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Abstract: The development of precise and efficient diagnostic tools enables early treatment and proper
isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19).
The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syn-
drome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time,
the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit
their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the in-
terest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities
such as rapid response, simplicity of operation, portability, and readiness for on-site screening of
infection. This review gives a condensed overview of the current electrochemical sensing platform
strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electro-
chemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques,
and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we
summarised electrochemical biosensors detection strategies and their analytical performance on
diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the
employment of miniaturized electrochemical biosensors integrated with microfluidic technology in
viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.

Keywords: COVID-19; SARS-CoV-2; diagnostic methods; electrochemical biosensor; point of care
(POC); miniaturised electrochemical sensor; microfluidic electrochemical devices

1. Introduction

The novel coronavirus SARS-CoV-2 that caused COVID-19 disease was firstly discov-
ered in Wuhan, Hubei Province, China, in December 2019. The World Health Organization
(WHO) declared COVID-19 to be a pandemic due the capability of SARS-CoV-2 viral to
rapidly spread worldwide [1]. The virus can be transmitted through respiratory droplets
during coughing, talking, and sneezing, with the incubation time from 2 to 14 days [2,3].
People infected with this virus may present with very mild clinical symptoms, e.g., flu,
headache, sore throat, cough, fever, and diarrhea, to life-threatening conditions such as
multi-organ dysfunction and interstitial pneumonia that is possibly caused a thrombophilic
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vasculitis in the lung [4–7]. In most cases, SARS-CoV-2 patients demonstrate acute respira-
tory distress syndrome (ARDS). In this condition, individuals find it difficult to breathe
since the oxygen level in blood keeps decreasing due to consumption by the virus during
their replication [8]. The mortality rate of SARS-CoV-2 was varied depending on the geo-
graphic area [9]. Since their emergence, more than 20 million people worldwide have been
infected and approximately more than 800,000 deaths were recorded [1]. The numbers kept
elevated until presently, as no specific antiviral treatment is available for this virus [10].
Accordingly, the COVID-19 pandemic threatened the world by badly impacting the public
health sector, which subsequently affected socio-economic aspects and national financial
policies [11].

To overcome the current global pandemic, various diagnostic tests are developed to
give extremely fast and accurate detection. The effective diagnostic systems enable the
immediate isolation of individuals that present mild infection symptoms through a strict
quarantine and thus interrupt the transmission chain of COVID-19 to the surrounding
community [12,13]. Despite a high rate of disease spreading, the main challenge for the
COVID-19 diagnostics lies in the asymptomatic individuals with SARS-CoV-2 infections.
The asymptomatic individuals have higher chances to spread the virus efficiently, hence
causing a predicament to control the outbreak of the disease [14]. Therefore, early diagnostic
tests with high specificity and sensitivity, precise, and rapid are crucial for mass screening
of SARS-CoV-2, to identify positive cases which enable contact tracing and containment.
Such situations can curb the spreading and infection rate of the virus and thus provide
ample time for developing vaccines or treatments to control this contagious virus [15,16].
Presently, numerous diagnostic tests are available for the early detection of virus infection.
The diagnostic tests for SARS-CoV-2 mostly relied on detecting viral nucleic acid (DNA
or RNA) and antigens or antibodies produced upon exposure to infection [17,18]. To date,
healthcare workers have extensively used the quantitative real-time reverse transcription-
polymerase chain reaction (real-time RT-qPCR), and enzyme-linked immunosorbent-assay
(ELISA)-based testing to diagnose SARS-CoV-2 [19–21]. Although these methods provide
high sensitivities and reliable results, they are not preferable for rapid on-site diagnosis.
This is due to some restrictions such as tedious sample preparation, long detection process,
the requirement of well-trained staff, and sophisticated instruments [18,22]. Therefore, the
biosensor particularly an electrochemical biosensor is seen as a good alternative to the
existing diagnostic tests since it quickly diagnoses viral diseases with high selectivity and
sensitivity [23,24].

