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Abstract: Many studies have explored divergent deep neural networks in human activity recognition
(HAR) using a single accelerometer sensor. Multiple types of deep neural networks, such as convolu-
tional neural networks (CNN), long short-term memory (LSTM), or their hybridization (CNN-LSTM),
have been implemented. However, the sensor orientation problem poses challenges in HAR, and
the length of windows as inputs for the deep neural networks has mostly been adopted arbitrarily.
This paper explores the effect of window lengths with orientation invariant heuristic features on
the performance of 1D-CNN-LSTM in recognizing six human activities; sitting, lying, walking and
running at three different speeds using data from an accelerometer sensor encapsulated into a smart-
phone. Forty-two participants performed the six mentioned activities by keeping smartphones in
their pants pockets with arbitrary orientation. We conducted an inter-participant evaluation using
1D-CNN-LSTM architecture. We found that the average accuracy of the classifier was saturated to
80 ± 8.07% for window lengths greater than 65 using only four selected simple orientation invariant
heuristic features. In addition, precision, recall and F1-measure in recognizing stationary activities
such as sitting and lying decreased with increment of window length, whereas we encountered an
increment in recognizing the non-stationary activities.

Keywords: human activity; CNN; LSTM; window length; inter-participant evaluation; orientation
invariant; accelerometer; smartphones

1. Introduction

Human activity recognition (HAR) has allowed for the implementation of distinct
applications such as user identification [1], health monitoring [2], identifying the early
stage of depression [3], fall detection [4], and more. Improving these applications requires
ongoing methodological development. Researchers have conducted many studies to
improve HAR by introducing the recognition of various daily activities using divergent
approaches that include non-identical machine learning algorithms. Improving HAR
requires considering some inevitable challenges, which involve sensor orientation, sensor
position, device independency, study sample length, and data volume [5–8]. Among
the mentioned challenges, the most significant issue to solve is the problem of sensor
orientation and position.

For solving the orientational and positional problem due to sensor placement, different
studies have introduced techniques such as transforming the sensor signals to a universal
frame, extracting orientation-invariant features from raw signals, removing orientation
and position-specific information by introducing statistical alterations, estimating the
orientation of the sensor to the earth frame by using the triaxial sensors (accelerometer,
magnetometer, and gyroscope), and then transforming the raw signals from the sensor
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frame to the earth frame. Using the earth frame transformation approach [9] achieved
an average accuracy of 86.4% in recognizing 19 activities using support vector machine
(SVM). The authors of [10] introduced heuristic orientation invariant transformation and
singular value decomposition-based transformation to tackle sensor orientation problems.
They evaluated their approaches using 4 different classifiers on 5 distinct datasets. They
found that their proposed approaches can reduce the accuracy drop by a considerable
margin compared to other state-of-the-art approaches. The authors of [11] decomposed
the accelerometer signal into horizontal and vertical acceleration. They extracted nine
features from the triaxial gyroscope sensor and horizontal and vertical acceleration signals
to solve the position and orientation dependency problem. They acquired an accuracy
of 91.27%, employing SVM to recognize 5 activities using the data from a smartphone in
4 different positions. For our study, we decided to utilize the features proposed by [10] since
it requires extracting nine simple features to eliminate the variation in data produced from
sensor orientation and position. Along with the orientational and positional dependency
obstacles, we should also consider the number of participants and activities appraised in
former studies.

As the number of participants and activities varies, distinct variations in sensor signals
appear due to the differences in the participants’ body attributes and the uniqueness in
movements of the body parts during different activities. The number of participants matters,
especially for the studies where the inter-participant evaluation technique is accepted as the
validation method. There are many publicly available datasets to work with, and these have
already been used in several studies that introduced different numbers of participants and
activities [12–16]. However, inter-participant evaluation for a large number of participants
in the field of HAR is yet to be explored.

Regarding the employed classifiers for HAR, researchers evaluated the performance
of both machine learning and deep learning algorithms. Research primarily assessed the
performance of conventional machine learning algorithms such as support vector machine
(SVM), decision tree, K-nearest neighbor, and random forest [17–20]. However, with
the emergence of advanced computational power, deep learning algorithms became more
common in HAR. The authors of [12] evaluated the performance of the convolutional neural
network (CNN), long short-term memory (LSTM), bidirectional-LSTM, and multilayer
perceptron (MLP) using two public datasets named UCI [21] and Pamap2 [22]. They
found that CNN outperformed other classifiers with 92.71% and 91% accuracy on UCI and
Pamap2, respectively. The authors of [23] compared CNN with state-of-the-art classifiers
for classifying six activities and showed that CNN performed better than all other classifiers
using features extracted by fast Fourier transform (FFT) with an accuracy of 95.75%. CNN
remains favored for executing HAR because of its powerful ability to automatically extract
features from raw signals using multiple filters [24]. Studies then tried to combine the
feature extraction power of CNN with LSTM’s power of persisting old information about
time-series data. LSTM is an upgraded version of the recurrent neural network (RNN)
that can preserve older information than RNN [25]. The hybrid of CNN and LSTM, also
called CNN-LSTM, has been used in different HAR studies. The authors of [26] evaluated
the performance of CNN-LSTM on HAR using three public datasets named UCI [21],
WISDM [27], and OPPORTUNITY [28]. They achieved accuracies of 95.78%, 95.85%, and
92.63% on UCI, WISDM, and OPPORTUNITY datasets, respectively, using a CNN-LSTM
architecture. The authors of [29] explored distinct deep learning architectures, including
CNN-LSTM with their proposed margin-based loss function on OPPORTUNITY, UniMiB-
SHAR [15], and PAMAP2 datasets. The authors of [30] ensembled three models, namely
CNN-Net, Encoded-Net, CNN-LSTM, and found the performance of the ensembled model
superior over six benchmark datasets.

There are a number of different implementations of CNN for sensor data. Typically,
1-dimensional CNN (1D-CNN) is used for accelerometer, gyroscope, and magnetometer
signals. An important consideration with 1D-CNN, LSTM, or their hybrid is that these
methods require data windows as inputs. Each window resembles a data matrix with a fixed
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number of samples as rows and the features as columns. Each consecutive window may or
may not overlap. 1D-CNN uses filters on each window to extract features automatically.
1D-CNN maps these internally extracted features to different activities in HAR research.
However, when 1D-CNN is combined with LSTM, the internally extracted features from
1D-CNN work as inputs to the LSTM layers. These LSTM layers further process these
automatically extracted features. The advantage of using a 1D-CNN-LSTM hybrid rather
than using a single CNN or single LSTM is that 1D-CNN-LSTM can use the ability of
CNN to extract spatial features present in the input data as well as preserve the temporal
information present in the extracted spatial features using the ability of LSTM. Although
a 1D-CNN-LSTM system takes more time in training than a single CNN, it should not
impose any problem in the deployment of real-life applications since, in real life, pre-trained
models are deployed. A detailed explanation of the working mechanism of 1D-CNN-LSTM
will be given in a later section. Now that 1D-CNN works with windows of data, the length
of windows can affect the performance of 1D-CNN. With a large window length, the model
will have a bigger picture of the signals’ nature at a particular time. In contrast, a smaller
window length portrays comparatively less information regarding the signal nature at
any specific time. Again bigger windows increase the computational complexity and time
complexity, whereas smaller windows keep the computational burden and processing
time considerably lower. Previous studies selected the window length arbitrarily in HAR
execution while using CNN, LSTM, or their hybridization, or they did not provide any
discussion regarding the selection of window length [23,31–35]. It is yet to be explored
how different window lengths may affect the performance of CNN, LSTM, or their hybrid
models in HAR research.

