
Structure
Gold (Au)
Thickness

Skin
Basal Cancer

Detection
(deg/RIU)

Cervical HeLa
Cancer

Detection
(deg/RIU)

Blood
Jurkat Cancer

Detection
(deg/RIU)

Adrenal Gland
PC12 Cancer

Detection
(deg/RIU)

Breast
MDA-MB-231

Cancer
Detection
(deg/RIU)

Breast
MCF-7 Cancer

Detection
(deg/RIU)

45 nm 200.0000 233.3333 250.0000 271.4286 285.7143 292.8571

50 nm 210.0000 245.8333 264.2857 285.7143 292.8571 278.57

55 nm 215.0000 254.1667 264.2857 285.7143 271.4286 250.0000
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Here, np is the prism refractive index; the real part of the metal-dielectric constant is
represented by εmr, and the analyte refractive index is represented by na.

3.3. Effect of the Graphene Layer on Sensitivity

Each graphene layer sheet thickness can be denoted as 0.34 × L nm, where (L) repre-
sents the graphene layer number [82]. An analysis of the graphene layer was conducted for
values of L of 1, 2, and 3 and is shown in Figure 9. The angular sensitivity data are shown
in Table 5. For the L = 2 layer, the obtained sensitivities for skin (basal), cervical (HeLa),
adrenal gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-231) cancer cells
are 220 deg/RIU, 250 deg/RIU, 257.14 deg/RIU, 264.28 deg/RIU, 242.857 deg/RIU, and
207.14 deg/RIU, respectively. The obtained sensitivities for these cell types for the L = 3
layer are 220 deg/RIU, 237.5 deg/RIU, 250 deg/RIU, 221.42 deg/RIU, 178.5714 deg/RIU,
and 142.8571 deg/RIU, respectively. By observing the results, it can be seen that the
graphene monolayer L = 1 exhibits better overall sensitivity in comparison with L = 2 and 3.
Therefore, we have used a monolayer of graphene in the proposed sensor.
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Table 5. Analysis of graphene layers on the angular sensitivity of the proposed BK7/TiO2/Au
(50 nm)/graphene/analyte biosensor for cancer detection.

Biosensor
Structure
Graphene

Layer No. (L)

Skin
Basal Cancer

Detection
(deg/RIU)

Cervical HeLa
Cancer

Detection
(deg/RIU)

Blood
Jurkat Cancer

Detection
(deg/RIU)

Adrenal Gland
PC12 Cancer

Detection
(deg/RIU)

Breast
MDA-MB-231

Cancer
Detection
(deg/RIU)

Breast
MCF-7 Cancer

Detection
(deg/RIU)

1 210.0000 245.8333 264.2857 285.7143 292.8571 278.57

2 220.0000 250.0000 257.1429 264.2857 242.8571 207.1429

3 220.0000 237.5000 250.0000 221.4286 178.5714 142.8571

4. Results and Analysis (Cancer Detection)

The method of detecting cancer with the proposed BK7/TiO2/Au/graphene/analyte
structured biosensor is demonstrated in this section. When a normal cell is affected by
cancer, the refractive index of the cell increases. The refractive index data for the respective
cell types are tabulated in Table 2. These skin (basal), cervical (HeLa), adrenal gland (PC12),
blood (Jurkat), and breast (MCF-7 and MDA-MB-231) normal and cancerous cell refractive
index data have been used as an analyte layer refractive index to identify the cancerous
cells from the normal cells. The output reflectance intensity curves for basal, HeLa, Jurkat,
PC12, MDA-MB-231, and MCF-7 cells are illustrated in Figure 10. From the illustrated
Figure 10, it can be seen that, due to the refractive index increment between each normal
and cancerous cell, the resonance angle shifts rightwards. In Table 6, the resonance or SPR
angle for each particular normal and cancerous cell is denoted by θSPR.
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Table 6. Sensitivity analysis of the proposed biosensor for healthy and cancerous cell analyte detection.