A biosensor is an analytical electronic device that composed of three associated el-
ements: a biorecognition molecule; a transducer (an electronic part that transfers a bio-
chemical signal from the interaction between analyte and biorecognition molecule into
an electronic signal); and a processor (amplifies and shows the analytical response signal
that can be quantifiable) [25,26]. Compared to the existing COVID-19 detection methods,
biosensors enable selective and sensitive detection of a targeted analyte cost-effectively
and rapidly. Biosensors can perform either semi-quantitative or quantitative real-time
analyses of analytes without the need for sample preparation and reagents. More impor-
tantly, they have the potential to enable in situ analyses, which are crucial features for
point-of-care (POC) diagnostic [27–29]. Aside from medical and POC applications, these
innovative bioelectronic devices have been extensively used in food processing, food safety,
environmental monitoring, drug recovery, forensics, and biomedical research [25,30,31].
There are various types of biosensors, and it is generally categorized based on the type of
biorecognition molecules immobilized, and transducer used [32]. Biorecognition molecules
used in the biosensors consist of antibodies, nucleic acids, enzymes, biomimetic materials,
and whole cells. The signal recognition of biosensors is achieved through various types of
transducers including electrochemical, piezoelectric, optical, and thermometric [25]. The
electrochemical transducer is the most popular biosensor, and they are extensively used to
detect high numbers of biomarkers and infectious diseases. The implementation of electro-
chemical biosensors for the quantitative or semi-quantitative analysis of respiratory viruses
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had been proven due to their intrinsic strength such as simplicity in design, flexibility,
miniaturized instrumentation, fast detection time, low cost, and high sensitivity [33–35].

This review focuses on the use of electrochemical biosensors for the ultrasensitive
detection of SARS-CoV-2. Here, we collated recent research papers that described nu-
merous electrochemical biosensor designs for early detection of this infectious virus in
a variety of clinical samples (serum, saliva, urine, and nasopharyngeal swab). Factors
that determine the ideal fabrication of SARS-CoV-2 electrochemical biosensors such as the
working electrode materials, biorecognition elements, and transducing techniques will
be discussed. The addition of nanostructured materials (graphene derivates, carbon nan-
otubes, gold nanoparticles, etc.) as the surface modifier on the miniaturized electrochemical
biosensor enhanced the sensitivity of the electrochemical biosensor. Further integration of
the miniaturized electrochemical platform with microfluidic technology and smartphone
enables rapid and on-site detection of SARS-CoV-2.

2. SARS-CoV-2 Diagnostic Tests Advantages and Challenges

Table 1 summarises the pros and cons of the existing diagnostic tests and electrochem-
ical biosensors for SARS-CoV-2 detection. Formerly, a computerized tomography (CT) scan
has been remarkably used as a reliable diagnostic tool for screening individuals infected
with COVID-19. CT scan provides information on the various organs cross-sectional im-
ages, included blood vessels, soft tissues, bones, and inside the body. Such images can
give detailed information on pathophysiology to diagnose and evaluate the severity of
disease [36]. Chest CT scan is known as the primary diagnostic test for COVID-19 [37].
Chest CT scan images of a COVID-19 patient usually show bilateral, peripheral, patchy
consolidation, and basal predominant ground-glass opacities (GGOs) with the sub-pleural
distribution [38]. The continuous observation of chest CT scans could facilitate fast di-
agnosis, monitor disease progress, and determine the suitable treatment for COVID-19
patients. Nevertheless, the chest CT scan images cannot distinguish the SARS-CoV-2 from
other acute respiratory diseases and often detect the patients at an advanced stage of
infection [39]. Furthermore, the imaging features of a SARS-CoV-2 patient’s chest may
vary according to the viral concentration and severity of infection after the appearance
of severe symptoms. For example, during the early stage of infection (0–4 days), the CT
scan images shows “halo” sign in the right upperlobe (25%). The ground-glass opacities,
reticular pattern, crazy-paving pattern, subpleural lines, pleural thickening and fibrosis
were commonly observed during the intermediate/progressive (5–9 days) and advanced
(≥10 days) stages of the SARS-CoV-2 infection [40]. Other drawbacks of this method are
the requirement of advanced, skilled personnel and expensive equipment [41]. Therefore,
this method cannot be implemented in small rural towns that have limited technology.