Considering the shortcomings mentioned above, the orientation problem, study sam-
ple lengths, and window length considerations, this paper systematically examines these
limitations using feature extraction methods and window length experiments with 1D-
CNN-LSTM models. A pictorial view of the overall procedure is portrayed in Figure 1.
Data from a study including 42 participants performing 6 activities, namely, sitting, lying,
walking, and running at 3 metabolic equivalent tasks (METs), 5 METs, and 7 METs pace,
were used. Data were collected using an accelerometer sensor of a smartphone carried by
participants in their pockets. Specific research questions were:

• How can sensor orientation be solved?

To solve the sensor orientation problem due to the flippable positions of the smart-
phone in the pocket, we selected 4 orientation-invariant heuristic features from the proposed
9 heuristic features in [10].

• What is the impact of window length on model accuracy?

Results show that after a particular window length, the performance of 1D-CNN-
LSTM is not influenced by the window length. Further examination explores how different
window lengths influence the recognition metrics for high- and low-intensity activities.

• What is the impact of the inter-participant validation method in the case of a vast
number of participants?

We found that the model did not produce the same performance when evaluated using
data from different participants. Still, the effects of window length on the performance of
the different participants were the same.
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2. Materials and Methods

In this section, we will start by discussing the data accumulation process. Then we
will explain the data preprocessing step and features we extracted to solve the smartphone
orientation problem. In the following section, we will present the structure of the 1D-
CNN-LSTM we employed in our study to discuss its effectiveness briefly. We present the
discussion regarding the window lengths and their impact in the next section.

2.1. Data Accumulation

We acquired verbal and written consent from 42 healthy participants aged 18 years
and older to collect the required data. Before participating in the protocol, the participants
completed the physical activity readiness questionnaire (PAR-Q). We acquired the necessary
ethical approvals from the Memorial University Interdisciplinary Committee on Ethics in
Human Research (ICEHR #20180188-EX). A summary of the demographics (gender, age,
height, and weight) is presented in Table 1. We did not include the participants’ demo-
graphics as attributes in our dataset because, in another study [36], we found that these
attributes did not significantly influence the performance of the machine learning models.

Table 1. Demographics of the participants.

Number of Participants Age (Years) Height (cm) Weight (kg)

Male Female Average Maximum Minimum Average Maximum Minimum Average Maximum Minimum

18 24 29 56 18 169.17 185 143 68.19 95.2 43

Each participant carried a Samsung Galaxy S7 (SM-G930W8) smartphone in their
pocket with a pre-installed Ethica application [37] that recorded the X, Y, and Z-axis values
of the accelerometer sensor embedded in the mentioned smartphone while completing
the protocol. The lab-based protocol required 65 minutes for each participant to complete
entirely. During the 65 minutes, each participant conducted the activities according to the
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order and for the time presented in Table 2. The rank column in Table 2 shows the order of
the activity trial. Rank 1 means each participant started with the corresponding activity
trial, and rank 9 points to the activity trial that each participant completed at the end.
Participants had the freedom to keep the smartphone in their pocket in any orientation.

Table 2. Duration and order of activities performed by each participant.

Rank Activity Duration (Minutes)

1 Lying down 5

2 Sitting 5

3 Walking 10

4 Lying down 5

5 Running at 3-METs 10

6 Lying down 5

7 Running at 5-METs 10

8 Sitting 5

9 Running at 7-METs 10

The participants walked and ran on a treadmill set up in the lab. To measure the
intensities of running, we used the metabolic equivalent of task (MET) [38], a relative
measure of energy expenditure related to the participant’s weight and volume of oxygen
consumed per minute. We used MET rather than walking speed, cadence, or stride length
because we wanted to quantify the intensity of activities using energy expenditure. For the
same walking speed, cadence, or stride length, we may record different energy expenditures
from different participants. Furthermore, MET has been highly recommended by other
studies to measure energy expenditure. Equation (1) defines the calculation process of MET.

MET =
Oxygen Cosumption rate

(
mL

minute

)
3.5×weight (kg)

Here mL is a unit of volume of oxygen that stands for milliliter, and kg stands for
kilogram, which is a unit for measuring the weight.

The reason for choosing the aforementioned activity types and activity intensities
was that these were reported to be the most common type of activities included in former
studies [39]. Besides, walking or running with different intensities were overlooked in most
of the former studies. Therefore we focused on studying the effects of window length for
1D-CNN-LSTM on HAR for common types of activities and intensities.

2.2. Data Preprocessing and Feature Extraction

We used programming languages R 3.6.1 and Python 3.9.7 to execute the required
preprocessing of the data and extract heuristic features, respectively. We used Python
packages named Pandas 1.3.4 and Numpy 1.20.3 for performing feature extraction.

2.2.1. Data Resampling and Data Imputation

The Ethica App could not accumulate the sensor data in a constant frequency; rather,
the frequency varied from 5 Hz to 19 Hz. The reason behind this varying frequency was the
application’s forced optimization technique to keep the app running by constraining the
amount of data uploaded to the server. Because of this varying frequency, each activity class
had a very different number of observations, although they should have an almost similar
amount of observations. We upsampled the data to a constant frequency of 30 Hz by using
the resampling method introduced in [33] to eliminate this data imbalance. In addition, we
also experienced missing values in our accumulated data. This problem happened due to
the momentary connection loss between the Ethica App and the server. To get rid of the
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problem regarding these missing values, we conducted data imputation. For performing
linear imputation, we used the R package named ImputeTS. We then performed the process
of feature extraction. After data resampling, imputation execution, and feature extraction,
we had the following amount of data points for each activity presented in Table 3.

Table 3. Number and ratio of samples for each type of activity class.