Cancer Type Cell Name
Refractive

Index Change
(∆n)

SPR
Angle (θSPR)

SPR Angle
Shift (∆θspr)

Reflectance
Intensity

(%)

Reflectance
Intensity
Change

(%)

Sensitivity
(∆θspr/ ∆n)
(deg/RIU)

Skin Healthy basal cell Ref 75.6 Ref 5.684 Ref Ref
Cancerous basal cell 0.02 79.8 4.2 12.17 6.486 210

Cervical Healthy HeLa cell Ref 77.1 Ref 7.636 Ref Ref
Cancerous HeLa cell 0.024 83 5.9 25.08 17.44 245.83

Blood Healthy Jurkat cell Ref 78.8 Ref 10.29 Ref Ref
Cancerous Jurkat cell 0.014 82.5 3.7 21.66 11.37 264.2857

Adrenal gland Healthy PC12 cell Ref 80 Ref 12.75 Ref Ref
Cancerous PC12 cell 0.014 84 4 31.79 19.04 285.7143

Breast Healthy MDA-MB-231 cell Ref 81 Ref 15.72 Ref Ref
Cancerous MDA-MB-231 cell 0.014 85.1 4.1 44.35 28.63 292.857

Breast Healthy MCF-7 cell Ref 81.6 Ref 17.71 Ref Ref
Cancerous MCF-7 cell 0.014 85.4 3.9 52.06 34.35 278.57

Furthermore, for skin (basal), cervical (HeLa), adrenal gland (PC12), blood (Jurkat),
and breast (MCF-7 and MDA-MB-231) normal and cancerous cells, the resonance and SPR
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angle shifts are 4.2 deg, 5.9 deg, 3.7 deg, 4 deg, 4.1 deg, and 3.9 deg, respectively. Therefore,
the resonance angle angular shift sensitivity of the skin (basal), cervical (HeLa), adrenal
gland (PC12), blood (Jurkat), and breast (MCF-7 and MDA-MB-231) normal and cancerous
cells are 210 deg/RIU, 245.83 deg/RIU, 264.285 deg/RIU, 285.71 deg/RIU, 292.86 deg/RIU,
and 278.57 deg/RIU, respectively, as calculated using Equation (12).

5. Wide Range of Biological Solution Detections and Sensor Linearity

Although the proposed (BK7/TiO2/Au (50 nm)/graphene sensor was designed focus-
ing on the various types of cancer detection, it is also capable of detecting a wide range of
biological solutions. Most biological solutions have a refractive index in the range of 1.33 to
1.41. Therefore, the numerical results regarding changes in the sensing medium’s refractive
index are plotted in Figure 11a. It can be seen by observing the obtained results that the
proposed sensor is also capable of detecting a wide range of biological solutions with a
resonance angle shift.
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In order to measure a high refractive index, sensor linearity is a precondition [46,83].
The sensor linearity from the slope of the linear fitting curve with respect to the resonance
angle was measured for the proposed sensor using MATLAB curve fitting. If the sensor
shows linearity, then it is easier to predict the resonance angle for a higher analyte refrac-
tive index. Again, sensor nonlinearity causes critical variance and makes the detection
procedure increasingly intricate. Therefore, nonlinearity is not a desired quality in a sensor.
The linearity is depicted using the correlation coefficient (R), and by performing linear
regression, this correlation coefficient (R) is acquired. The regression equation for the linear
fit of the proposed BK7/TiO2/Au (50 nm)/graphene sensor is y = 197.5 × x − 192.4, and
the regression coefficient is R2 = 0.9858, as shown in Figure 11b. It is evident that the value
of the correlation coefficient is very close to 1, which indicates linearity close to the ideal.

Finally, the comparison between our proposed biosensor and some recently reported
works demonstrates that our proposed biosensor is highly sensitive in terms of angular
sensitivity, DA, FOM, and SNR, as tabulated in Table 7.
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Table 7. Comparison of the proposed biosensor with some recently reported works.

Reference Reported Year Model Structures
Angular

Sensitivity
(deg/RIU)

DA
(Deg−1)