The current standard diagnostic test for detecting SARS-CoV-2 depends on two strate-
gies: detection of viral antigens and nucleic acid. Another method is the detection of specific
antibodies produced against the virus by the patient’s immune response [17,42]. The real-
time reverse transcription-polymerase chain reaction (real-time RT-PCR) is known as a
standard gold method for diagnosing SARS-CoV-2 infection [43]. The nucleic acid-based
method was acknowledged to rapidly detect the SARS-CoV using multiple primers and
probe sets in distinct regions of the SARS-CoV genome. The current real-time RT-PCR assay
has been established to detect the structural proteins and accessory genes (spike (S) protein,
nucleocapsid (N), RNA-dependent RNA polymerase (RdRP), envelope (E), orORF1b, ORF8
genes), as these are specific biomarkers for SARS-CoV-2 [41,44]. The high selectivity of
this technique distinguishes SARS-CoV-2 from other human and animal coronaviruses.
To date, numerous quantitative RT-PCR (qRT-PCR) test kits are available in the market
such as CDC 2019-Novel Coronavirus Real-Time RT-PCR Diagnostic Panel (Centers for
Disease Control and Prevention, Atlanta, GA, USA), ExProbeTM SARS-CoV-2 Testing Kit
(TBG Diagnostics Corp., New Taipei City, Taiwan), Xpert Xpress SARS-CoV-2 test (Cepheid,
Sunnyvale, CA, USA), Abbott RealTime SARS-CoV-2 RT-PCR Kit (Abbott, Chicago, IL,
USA), TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Life Technologies Corpo-
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ration, Carlsbad, CA, USA) and PerkinElmer® New Coronavirus Nucleic Acid Detection
Kit (PerkinElmer, Inc., Austin, TX, USA) [43]. Despite these methods’ high selectivity and
sensitivity, the assay requires a higher concentration of target molecules, lengthy processing
time, sophisticated, expensive laboratory equipment, and skilled personnel [45,46]. To
overcome these issues, isothermal amplification techniques such as nucleic acid sequence-
based amplification (NASBA), loop-mediated isothermal amplification (LAMP), strand
displacement amplification (SDA), nicking enzyme amplification reaction (NEAR), rolling
circle amplification (RCA), and helicase dependent amplification (HDA) are developed
for detection of SARS-CoV-2 infection [47]. Although the detection methods are highly
sensitive, more specific, and reaction efficient, the current technology still faces some limi-
tations [48,49]. For example, the ID NOW®instrument can provide a rapid detection time
(within 13 min) [50]. However, the time taken, and labour needed for sample preparation,
reagent loading, and the instrument’s set-up does not count. [47,51,52]. In addition, the
technology used is costly and less attractive for mass screening applications.

Table 1. Summary of advantages and drawbacks of the existing diagnostic methods and electrochem-
ical biosensors for SARS-CoV-2 detection.

Detection
Method Target

Laboratory or
Point-of-Care

(POC)
Quantitative Advantages Cost of Testing Drawbacks

CT scan Chest Laboratory No High sensitivity High

Lack of specificity
Require sophisticated and expensive
machines
Need trained personnel to interpret
the results
Exposed to the radiation

RT-PCR Nucleic acid Laboratory Semi-quantitative

Highly specific and
sensitive
Suitable for early
infection
Can detect the viral
particles that cannot
be cultured by cell
culture method

High

Require sample preparation and
purification
Need specific reagents
Require sophisticated and expensive
machines
Need skilled personnel
Chances of false results are higher
for mixed infection cases
Longer analysis time (~50 min to 4 h)
Not suitable for mass population
Not suitable for large scale screening
for multiple samples

ELISA Antigen
Antibody Laboratory Semi-quantitative

Suitable for
monitoring the
immune response
Suitable for
sero-surveillance

High

Require sample preparation and
purification
Low specificity
High risk of cross-reactivity
Longer analysis time (~2 to 5 h)
Not suitable for large scale screening
for multiple samples

Electrochemical
biosensor

Any analyte
depending on the

biorecognition
element

POC Yes

Rapid response
time
(~10 s to 1 h)
Highly specific
No need complex
reagents and
sample preparation
Miniaturization
capability

Low
Sample matrixes affect the
sensitivity of assay
Low stability

CT: Computerized tomography, RT-PCR: Real-time polymerase chain reaction, ELISA: Enzyme-linked immunosor-
bent assay. Adapted from reference [43,53–57].