Activity Number of Data Points Ratio to Total Dataset

Running at 7-METs 926,606 21.43%

Running at 5-METs 812,135 18.78%

Running at 3-METs 815,498 18.86%

Walking 609,406 14.09%

lying 696,329 16.10%

sitting 464,559 10.74%

2.2.2. Feature Extraction and Selection

We extracted some suitable heuristic features to resolve the sensor orientation problem.
As mentioned earlier, during the data collection phase, the participants had the freedom
to keep the mobile phone in their pocket in any arbitrary orientation. Therefore, different
participants might perform the same activity trial while keeping the smartphone in a
non-identical orientation. If we observe Figure 2, we can see the direction of the axes of
the accelerometer with respect to the smartphone. The X-axis goes from left to right of
the smartphone screen, Y-axis goes from top to bottom, and Z-axis goes perpendicularly
through the screen. As we orient the smartphone, the axes are also oriented accordingly. As
a result, we observed different accelerometer X, Y, and Z-axis values for the same activity if
the users kept the smartphone in different orientations while performing the same activity.
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If we observe Figure 3, we can see how the values of the axes of the accelerometer
differ in values while different participants ran at a speed of 7 METs. To solve this problem,
we extracted 4 simple heuristic features which were proposed in [10]. This study originally



Biosensors 2022, 12, 549 7 of 23

proposed 9 sensor invariant heuristic features. It defined each data vector of the accelerom-
eter as

→
vn =

(
vx[n], vy[n], vz[n]

)
where vx[n], vy[n], vz[n], were values of accelerometer

x-axis, y-axis, and z-axis, respectively, at any time sample n. They also defined first-order
and second-order time differences as ∆

→
vn = vn+1 − vn and ∆2→vn = vn+1 − vn, respectively.

The equations for computing the 9 heuristic features are given below,

w1[n] = ‖
→
vn‖ (1)

w2[n] = ‖∆
→
vn‖ (2)

w3[n] = ‖∆2→vn‖ (3)

w4[n] = ∠
(→

vn,
→

vn+1

)
(4)

w4[n] = ∠
(

∆
→
vn, ∆

→
vn+1

)
(5)

w4[n] = ∠
(

∆2→vn, ∆2 →
vn+1

)
(6)

w7[n] = ∠
(→

pn,
→

pn+1

)
where

→
pn =

→
vn ×

→
vn+1 (7)

w8[n] = ∠
(→

qn,
→

qn+1

)
where

→
qn = ∆

→
vn × ∆

→
vn+1 (8)

w9[n] = ∠
(→

rn,
→

rn+1

)
where

→
rn = ∆2→vn × ∆2 →

vn+1 (9)

Here,
wt = extracted heuristic f eatures f or t = 1 to 9

‖→m‖ = Euclidean norm o f vector m

∠(
→
a ,
→
b ) = cos−1

 →
a ·
→
b

‖
→
a
→
b ‖

 = angle between vector a and vector b where
→
a ·
→
b denotes their dot product

They claimed these 9 heuristic features to be irresponsive to the orientation of the sen-
sor and mathematically elaborated on the reason behind being invariant to the orientation.
Further analysis can be found in [10]. Although this study examined the performance of all
9 features in HAR execution, we conducted a more detailed analysis of these features. We
found that the first 4 features, w1, w2, w3, and w4, are most important and distinguishable
for different activities. In Figure 4, we can observe the pattern and magnitude range of
the first 4 heuristic features for two participants performing the same running activity at a
speed of 7 METs. We can observe some similarities in the pattern and magnitude range of
4 heuristic features.

In Figure 5, we plot the values of the first 4 heuristic features for different participants
performing two different activities named lying and running at a speed of 5 METs. We
can observe a considerable difference in the patterns and magnitude of the first 4 features
for two different activities performed by two different participants. That means the first
4 heuristic features showed similarities in their values for the same activity and dissimilari-
ties for different activities, which is essential for any classifier to distinguish them.
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In addition, we computed the feature importance of all 9 features using the two
classifiers named decision tree (DT) and random forest (RF). Here, feature importance
defines how impactful a feature is to a classifier to make a prediction. We chose these two
classifiers for computing feature importance because they are proven to be very effective.
There are different versions of DT. We used the version named classification and regression
tree (CART). DT and RF have two metrics to decide the importance of features, named Gini
impurity and information gain.

Our study used both as metrics to calculate the feature importance. Although RF
uses multiple decision trees to compute its result and is comparatively better than DT,
there are still differences between DT and RF regarding how they use the whole dataset.
Therefore, we wanted to compute feature importance using both classifiers because of
their different nature. For the functioning of these classifiers in Python 3.8.10, we used
their implementation provided in the package named scikit-learn 0.22.1. We fed the whole
dataset to both classifiers to calculate the feature importance. Feature importance for the
9 features is depicted graphically in Figure 6.

From Figure 6, we can see that the first four features had greater feature importance
than the last 5 heuristic features when we used RF using Gini impurity and information
gain to compute the feature importance. In the case of DT, although it assigned greater
feature importance to the first 4 heuristic features using Gini impurity and information
gain; it also assigned considerable importance to the 7th feature. However, considering
all four scenarios of feature importance, we elected to use the first four features as they
were assigned greater feature importance in all cases. We also wanted to find if scaling the
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data had an impact on feature selection, which is why we computed the feature importance
after scaling the features between 0 and 1. The result did not change. Even after scaling, the
first 4 heuristic features had superior feature importance. Since we used the raw heuristic
features for our study, we did not present the feature importance found after scaling the
data in this paper.
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2.3. The Architecture of 1D-CNN-LSTM

A conventional CNN consists of an input, convolution, pooling, fully connected, and
output layer. The input layer takes the data matrix as input. A data matrix encapsulates a
portion of the data. The convolution layer consists of multiple filters, where each filter is
also a matrix with lower dimensions than the fed data matrix. Each filter can move on the
input data matrix in two directions or one direction for 2D-CNN and 1D-CNN, respectively.
Each filter performs a convolution operation and constructs a feature map when moving
on the input data matrix. A convolution layer with n number of filters constructs n number
of feature maps for a single data matrix. We can define a feature map as a representation of
the original data matrix with equal or lower dimensions but concentrate on prioritizing a
particular feature of the data matrix. The pooling layer reduces the length of feature maps
by moving the averaging filter or max filter on them. We can feed these feature maps into
an LSTM model. An LSTM model [25] can have one or more LSTM layers. Each LSTM layer
consists of multiple LSTM cells. Each cell encapsulates three gates named forget gate, input
gate, and output gate. The forget gate is responsible for removing unnecessary information
from the previous time step where the time step resembles a row in a data matrix. The input
gate process the current data fed into the cell, and the output gate generates the output to
be combined with the next input to the LSTM cell. In our hybrid 1D-CNN-LSTM [40], we
had convolution and pooling layers followed by an LSTM and fully connected layers, as
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depicted in Figure 7. The final pooling layer generates final feature maps fed into LSTM
cells. The LSTM cells then consider each feature map as a time step and try to learn from
it and propagate the information to use it in processing the next feature map (time step).
The LSTM layer’s output then goes to the fully connected layer, composed of conventional
neurons of an artificial neural network (ANN). The predictive result comes out of the final
fully connected layer.
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Our proposed 1D-CNN-LSTM architecture started with a CNN encompassing 6 con-
volutional layers, 3 pooling layers, and 4 dropout layers. The convolution layers used
different kernel lengths and rectified linear unit (relu) as their activation function. We intro-
duced dropout layers in the model to reduce the risk of overfitting. For LSTM‘s portion, we
used an LSTM layer with 512 hidden units and tanh as its activation function. Four fully
connected dense layers followed the LSTM layer. The first 3 layers had a different number
of neurons and relu as their activation function. The last dense layer had 6 neurons with
softmax as its activation function to render the probability regarding 6 types of activity.
Although many former studies used the concept of the CNN-LSTM hybrid model, the ele-
ments, including the number of layers, filters, LSTM cells, neurons, and dropout rate in the
structure we proposed here, were determined by us. We implemented the 1D-CNN-LSTM
model in the programming language Python 3.8.10 using a package called Tensorflow
2.5.0. We used the Adam optimizer for training our model with a learning rate of 0.001.
We trained each model for 500 epochs using a batch size of 2000. After each epoch, we
evaluated the performance of our model using the test data and saved the best model that
showed the best accuracy on test data to calculate other evaluation metrics. The model can
be reimplemented easily, and the results are completely reproducible. A detailed summary
of the overall architecture is presented in Table 4.
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Table 4. A detailed description of our proposed 1D-CNN-LSTM model.