FOM
(RIU−1) SNR

[84] 2020 SF11/Au/MoS2/graphene 130 - 17.02 -

[85] 2020 SF11/Au/MoS2/WS2/WSe2 142 - - -

[86] 2020 BK7/Au/WSe2/graphene 178.87 - 27.86 -

[46] 2020 Prism/Ag/PtSe2/WS2 194 - 17.64 -

[71] 2022 BK7/Au/WSe2/PtSe2/BP 200 0.088 17.70 -

[87] 2021 BK7/ZnO/Si/MXene/sensing 231 0.17 - -

[69] 2019 Trilayers of graphene 121.67 - - 2.21

[69] 2019 Six MoS2 and mono graphene 200 - - 0.7692

[88] 2021 MoS2-graphene hybrid 130 - - 1.37

[89] 2022 BK7/Au/GeS 260 0.143 33.4 -

[85] 2022 Bk7 Prism/Ti/Ag/MoS2/graphene 144.72 - - -

[86] 2022 SiO2/Au/Ga-doped ZnO/MXene 264.59 0.115 30.48 -

Our work 2022 BK7/TiO2/Au/graphene 292.857 0.263 48.02 3.84

6. Discussions

In this article, a surface plasmon resonance-based biosensor has been proposed on the
basis of the angular-based detection method for detecting cancer biomarkers. However,
there are various methods of detecting biomarkers using the SPR-based method, includ-
ing the wavelength-based detection method and the reflection intensity-based detection
method. Each of these methods detects biomarkers with different approaches, and each
has a specific focus on the detection sensitivity. For instance, the spectral mode analysis
method can be used to improve the spectral sensitivity and FOM, as demonstrated in [90],
but it requires higher wavelengths of 850 nm to 1059 nm, whereas we have used the visible
wavelength. Again, a study [91] focused on penetration depth parameter enhancement
using wavelength analysis of the surface interactions and analysis of larger biomolecules,
such as bacteria cells with a typical size of near 1 µm, whereas, in our paper, we utilized
a different method called liquid biopsy as a biomarker for our samples versus directly
detecting the whole cell. Furthermore, the demonstration of imaging sensitivity used for
a long-range SPR sensor detects biomarkers based on changes in the reflection intensity;
therefore, it is capable of detecting very minor changes in the refractive index. Several
methods of detecting biomarkers using SPR-based technology are tabulated in Table 8.

Table 8. Different existing measurement methods and sensitivity definitions.

Measured
Magnitude

Sensitivity
Definition Enhancement Mechanism Wavelength

(nm) Sensitivity Ref

Reflected Intensity dR
dna

(1/RIU)
LSPR cytop/Au/TMDCs 633 500 [92]

MoS2-based 1540 970 [93]
Graphene/Ag 1000 455 [94]

Resonance
Wavelength

dλspr
dna

(nm/RIU)
Gold on SF11 700 2750 [95]

Long-range SPR 700 30,000 [96]
Long-range SPR optimized 830 570,000 [97]

Resonance Angle dθspr
dna

(deg/RIU) TiO2/Au/graphene 633 292.857 Our model

7. Conclusions

The rapid advancements in biomedical research over the past few years have shown a
significant demand for biosensing with high sensitivity, specificity, and throughput. Biosen-
sors with extremely high sensitivity and excellent identification specificity are anticipated
to detect certain biomolecules. Surface plasmon sensors are among the best current sensing
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technologies because of their beneficial qualities, including their high sensitivity, short re-
sponse times, and ability to conduct real-time label-free sensing when biomolecules interact
with the sensor surface. This article proposes a multilayer coated SPR sensor based on
graphene for early-stage cancer detection using numerical approaches. Due to the fact that
the design and characteristics of multilayer arrangements substantially influence the optical
responses of plasmonic sensors, we therefore have performed a detailed numerical analysis
of the materials used. We assess the impact of the TiO2 /Au/graphene layers, conduct an
analysis of the thickness of the Au layer, and conduct an analysis of the graphene layers to
find the best sensitivity of the sensor. The numerical results exhibit angular sensitivities
of 210 deg/RIU, 245.83 deg/RIU, 264.285 deg/RIU, 285.71 deg/RIU, 292.86 deg/RIU,
and 278.57 deg/RIU, respectively, for skin (basal), cervical (HeLa), adrenal gland (PC12),
blood (Jurkat), and breast (MCF-7, and MDA-MB-231) cancer types. Additionally, the
obtained detection accuracy (DA), figure of merits (FOM), and signal-to-noise ratio (SNR)
demonstrate values of 0.263 deg−1, 48.02 RIU−1, and 3.84, respectively. Moreover, the 2D
graphene layer improves the diversity of biosensing applications as well as enhances the
biological detection capability of the biosensor by absorption of a biomolecule and bonding
with the carbon-based rings that widely exist in biomolecules. For this, we have also
analyzed our sensor for the detection of a wide range of biological solutions, obtaining a
high sensor linear regression coefficient (R2) of 0.9858. As the proposed biosensor could be
accomplished utilizing the subsisting fabrication technologies and as enormous advances
in nanotechnology have demonstrated significant breakthroughs in plasmonic sensing, this
might bring many extensively promising opportunities in future medical applications for
cancer detection and other biosensing applications.
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