The most common antibody test used to diagnose SARS-CoV-2 infection is direct
enzyme-linked immunosorbent assay (ELISA) [58]. In direct ELISA, the specific antigen
(protein) is immobilised on a solid matrix (ELISA plates), then incubated with the primary
antibody and followed by the addition of the substrates that can generate a color (e.g.,
horseradish peroxidase and alkaline phosphatase). The changes in color in the ELISA plates
indicate the binding of a specific antigen to the antibody due to the enzymatic cleavage of a
chromogenic substrate (Figure 1) [59,60]. ELISA provides an accurate result for infected
patients and allows high throughput SARS-CoV-2 screening as it could process many
samples simultaneously. The rapidness and sensitivity of this test allow the ELISA kits to



Biosensors 2022, 12, 473 5 of 32

be commercially available from various manufactures, namely Thermo Fisher Scientific,
Abcam, and Merck [61]. Nonetheless, the assay is restricted to a single antigen per well
and requires the complex production of antibodies [62,63]. For an asymptomatic person,
ELISA might show an inaccurate result because the antibody only shows response after
the 10th day of infections. Moreover, this assay might have a possibility of false-positive
results due to the interferences with other proteins in serum samples of SARS-CoV-2 and
other coronaviruses [42,64].
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The limitations and problems related to the above-mentioned diagnostic tests en-
courage researchers nowadays to develop more robust and accurate detection systems for
efficiently screening COVID-19 patients. The robust screening system enables effective
isolation and prompt treatment to the patient, which subsequently breaks the COVID-19
transmission chain. To achieve the goal, the designed diagnostic assay must possess the
following characteristics; the affordable sensing technologies (minimal cost and fewer
demands for personnel and instrument), high sensitivity (ability to recognize infected
individual, true positive rate), high specificity (ability to recognize non-infected individual,
true negative rate), equipment-free (portable device), the faster response time (ideally in
a minute or maximum is an hour), and deliverable (user-friendly). These characteristics
are known as ASSURED criteria [47,65–67]. Based on these requirements, electrochemical
biosensors are seen as suitable candidate with favorable characteristics.

The development of electrochemical biosensors has aroused the attention of most re-
searchers nowadays due to their remarkable advantages such as high analytical sensitivity
and selectivity, the simplicity in design, low cost of the device, miniaturization capacity,
and inherent sustainability, due to the use of low reagents, and sample volumes, both
in its development and application [68–70]. The features of electrochemical biosensors
satisfy the industry requirement that emphasizes the rapidness of the method and the
initial investment cost, technical support, and ease of handling [42,71,72]. Due to their sig-
nificant properties, electrochemical biosensors have been established as a robust diagnostic
device to test numerous clinical samples to detect infectious diseases caused by pathogenic
viruses and bacteria [73]. Notably, the electrochemical biosensor has been emerging as an
alternative tool for monitoring SARS-CoV-2 infection [74].

Despite having superior diagnostic features, the electrochemical biosensors platform
faced several challenges such as the sample preparation procedure, stability and selectivity
were dependent on the biorecognition molecules used. Moreover, the contamination of
these biorecognition molecules might cause the performance of electrochemical biosensors
to not be as effective [70]. Electrochemical viral infectious disease diagnosis also encoun-
tered difficulty in detecting pathogen directly from raw samples due to the presence of
interferences such as vitamins and proteins that are commonly present in the bio-fluids.
Thus, several separation steps are needed before the detection process, which subsequently
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prolongs the detection time [75]. The integration of the latest microfluidic technology with
an electrochemical sensing platform could overcome this limitation as it facilitates the
method for sample separation and electrochemical detection in one device [76]. Besides
the biorecognition molecules, the electrochemical biosensor can achieve high selectivity
and sensitivity due to easy modification of the electrode surface with nanomaterials in
the lab scales [70]. However, the mass manufacturability aspect should be considered
to produce a robust diagnostic tool for the end-users. The following section will discuss
the ideal SARS-CoV-2 electrochemical biosensors system using the most robust electrode
materials and specific biorecognition molecules that affect the sensitivity and selectivity of
electrochemical detection.