Parts of
Architecture Components of Each Part (Blank Cell = Not Available for This Layer)

CNN

Layer’s Name Number
of Filters Kernel Size Activation Function Dropout Ratio Pooling Type Pool Size Padding Type

Convolution 512 5 relu same

Dropout 0.3

Pooling Average 3 same

Convolution 256 3 relu same

Dropout 0.3

Convolution 64 3 relu same

Pooling Average 3 same

Convolution 128 3 relu same

Convolution 256 5 relu same

Dropout N/A 0.3

Convolution 512 7 relu same

Dropout 0.3

Pooling Average 3 same

LSTM
Layer’s Name Number of Units Activation Function

LSTM 512 tanh

Fully
Connected
Network

Layer’s Name Number of Neurons Activation Function

Dense 100 relu

Dense 28 relu

Dense 64 relu

Dense 6 softmax

3. Results

This section will discuss the validation procedure, evaluation metrics, data reshaping
process, the effect of window length on the overall result using divergent evaluation metrics,
and the effect of window length on each activity.

3.1. Validation Procedure

We accumulated data from 42 participants. We used the leave one out cross-validation
method for our study, which we can also refer to as inter-participant evaluation. We had
to train and test our model 42 times to execute this procedure. Each time, we had data
from 41 participants in the training data and data from the other participant in the test data.
Every time we trained and tested our model, we had data from a different participant in
the test set. We were able to investigate the overall impact of our study on each participant.

3.2. Evaluation Metrics

To evaluate the performance of our findings, we used four evaluation metrics: accuracy,
precision, recall, and F1-measure. The definition and purpose of using each metric are
given below:

3.2.1. Accuracy

Accuracy [41] is defined by the ratio of the correct number of predictions to the total
number of predictions. It is well suited to the classification task where each class has an
almost similar number of samples. It can be calculated using the following formula:

accuracy =
Number of correct predictions

Total number of predictions

3.2.2. Precision

This metric is used to identify if the model is equally capable of identifying each class.
This metric is helpful to evaluate the model’s performance for each class separately. High
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precision for a class refers to the model’s efficient performance in identifying that class.
Low precision for a class means that the model is not considered capable of recognizing
that class. We can calculate precision [41] for any class A using the following formula:

Precision =
True positives

True positives + False positives

Here,
True positives = number of correctly predicted samples of class A;
False positives = number of samples predicted as class A but not belonging to class A.

3.2.3. Recall

This metric is also suitable to evaluate models’ performance for each class separately.
It helps determine if the model is pruned to misclassification for a particular class. High
recall for a class means that the model is not pruned to misclassify that class as another
class. Low recall for a class refers to the model’s proneness in misclassifying that class as
another class. We use the following formula to calculate recall [41] for any class A:

Recall =
True positives

True positives + False negatives

Here,
True positives = number of correctly predicted samples of class A;
False negatives = number of samples not predicted as class A but belonging to class A.

3.2.4. F1 Measure

From the definition of precision and recall, precision emphasizes keeping the predic-
tions accurate, whereas recall prioritizes increasing the number of correct predictions. For
any model, we need to maintain a precision-recall trade-off, where we want to increase the
number of correct predictions while keeping the predictions as accurate as possible. The F1
measure [42] represents a model’s ability to maintain proper precision and recall. It does so
by computing a harmonic mean of precision and recall using the following formula:

F1−measure = 2× Precision × Recall
Precision + Recall

A model with a high F1 measure represents the model’s ability in maintaining both
high recall and precision, whereas a low F1 measure represents the opposite.

3.3. Data Reshaping

CNN was the first part of our proposed architecture of 1D-CNN-LSTM. So, we initially
reshaped the data to feed into CNN’s first convolution layer. As mentioned earlier, CNN
works with a data matrix or data window. Each window may consist of a particular portion
of data. This window helps CNN grasp knowledge about a current data point by providing
some past data points or future data points. We can also refer to this data matrix as an
image from where the CNN will extract features to learn more efficiently. Since the CNN
requires a data window as its input, we had to construct windows of data from our whole
dataset. The number of samples each window contains is called window length. The
training and test sets need to be segmented into windows of equal length. Each consecutive
window may have common training samples. The number of common training samples
between each window depends on the overlapping ratio [43]. We can use the following
formula to calculate the overlapping ratio:

Overlapping Ratio =
Number of common samples between two consecutive windows

Window length
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In our study, we wanted to observe how different window lengths influence the
performance of the 1D-CNN-LSTM model in the case of HAR. To conduct this study,
we recorded the performance of our model for different window lengths. We started by
segmenting the training set, and test set into windows with a window length of 5 and
then evaluated the model’s performance. We then raised the window length by 10 and
re-recorded the model’s performance. We continued the process until we reached a window
length of 195. We did not increase the window length further because it increased the
training time considerably. The number of common samples between each consecutive
window for a particular window length was window length− 1. So, the overlapping ratio
for a particular window length was:

Overlapping Ratio for a particular window lentgh =
Window length− 1

Window length

It should be mentioned that although each window had multiple samples, there was
only one label (activity) that corresponded to each window. The label for each window was
the activity corresponding to the last sample of that window. Details about the segmented
datasets are illustrated in the Table 5 below.

Table 5. The number of windows in the training set and the test set for each window length.