3. SARS-CoV-2 Electrochemical Biosensors

Electrochemical biosensors are known as the most promising and highly sensitive
transduction systems for the early detection of SARS-CoV-2. This is due to its capability in
detecting the target analyte at a very low concentration with low power consumption [77].
Generally, electrochemical biosensors are biosensing devices that transform the biochemical
reactions between biorecognition molecule and target analyte into measurable signals via a
current, voltage, or charge transfer resistance [78] (Figure 2). The generating signals are
proportional to the concentration of target analytes in the biochemical reaction [28,79]. The
utilization of electrochemical biosensors to detect a different group of viruses has been
extensively reported in the literature. For instance, Anusha et al. [80] discussed numer-
ous designs of electrochemical biosensing platforms and the function of biorecognition
molecules in detecting the dengue virus. The recent advancement in developing robust
electrochemical sensors strategies to detect the Zika virus has been extensively reviewed
by Kaushik et al. [81]. Moreover, Rasouli et al. [77] highlight the progress of electrochemi-
cal DNA biosensors in monitoring the human papillomavirus virus. Due to its excellent
performance in pathogenic virus detection, electrochemical biosensors are suggested as
one of the promising diagnostic tests for the real-time observation of SARS-CoV-2. Many
pieces of literature reported on the potential implementation of electrochemical biosensors
for the detection of SARS-CoV-2. For example, Mahshid et al. [53] extensively reviewed the
potential application of electrochemical biosensors for monitoring SARS-CoV-2. The most
favourable electrochemical biosensors design was thoroughly discussed by Kotru et al. [82].
Indeed, Khan et al. [79] and Imran et al. [24] described the performance of different types
of electrochemical biosensors for SARS-CoV-2 and other viral pathogens such as Ebola,
influenza, Zika, and HIV.

In an electrochemical biosensors system, the target analyte can be detected either
through a labeled system (indirect sensing) or a label-free system (direct sensing). The
label-based electrochemical biosensor was constructed by adding a second probe or specific
label (e.g., ferrocene, enzyme, metal nanoparticles, etc.) to the biorecognition element
specific to the target analyte. In this sensing system, the concentration of the target analyte
was indirectly measured based on generating signals from a specific label, and PBS was
mostly used as an electrolyte solution for electrochemical measurement. Formerly, most
of the highly sensitive electrochemical biosensors were fabricated based on a labelled
system due to the potential for signal amplification and high resistance to non-specific
binding as the detection of the analyte depends on two independent binding events.
Nonetheless, the fabrication of this type of electrochemical biosensor is expensive because
it requires two biorecognition systems, and multiple steps are needed during the surface
functionalization of the working electrode. Furthermore, the additional preparation steps
for complex labelling might prolong the time needed to construct the electrochemical
biosensors. Moreover, electrochemical detection can only be carried out by highly trained
personnel to ensure the quality of the analysis and interpretation of the results [83,84].
Hence, they are not preferable for real-time measurements.
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Unlike label-based electrochemical biosensors, a label-free sensing system can mini-
mize the preparation time and cost of analysis due to the elimination of complex labels and
the requirement of only one biorecognition molecule. Such a sensing system can quantify
the target analyte directly based on the electrical signals produced during the biochemical
reaction without any labelling and chemical modification. The electrochemical detection
in a label-free sensing system directly relies on the catalytic transfer of electrons between
the surface of the working electrode and the active surface of a biorecognition molecule.
The measurement of this sensing system often employs ferro/ferricyanide as a redox
probe [22,85,86]. The capability of label-free electrochemical biosensors for rapid detection
of target analyte enables them possible for real-time measurements and as a POC de-
vice [83,87]. Due to their significant advantages, label-free electrochemical biosensors have
become a popular choice for electrochemical-based diagnostic of SARS-CoV-2 infection.

The fabrication of label-free electrochemical biosensors critically relies on several
components such as the transducer (working electrode), biorecognition molecules, and
electrochemical transducing techniques. These sensing platforms ensured more sensi-
tive detection by fabricating the working electrode with materials that possess excellent
electronic performance and applying the high specificity and affinity of biorecognition
elements [88]. Table 2 demonstrates numerous types of electrochemical biosensors for
detecting SARS-CoV-2 in clinical samples such as saliva, nasopharyngeal swab, serum,
throat swab, urine, and feces. The limit of detections (LOD) was in the range from nanomo-
lar to femtomolar using various fabrication strategies and electrochemical transducing
techniques that will be discussed in the following subsections.
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Table 2. Several reported electrochemical biosensors for SARS-CoV-2.