Window Length Overlapping Ratio (%) No. of Windows in the Training
Set ± Standard Deviation

No. of Windows in the Test
Set ± Standard Deviation

5 80.00 4,221,561 ± 31,399 102,959 ± 31,399

15 93.33 4,221,551 ± 31,399 102,949 ± 31,399

25 96.00 4,221,541 ± 31,399 102,939 ± 31,399

35 97.14 4,221,531 ± 31,399 102,929 ± 31,399

45 97.77 4,221,521 ± 31,399 102,919 ± 31,399

55 98.18 4,221,511 ± 31,399 102,909 ± 31,399

65 98.46 4,221,501 ± 31,399 102,899 ± 31,399

75 98.66 4,221,491 ± 31,399 102,889 ± 31,399

85 98.82 4,221,481 ± 31,399 102,879 ± 31,399

95 98.94 4,221,471 ± 31,399 102,869 ± 31,399

105 99.04 4,221,461 ± 31,399 102,859 ± 31,399

115 99.13 4,221,451 ± 31,399 102,849 ± 31,399

125 99.20 4,221,441 ± 31,399 102,839 ± 31,399

135 99.25 4,221,431 ± 31,399 102,829 ± 31,399

145 99.31 4,221,421 ± 31,399 102,819 ± 31,399

155 99.35 4,221,411 ± 31,399 102,809 ± 31,399

165 99.39 4,221,401 ± 31,399 102,799 ± 31,399

175 99.42 4,221,391 ± 31,399 102,789 ± 31,399

185 99.46 4,221,381 ± 31,399 102,779 ± 31,399

195 99.49 4,221,371 ± 31,399 102,769 ± 31,399

3.4. Effects of Window Length on the Overall Result

We averaged the accuracy for all the participants at each window length, and the
average accuracy gradually increased until we reached a window length of 55. We can
observe the effect of window length on average accuracy in Figure 8. At the lowest window
length, which is 5, the average accuracy was 67.04%. At a window length of 55, the average
accuracy was 79.74%, and as the window length became greater than 55, we could not see
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considerable change. For a window length from 65 to 195, the average accuracy was around
80%. We recorded the highest average accuracy for the window length of 105, which was
80.91%. It is clear that the window length influenced the model’s performance, but after a
certain length, there was hardly any influence on the model’s performance.
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Furthermore, we can also observe the spread of accuracies for all the participants. The
highest accuracy was about 81% for a particular participant at the lowest window length,
and the lowest recorded accuracy was about 56%. However, as the window length in-
creased, the highest recorded accuracy for any window length also increased. We recorded
the highest accuracy, around 97% for a particular participant, for the window length of
155. Although the highest recorded accuracy for any window length increased with the
increment of window length, the lowest recorded accuracy for any window length did not
improve considerably. It seemed that the accuracy remained poor for some participants,
even for bigger window lengths. This scenario can be explained better with participant-
wise analysis.

3.5. Effect of Window Length on Model Performance for Individual Participants

From the previous section, we found out that the average accuracy for all the par-
ticipants became steady with an increment of window length. We will now observe if
the scenario was the same for the individual participant. We can determine the effect of
window length for each participant from Figure 9.

From Figure 9, we can see that the accuracy improved for the first 14 participants as
the window length increased and remained steady after a window length of 55. Most of the
participants showed a slight increment in the accuracy for a window length of 105. Among
participants 1 to participant 14, the model performed best when we tested the model
using the data from participant 11. We recorded the highest accuracy, around 97%, for
participant 11 at a window length of 155; however, the performance was not consistent. For
participants 15 to 28, the scenario was almost the same as we had for the first 14 participants,
but for participant 16, the accuracy did not improve with window length; rather, we found
a downward trend. We recorded the highest accuracy for participant 16 at a window
length of 65, which was about 65%. Accuracy for participant 19 was found to be as poor
as we saw for participant 16, although the accuracy for participant 19 had an increased
accuracy of around 70% at a window length of 105. From participants 15 to 28, we recorded
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the best performance for participant 20 almost at every window length. Regarding the
model’s performance for participants 29 to 42, we observed poor outcomes from the
model for participant 37, which resembled the model performance for participant 16.
The best performance from the model was recorded for participant 33 for almost every
window length.
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3.6. Effect of Window Length on Model Performance for Each Activity

As mentioned earlier, we considered the metrics precision, recall, and F1 measure
to evaluate the impacts of window length on each activity. We calculated precision for
each activity class at each window length for all participants and averaged the precision as
depicted in Figure 10. From Figure 10, we can see that precision increased until a certain
window length for all six different activities. After a window length of 45, precision either
remained steady or improved for all activities except for sitting. In addition, we experienced
a high precision for high-intensity activities such as walking and running at 3 METs, 5 METs,
and 7 METs. Whereas, the precision was comparatively poor for low-intensity activities
such as lying and sitting. We recorded higher precision for activity walking than all other
activities for every window length, which means that the models were highly accurate
in predicting the activity walking. A more detailed scenario about precision is shown in
Table 6. We can see the models’ highest average precision for each activity and the window
length at which we recorded the highest precision in Table 6.
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Table 6. Highest and lowest averaged precision, recall, and f1 measure for each activity and respective
window length.

Activities

Properties for the
Highest Precision

Properties for the
Lowest Precision

Properties for the
Highest Recall

Properties for the
Lowest Recall

Properties for the
Highest F1 Measure

Properties for the Lowest
F1 Measure

Highest
Value

Window
Length

Lowest
Value

Window
Length

Highest
Value

Window
Length

Lowest
Value

Window
Length

Highest
Value

Window
Length

Lowest
Value

Window
Length

Lying 76.16 75 65.63 5 89.38 5 77.58 195 79.30 45 73.55 175

Sitting 73.53 45 62.34 5 61.41 175 29.91 5 62.15 75 38.74 5

Walking 96.10 175 82.99 5 92.29 195 82.00 5 93.46 175 82.07 5

Running 3 METS 91.98 195 67.73 5 90.26 165 74.04 5 88.76 195 69.30 5

Running 5 METS 79.48 185 53.87 5 81.99 195 51.30 5 78.08 175 51.95 5

Running 7 METS 88.49 165 75.08 5 82.62 135 66.57 5 81.26 135 67.39 5

Regarding recall, we observed very poor recall for the activity sitting. Experiencing
poor precision and recall for the activity sitting means that the models experienced diffi-
culties correctly identifying it. It also means that the models misclassified many samples
belonging to other activities such as sitting and many samples from the activity sitting as
other activities. We recorded impressive recall for the activities walking and running at
3 METs. Recalls recorded for the other 3 activities were considerably decent. An interesting
trend we observed for the activity lying is that the recall was about 90% at the lowest
window length and the recall reduced as the window length increased. In contrast, recalls
for all other activities increased until a certain window length and then became steady. A
detailed numerical description of recall is given in Table 6.

The F1 measure depicted similar trends as precision and recall. We recorded a high
F1 measure for walking and running at 3 METs. We had a decent F1 measure for all other
activities except for sitting. The F1 measure was very poor for the activity sitting. F1
measures increased until a certain window length for all the activities and remained steady
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as window length increased. We also provide a numerical description of the F1 measure in
Table 6.