Target
Analyte

Recognition
Element

Electrode
Modification

Platform
Technology Name Sample Type Integration with

Smartphone
Electrochemical

Detection Method Response Time Limit of Detection Reference

Spike protein

Monoclonal
antibody

Fluorine doped tin
oxide electrode with
gold nanoparticles

Screen-printed
carbon electrode eCovSens Saliva No DPV 10–30 s 90 fM [89]

Antibody

Laser-scribed graphene
electrode combined

with three-dimensional
gold nanostructures

Miniaturise
laser-scribed

graphene electrode
- Serum Yes DPV 1 h 2.9 ng/mL [90]

Antibody Graphene Graphene-field effect
transistor

COVID-19 field
effect transistor

sensor
Nasopharyngeal No - >1 min

1 fg/mL in antigen
protein

1.6 × 101 pfu/mL in
culture medium

2.42 × 102 copies/mL
in clinical samples

[91]

IgG antibody
Cu2O nanocubes

Staphylococcal protein
A

Screen-printed
carbon electrode Nanobiodevice

Saliva and
artificial

nasopharyngeal
No CV, EIS 20 min 0.04 fg/mL [92]

Monoclonal
antibody Graphene Screen printed

electrode - - No CV, EIS 45 min 260 nM [93]

Human angiotensin-
converting

enzyme
Gold nanoparticles Graphite printed

electrode

Low-cost
Electrochemical

Advanced
Diagnostic

(LEAD)

Saliva,
nasopharyngeal

swab
No SWV 6.5 min 229 fg/mL [94]

DNA Aptamer Gold electrode
Electrochemical-
aptamer-based
(EAB) sensor

Serum and
artificial saliva No SWV 15 s - [95]

Antibody Glassy carbon
electrode-gold cluster - -

Saliva and
oropharyngeal

swab
No CV, SWV ~35 min 0.01 ag/mL [96]

Monoclonal
antibody

Glassy carbon
electrode-reduced

graphene oxide
- - Saliva No CV, EIS, SWV - 150 ng/mL [97]

Angiotensin-
converting enzyme-2

(ACE2)

Carbon
electrode-Nafion

permeable membrane

Screen-printed
electrode RAPID 1.0

Saliva and
Nasopharyn-

geal/oropharyngeal
swab

Yes CV, EIS 4 min 1.16 PFU/mL [98]

IgG antibody Graphene electrode
Screen-printed

electrode (cellulose
paper substrate)

Nasopharyngeal
swab Yes CV, EIS - 0.25 fg/mL [99]
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Table 2. Cont.

Target
Analyte

Recognition
Element

Electrode
Modification

Platform
Technology Name Sample Type Integration with

Smartphone
Electrochemical

Detection Method Response Time Limit of Detection Reference

Spike protein and
viral particles

DNA-spike antibody
conjugate

Electrode-tethered
sensors - - Saliva No Chronoamperometry

(CA) 5 min - [100]

Spike protein and
receptor-binding

domain

Monoclonal
antibody

ACEA Bioscience’s
96-well platform
integrated with

sensing electrode

- Serum No EIS <5 min - - [101]

-
Cobalt-functionalized

titanium dioxide
nanotubes

Custom-cobalt-
titanium dioxide

nanotubes packaged
printed circuit board

setup

- - No Amperometry 30 s ~0.7 nM [102]

Antibodies

3D nanoprinting of
electrodes coated

by reduced-graphene
oxide

Microfluidic chip
3D-printed

COVID-19 test
chip (3DcC)

- Yes EIS ~ 11.5 s 2.8 fM for S protein
16.9 fM for RBD [103]

Antibodies Graphene oxide
Folding paper-based

electrochemical
sensor

COVID-19
ePAD Serum Yes SWV 30 min 0.11 ng/mL [104]

IgG antibody Zinc oxide nanowires

Microfluidic
paper-based

analytical devices
(µPADs)

- Serum No EIS 15 min - [105]

ssDNA aptamer
Screen-printed carbon

electrodes-gold
nanoparticles

Screen-printed
electrode - - No EIS 40 min 66 pg/mL [106]

S1 and S2
glycoproteins - Graphene oxide and

gold nanostars
Screen-printed

electrode -
Blood, saliva and
nasopharyngeal

swab
No CV, DPV 1 min 1.68 × 10−22 µg/mL [107]

Nucleocapsid
phosphoprotein

ssDNA Gold nanoparticle and
graphene nanoplatelets

Paper-based
electrochemical

platform
- Nasopharyngeal

and saliva No CV <5 min 6.9 copies/µL [108]

Antibody Carbon nanofiber

Screen-printed
carbon electrode

coating with
absorbing cotton

padding

Cotton-tipped
electrochemical
immunosensor

Nasopharyngeal
swab Yes SWV ~20 min 0.8 pg/mL [109]

ssDNA
Indium doped tin

oxide-polypyrrole-gold
nanoparticles

Screen-printed
indium doped tin

oxide electrode
- Nasopharyngeal

swab No CV, EIS 15 min 258.01 copies/µL [110]
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Table 2. Cont.

Target
Analyte

Recognition
Element

Electrode
Modification

Platform
Technology Name Sample Type Integration with

Smartphone
Electrochemical

Detection Method Response Time Limit of Detection Reference

Nucleocapsid
gene amplicons - Gold electrode

Printed
circuit-board-based

lab-on-chips
- - No CV, DPV -

10 pg/µL
(approximately

1.7 fM
[111]

Nucleocapsid and
spike protein

One-step sandwich
hybridization of

isothermal rolling
circle amplification

amplicons

- Screen-printed
carbon electrode - Nasopharyngeal

swab sample No DPV

30 min
<2 h from RNA
extraction to the
detection step

1 copy/µL of N and
S gene [112]

Antibody

Magnetic bead-based
immunosensor

combined with carbon
black nanomaterial

Screen-printed
electrode - Saliva No DPV 30 min

19 ng/mL
for S protein

8 ng/mL
for N protein

[113]

RNA
- Gold - - Nasopharyngeal Yes - 70-80 s Accuracy of 81% [114]

Replicase complex
(ORF1ab)

p-sulfocalix[8]arene
functionalized

graphene

Screen-printed
carbon electrode -

Throat swab,
urine, feces,

serum, saliva
Yes DPV <10 s 200 copies/mL [115]

Reactive oxygen
species -

Multi-wall carbon
nanotubes decorated

electrode

Portable automatic
electrochemical

readout board and a
sensing disposable

sensor

COVID-19
associated ROS

diagnosis (CRD)
Sputum No CV <30 s Accuracy: 97%

Sensitivity: 97% [116]

Recombinant
protein with

anti-GFP
nanobody

Nanobodies Gold organic
transistors

Nanobody-organic
electrochemical

transistors (OECT)
disposable platform

- Nasopharyngeal
swab and saliva No CV, EIS

10 min
<15 min from

sample to result

1.2 × 10−21 M in
saliva

1.8 × 10−20 M in
buffer

[117]

Antigen
nucleocapsid

protein, IgM and
IgG antibodies,
inflammatory

biomarker
C-reactive protein

Capture antigens
and antibodies

Laser-engraved
graphene

Multiplexed
telemedicine

platform system
with a graphene

sensor array
connected to a

printed circuit board
for signal processing

and wireless
communication

SARS-CoV-2
RapidPlex Serum and saliva Yes

DPV, open-circuit
potential-

electrochemical
impedance

spectroscopy
(OCP-EIS)

~1 min - [118]

ORF1ab fragment

Catalytic
hairpin assembly

and terminal
deoxynucleotidyl

transferase
mediated-DNA
polymerization

Gold electrode - - Serum and saliva No EIS, DPV - 26 fM [119]

CV-Cyclic voltammetry; DPV-Differential pulse voltammetry; SWV-Square wave voltammetry; EIS-Electrochemical impedance spectroscopy.
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3.1. Transducer (Working Electrode) and Electrochemical Transducing Methods

The transducer or working electrode can be fabricated with semiconducting and
conducting materials ranging from metals (e.g., platinum and gold) to non-metals (e.g.,
carbon) using diverse sizes of materials (from bulk to micro and nanostructured materi-
als) [67,70,88]. Additionally, polymer electrodes and ceramic electrodes are often chosen in
the fabrication of working electrodes of electrochemical biosensors due to their advanta-
geous properties such as stability, biocompatibility, and tuneable electric conductivity [120].
The selection of working electrode materials will determine the performance of the elec-
trochemical biosensor including the rate of heterogeneous electron transfer (affect the
sensitivity and detection time), double-layer capacitance (affect the limit of detection), the
character of the coupling chemistry required to attach the biorecognition molecules, and
the propensity towards non-specific binding [67,88].