4. Discussion

In [10], researchers studied the performance of heuristic features for five publicly
available datasets, which they labeled as A [44], B [45], C [21], D [46], and E [47]. Besides
using the 9 features altogether, they also used only the first 3 or the first 6 heuristic features
and recorded the performance of 4 classifiers, Bayesian decision-making (BDM), K-nearest
neighbor (KNN), support vector machine (SVM), and artificial neural network (ANN). They
used 10-fold cross-validation technique where each fold contained data for a particular
participant. We can call our used inter-participant validation technique a 42-fold cross-
validation technique where each fold contains data for a particular participant. They
recorded accuracy from each classifier using the first 3 heuristic features, the first 6 heuristic
features, and all 9 heuristic features. They achieved the highest accuracy for datasets
B, C, and D using the first three heuristic features. To acquire the highest accuracy for
datasets A and E, they used the first 6 and all 9 heuristic features, respectively. For all the
datasets, they found the best performance using SVM. From their results, it was clear that
all 9 heuristic features were not critically important to model performance since, for 3 of
their datasets, they recorded the best performance using only the first 3 heuristic features.
However, they did not try all the combinations of features, and there was no analysis to
select the most significant features. We performed that analysis and found the first four
features to be the most important. We plotted the highest accuracy they achieved using the
heuristic features for each dataset and also indicated the number of features for which they
found the best performance in Figure 11. We also included the highest average accuracy
we achieved, using the four most important features we found in the plot to provide a
comparative perspective.
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Although it is not feasible to compare our result with the results found in [10] since they
used different classifiers and datasets, we acquired results comparable to their performance,
even with more participants than they had for an inter-participant validation method.
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However, our main objective was to explore the effects of window length in HAR execution
for 1D-CNN-LSTM.

Many studies have explored HAR using deep neural networks like CNN, LSTM, or
hybrids, but few studies in HAR have reported the effects of window length or time steps.
Most of the studies chose the time steps or window length, claiming that they achieved the
best performance using that particular window length. For instance, [48] used a CNN and
gated recurrent unit (GRU) hybrid on three datasets named UCI-HAR, WISDM, PAMAP2,
and acquired 96.20%, 97.21%, 95.27%, respectively. Still, they did not mention how they
chose the window length of 128 for their model. In another study [49], which used the
same dataset as in [48], they also did not mention the reason behind choosing 128 as
their window lengths; rather, they emphasized their proposed CNN, bidirectional LSTM
hybrid-model architecture and acquired accuracies. Many other studies [13,50–52] explored
divergent forms of deep learning architectures using the popular UCI-HAR dataset and
used the same window length of 128 samples. Another study [53], using a dataset called
“Complex human activities using smartphones and smartwatch sensors”, explored the
performance of divergent deep neural networks including LSTM, bidirectional LSTM,
GRU, bidirectional GRU, CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU for
five different window lengths (in seconds) of 5, 10, 20, 30, and 40 s. They achieved the
highest accuracy of 98.78% using CNN-BiGRU when they used the window length of
40 s. However, exploring only five different window lengths was insufficient to depict
the influence of window lengths. Therefore in our study, we explored the performance of
1D-CNN-LSTM for 19 different window lengths. We can observe from Figure 8 that the
recorded results showed that window length had a significant impact on the performance of
the models in HAR. However, the impact was noticeable until we reached a window length
between 55 to 85 in the study. After that, the performance was not influenced substantially
by incremental increases in window length. We can call the window length range of 55 to
85 the saturation range for the models’ performance. The reason behind such a trend
could be that, after a certain length, even if we increase the window length, the model
could not extract significant knowledge to enhance its performance. Although Figure 8
displays the averaged effect of window length, we observe the influence on individual
participants in Figure 9. We experienced a similar trend for almost all participants. We
had a contradictory trend in performance for participants 16 and 37. After the saturation
range with the increment in window length models, performance for those participants
was reduced. Although the decrement was not considered important, it was not usual
if we observe the performance trend for other participants. This could happen due to
noisy samples in the datasets belonging to those two participants, which need to be further
analyzed. Observing the effect of window length on each activity class, we found that
precision, recall, and f1-measure had very poor values for the sitting activity. In addition,
the values of evaluation metrics reduced with an increase in window length for lower-
intensity activities like sitting and lying. For instance, recall for lying was about 90%
when the window length was the smallest but as the window length increased, the recall
decreased. The effect of window length on lower-intensity activities was an interesting
observation which was not evaluated in previous studies. We can assume that window
length had different effects for activities with different intensities considering our outcome.
When choosing a window length, we should also consider a window length that will help
generate a better outcome for lower- and higher-intensity activities. Another reason behind
such poor performance could be the lower number of samples for the activity sitting which
we can see in Table 3. Balancing the classes could have helped to improve the situation.
Still, we did not do it in our study as our main objective was to observe the influence of
window length rather than increasing the models’ performance.

From Table 6, we can see that for most of the activity classes, the highest metric values
we found were when the window length was above 150, but the highest values were not
considerably greater than the values we found at saturation point. That means we need not
choose a very high window length to achieve the best performance from the model; rather,
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we need to select a window length around the saturation range that will be considerably
smaller than the window lengths where we found the highest metric values. If we manage
to keep the window length smaller, it would reduce the time complexity for the models
and increase the computational efficiency.

Although we have conducted analysis participant-wise and activity-wise, some analy-
sis is yet to be done. For instance, we achieved very high performance for some participants,
such as participants 26, 27, and 33 and very poor performance for participants 16, 19, and
37. Still, we did not try to determine why the model performed differently, especially for
these participants; as we mentioned earlier, our objective was to study the effect of window
length in 1D-CNN-LSTM in HAR.

In brief, we found that window length in 1D-CNN-LSTM had a significant effect on
HAR. We found that the training time was affected by the window length. As the window
length increased, the training time also increased. The approximate training time for the
model using the lowest window length of 5 was about 40 minutes and almost 20 hours
for the highest window length of 195. For our suggested saturation range of 55 to 85, the
training time was about 4 hours. Here, we approximated the mentioned training time for
each iteration of inter-subject validation, which means there were data from 41 subjects in
training data, and test data included data from one subject, which we did not include in
the training data. So, window length should not be arbitrarily long; rather, it should be
chosen wisely by correctly identifying the saturation range so that the model offers less
time complexity while training and more efficiency. In addition, for the 1D-CNN-LSTM
model, other studies may choose a window length from our suggested saturation range of
55 to 85 for HAR. We resampled the whole dataset to 30 Hz, so our proposed saturation
range should be 1.83 s to 2.83 s.

There are a number of limitations to our current study. We only used one accelerometer
for our study to keep the computation complexity low as we conducted inter-participant
validation for 42 participants. However, we may experience improvements in our study if
a gyroscope sensor was also used with the accelerometer sensor since a gyroscope sensor
can provide substantial information regarding the rotational nature. Moreover, the data
were collected from only one position, a phone in the pocket, and we did not study how
much the analysis would be affected if we used data from different body parts. In addition,
we studied the effect of window length on one type of model, but other models also
take windows of data as an input. We do not know if the effect would be the same for
those models. However, we initiated this type of analysis using many participants, one
accelerometer sensor, data from one position, and only one type of model. In future, we
will try to conduct the same study using different models and settings.

5. Conclusions

Our study wanted to depict the influence of window length in 1D-CNN-LSTM on
HAR. We used a large dataset accumulated from 42 participants for 6 different activities.
The samples were from an accelerometer sensor in a smartphone kept in the pocket. We
used four heuristic features to eliminate variations produced due to the rotation of the
smartphone. We found a saturation range for window length, after which the model’s
performance was not considerably influenced by the window length.

Author Contributions: Conceptualization, A.B. and X.J.; data curation, D.F. and S.M.; formal analysis,
D.F.; funding acquisition, D.F. and X.J.; investigation, D.F. and X.J.; methodology, A.B.; project
administration, D.F. and X.J.; resources, D.F.; software, A.B.; supervision, D.F. and X.J.; validation,
A.B., D.F. and X.J.; visualization, A.B.; writing—original draft, A.B.; writing—review and editing, D.F.
and S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC), grant number RGPIN-2020-05525.

Institutional Review Board Statement: The study was by the Memorial University Interdisciplinary
Committee on Ethics in Human Research (ICEHR #20180188-EX).



Biosensors 2022, 12, 549 21 of 23

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ethical constraints.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mekruksavanich, S.; Jitpattanakul, A. Biometric user identification based on human activity recognition using wearable sensors:

An experiment using deep learning models. Electronics 2021, 10, 308. [CrossRef]
2. Zhou, X.; Liang, W.; Wang, K.I.-K.; Wang, H.; Yang, L.T.; Jin, Q. Deep-learning-enhanced human activity recognition for Internet

of healthcare things. IEEE Internet Things J. 2020, 7, 6429–6438. [CrossRef]
3. Barua, A.; Masum, A.K.M.; Bahadur, E.H.; Alam, M.R.; Chowdhury, M.A.U.Z.; Alam, M.S. Human activity recognition in

prognosis of depression using long short-term memory approach. Int. J. Adv. Sci. Technol. 2020, 29, 4998–5017.
4. Chelli, A.; Pätzold, M. A machine learning approach for fall detection and daily living activity recognition. IEEE Access 2019, 7,

38670–38687. [CrossRef]
5. Nweke, H.F.; Teh, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [CrossRef]
6. Antar, A.D.; Ahmed, M.; Ahad, M.A.R. Challenges in sensor-based human activity recognition and a comparative analysis of

benchmark datasets: A review. In Proceedings of the 2019 Joint 8th International Conference on Informatics, Electronics & Vision
(ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition, Spokane, WA, USA, 30 May–2 June
2019; pp. 134–139.

7. Jobanputra, C.; Bavishi, J.; Doshi, N. Human activity recognition: A survey. Procedia Comput. Sci. 2019, 155, 698–703. [CrossRef]
8. Ramamurthy, S.R.; Roy, N. Recent trends in machine learning for human activity recognition—A survey. Wiley Interdiscip. Rev.

Data Min. Knowl. Discov. 2018, 8, e1254. [CrossRef]
9. Yurtman, A.; Barshan, B.; Fidan, B. Activity recognition invariant to wearable sensor unit orientation using differential rotational

transformations represented by quaternions. Sensors 2018, 18, 2725. [CrossRef]
10. Yurtman, A.; Barshan, B. Activity recognition invariant to sensor orientation with wearable motion sensors. Sensors 2017, 17, 1838.

[CrossRef]
11. Yang, R.; Wang, B. PACP: A position-independent activity recognition method using smartphone sensors. Information 2016, 7, 72.

[CrossRef]
12. Wan, S.; Qi, L.; Xu, X.; Tong, C.; Gu, Z. Deep learning models for real-time human activity recognition with smartphones. Mob.

Netw. Appl. 2019, 25, 743–755. [CrossRef]
13. Mutegeki, R.; Han, D.S. A CNN-LSTM approach to human activity recognition. In Proceedings of the 2020 International

Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020;
pp. 362–366.

14. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft
Comput. 2018, 62, 915–922. [CrossRef]

15. Micucci, D.; Mobilio, M.; Napoletano, P. Unimib shar: A dataset for human activity recognition using acceleration data from
smartphones. Appl. Sci. 2017, 7, 1101. [CrossRef]

16. Masum, A.K.M.; Hossain, M.E.; Humayra, A.; Islam, S.; Barua, A.; Alam, G.R. A statistical and deep learning approach for human
activity recognition. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 23–25 April 2019; pp. 1332–1337.

17. Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical human activity recognition using
wearable sensors. Sensors 2015, 15, 31314–31338. [CrossRef] [PubMed]

18. Ahmed, N.; Rafiq, J.I.; Islam, R. Enhanced human activity recognition based on smartphone sensor data using hybrid feature
selection model. Sensors 2020, 20, 317. [CrossRef]

19. Chen, Z.; Zhu, Q.; Soh, Y.C.; Zhang, L. Robust human activity recognition using smartphone sensors via CT-PCA and online
SVM. IEEE Trans. Ind. Inform. 2017, 13, 3070–3080. [CrossRef]

20. Barna, A.; Masum AK, M.; Hossain, M.E.; Bahadur, E.H.; Alam, M.S. A study on human activity recognition using gyroscope,
accelerometer, temperature and humidity data. In Proceedings of the 2019 International Conference on Electrical, Computer and
Communication Engineering (ECCE), Cox’sBazar, Bangladesh, 7–9 February 2019; pp. 1–6.

21. Anguita, D.; Ghio, A.; Oneto, L.; Parra-Llanas, X.; Reyes-Ortiz, J. A public domain dataset for human activity recognition using
smartphones. In Proceedings of the 21th international European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Online, 5–7 October 2022; pp. 437–442.

22. Reiss, A.; Stricker, D. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the 2012 16th International
Symposium on Wearable Computers, Newcastle, UK, 18–22 June 2012; pp. 108–109.

23. Ronao, C.A.; Cho, S.-B. Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst.
Appl. 2016, 59, 235–244. [CrossRef]

http://doi.org/10.3390/electronics10030308
http://doi.org/10.1109/JIOT.2020.2985082
http://doi.org/10.1109/ACCESS.2019.2906693
http://doi.org/10.1016/j.eswa.2018.03.056
http://doi.org/10.1016/j.procs.2019.08.100
http://doi.org/10.1002/widm.1254
http://doi.org/10.3390/s18082725
http://doi.org/10.3390/s17081838
http://doi.org/10.3390/info7040072
http://doi.org/10.1007/s11036-019-01445-x
http://doi.org/10.1016/j.asoc.2017.09.027
http://doi.org/10.3390/app7101101
http://doi.org/10.3390/s151229858
http://www.ncbi.nlm.nih.gov/pubmed/26690450
http://doi.org/10.3390/s20010317
http://doi.org/10.1109/TII.2017.2712746
http://doi.org/10.1016/j.eswa.2016.04.032


Biosensors 2022, 12, 549 22 of 23

24. Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for
human activity recognition. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos
Aires, Argentina, 25–31 July 2015.

25. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
26. Xia, K.; Huang, J.; Wang, H. LSTM-CNN architecture for human activity recognition. IEEE Access 2020, 8, 56855–56866. [CrossRef]
27. Weiss, G.M.; Yoneda, K.; Hayajneh, T. Smartphone and smartwatch-based biometrics using activities of daily living. IEEE Access

2019, 7, 133190–133202. [CrossRef]
28. Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Forster, K.; Troster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.; Ferscha, A.; et al.

Collecting complex activity datasets in highly rich networked sensor environments. In Proceedings of the 2010 Seventh
International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15–18 June 2010; pp. 233–240.

29. Lv, T.; Wang, X.; Jin, L.; Xiao, Y.; Song, M. Margin-based deep learning networks for human activity recognition. Sensors 2020,
20, 1871. [CrossRef] [PubMed]

30. Mukherjee, D.; Mondal, R.; Singh, P.K.; Sarkar, R.; Bhattacharjee, D. EnsemConvNet: A deep learning approach for human
activity recognition using smartphone sensors for healthcare applications. Multimed. Tools Appl. 2020, 79, 31663–31690. [CrossRef]

31. Chen, Y.; Xue, Y. A deep learning approach to human activity recognition based on single accelerometer. In Proceedings of the
2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 1488–1492.

32. Murad, A.; Pyun, J.-Y. Deep recurrent neural networks for human activity recognition. Sensors 2017, 17, 2556. [CrossRef]
33. Hammerla, N.Y.; Halloran, S.; Plötz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables.

arXiv 2016, arXiv:1604.08880.
34. Xu, C.; Chai, D.; He, J.; Zhang, X.; Duan, S. InnoHAR: A deep neural network for complex human activity recognition. IEEE

Access 2019, 7, 9893–9902. [CrossRef]
35. Almaslukh, B.; Artoli, A.M.; Al-Muhtadi, J. A robust deep learning approach for position-independent smartphone-based human

activity recognition. Sensors 2018, 18, 3726. [CrossRef] [PubMed]
36. Khataeipour, S.J.; Anaraki, J.R.; Bozorgi, A.; Rayner, M.; A Basset, F.; Fuller, D. Predicting lying, sitting and walking at different

intensities using smartphone accelerometers at three different wear locations: Hands, pant pockets, backpack. BMJ Open Sport
Exerc. Med. 2022, 8, e001242. [CrossRef]

37. Ethica Data; Ethica [Mobile App]. 2020. Available online: https://ethicadata.com/ (accessed on 15 April 2022).
38. Jetté, M.; Sidney, K.; Blümchen, G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of

functional capacity. Clin. Cardiol. 1990, 13, 555–565. [CrossRef]
39. Narayanan, A.; Desai, F.; Stewart, T.; Duncan, S.; Mackay, L. Application of raw accelerometer data and machine-learning

techniques to characterize human movement behavior: A systematic scoping review. J. Phys. Act. Health 2020, 17, 360–383.
[CrossRef]

40. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, long short-term memory, fully connected deep neural networks.
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
Australia, 19–24 April 2015; pp. 4580–4584.

41. Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2020, 17, 168–192. [CrossRef]
42. Sasaki, Y. The truth of the F-measure. Teach Tutor Mater 2007, 1, 1–5.
43. Dehghani, A.; Sarbishei, O.; Glatard, T.; Shihab, E. A quantitative comparison of overlapping and non-overlapping sliding

windows for human activity recognition using inertial sensors. Sensors 2019, 19, 5026. [CrossRef] [PubMed]
44. Barshan, B.; Yüksek, M.C. Recognizing daily and sports activities in two open source machine learning environments using

body-worn sensor units. Comput. J. 2013, 57, 1649–1667. [CrossRef]
45. Ugulino, W.; Cardador, D.; Vega, K.; Velloso, E.; Milidiú, R.; Fuks, H. Wearable computing: Accelerometers’ data classification of

body postures and movements. In Brazilian Symposium on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany; pp. 52–61.
46. Zhang, M.; Sawchuk, A.A. USC-HAD: A daily activity dataset for ubiquitous activity recognition using wearable sensors. In

Proceedings of the 2012 ACM conference on ubiquitous computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 1036–1043.
47. Casale, P.; Pujol, O.; Radeva, P. Human activity recognition from accelerometer data using a wearable device. In Iberian Conference

on Pattern Recognition and Image Analysis; Springer: Berlin/Heidelberg, Germany; pp. 289–296.
48. Dua, N.; Singh, S.N.; Semwal, V.B. Multi-input CNN-GRU based human activity recognition using wearable sensors. Computing

2021, 103, 1461–1478. [CrossRef]
49. Challa, S.K.; Kumar, A.; Semwal, V.B. A multibranch CNN-BiLSTM model for human activity recognition using wearable sensor

data. Vis. Comput. 2021, 1–15. [CrossRef]
50. Ullah, M.; Ullah, H.; Khan, S.D.; Cheikh, F.A. Stacked lstm network for human activity recognition using smartphone data.

In Proceedings of the 2019 8th European Workshop on Visual Information Processing (EUVIP), Roma, Italy, 2 January 2020;
pp. 175–180.

51. Yu, T.; Chen, J.; Yan, N.; Liu, X. A multilayer parallel lstm network for human activity recognition with smartphone sensors. In
Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou,
China, 18–20 October 2018; pp. 1–6.

http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/ACCESS.2020.2982225
http://doi.org/10.1109/ACCESS.2019.2940729
http://doi.org/10.3390/s20071871
http://www.ncbi.nlm.nih.gov/pubmed/32230986
http://doi.org/10.1007/s11042-020-09537-7
http://doi.org/10.3390/s17112556
http://doi.org/10.1109/ACCESS.2018.2890675
http://doi.org/10.3390/s18113726
http://www.ncbi.nlm.nih.gov/pubmed/30388855
http://doi.org/10.1136/bmjsem-2021-001242
https://ethicadata.com/
http://doi.org/10.1002/clc.4960130809
http://doi.org/10.1123/jpah.2019-0088
http://doi.org/10.1016/j.aci.2018.08.003
http://doi.org/10.3390/s19225026
http://www.ncbi.nlm.nih.gov/pubmed/31752158
http://doi.org/10.1093/comjnl/bxt075
http://doi.org/10.1007/s00607-021-00928-8
http://doi.org/10.1007/s00371-021-02283-3


Biosensors 2022, 12, 549 23 of 23

52. Tufek, N.; Yalcin, M.; Altintas, M.; Kalaoglu, F.; Li, Y.; Bahadir, S.K. Human action recognition using deep learning methods on
limited sensory data. IEEE Sens. J. 2020, 20, 3101–3112. [CrossRef]

53. Mekruksavanich, S.; Jitpattanakul, A. Deep convolutional neural network with rnns for complex activity recognition using
wrist-worn wearable sensor data. Electronics 2021, 10, 1685. [CrossRef]

http://doi.org/10.1109/JSEN.2019.2956901
http://doi.org/10.3390/electronics10141685

	Introduction 
	Materials and Methods 
	Data Accumulation 
	Data Preprocessing and Feature Extraction 
	Data Resampling and Data Imputation 
	Feature Extraction and Selection 

	The Architecture of 1D-CNN-LSTM 

	Results 
	Validation Procedure 
	Evaluation Metrics 
	Accuracy 
	Precision 
	Recall 
	F1 Measure 

	Data Reshaping 
	Effects of Window Length on the Overall Result 
	Effect of Window Length on Model Performance for Individual Participants 
	Effect of Window Length on Model Performance for Each Activity 

	Discussion 
	Conclusions 
	References