In electrochemical biosensors, the changes in electrical properties of the working
electrode can be measured based on several transducing methods such as voltammetry
(measure the current at a different range of potential), amperometric (measure the current
at constant potential), potentiometric (measure the charge potential at fixed current), and
conductometric (measure the conductivity of working electrode at varying of frequencies)
depending on the detection principle and application of electrochemical biosensors. Among
all the transducing techniques, the voltammetric techniques, namely cyclic voltammetry
(CV), square wave voltammetry (SWV), and different pulse voltammetry (DPV), are often
chosen in electrochemical diagnostics sensing due to the simplicity of the method and
low-cost instrumentation (only a potentiostat is needed) [27,121–123]. Therefore, the de-
tection times could be completed in a short period, and detection costs can significantly
be reduced [124]. Moreover, these methods are significantly used in the fabrication of
label-free electrochemical biosensors for viral detection [85]. The mode of applied potential
differentiates among the CV, DPV and SWV techniques. In CV, the sample sweeps through
varying potentials, whereas the potential of sample pulses from one potential to another in
both DPV and SWV techniques [125].

CV technique provides information on the preliminary redox characteristics of the
biorecognition elements or target analyte. Cyclic voltammograms can demonstrate the
electrochemical characteristics and reversibility of the redox reaction (semi or quasi re-
versible, irreversible, completely reversible). Moreover, the CV technique is often used
to measure the surface area of various materials that are functionalized onto the elec-
trodes to observe the improvement of the electrochemical performance [75,126]. CV is
commonly employed in diagnostics approaches to characterise target chemical substances
and assess the electrochemical mechanism of chemical reactions. Nevertheless, CV is
not recommended for quantitative detection of target chemical substances as it possess
low resolution and sensitivity [107]. DPV and SWV are favored voltammetric methods
used in electrochemical diagnostics due to their high resolution and sensitivity [75,107].
In DPV, the peak voltammogram was obtained through the measurement of differences
between two current responses recorded in each pulse period [127]. Meanwhile, SWV
voltammograms were obtained by plotting the differences between two current responses
recorded in each pulse period against the staircase potential. The capability of DPV and
SWV to reduce the effect of capacitive current and increase the signal-to-noise ratio by
attenuating background current makes these voltammetry techniques important over other
electrochemical techniques [127,128]. Due to these characteristics, DPV and SWV enable
the detection of SARS-CoV-2 up to picomolar or femtomolar concentration [75].

Besides voltammetric techniques, the impedance technique, namely, electrochemi-
cal impedance spectroscopy (EIS), has been widely used in electrochemical diagnostics.
Generally, it measured the impedance or capacitance of the electrochemical biosensors
system by imposing a sine wave with an amplitude range from 5 to 10 mV. Through EIS,
the interfacial characteristics (adsorption or desorption) between the electrode and elec-
trolyte could be determined. Moreover, the EIS data can give information on the kinetic or
mechanistic aspects and the electrochemical redox reaction rates [129]. Similar to CV, EIS
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measurement was also performed throughout every step of the electrochemical biosensor
fabrication to follow the electrode surface modification. For example, Abrego-Martinez
et al. [106] have performed the CV and EIS analyses in an electrolyte solution containing
5 mM [Fe(CN)6]3−/4− to evaluate the success of each fabrication step of aptasensor for
monitoring the SARS-CoV-2 pseudovirus. The developed aptasensor could detect the spike
protein of SARS-CoV-2 within 40 min of incubation time with a LOD of 66 pg/mL by
EIS measurement.

3.2. Biorecognition Molecules Used for Fabrication of SARS-CoV-2 Electrochemical Biosensor

Until now, the immunoassay and nucleic-acid-based assay have been extensively
utilized for clinical detection of SARS-CoV-2. Hence, the integration of these assays with an
electrochemical sensing platform could overcome the existing limitations and drawbacks.
This is due to the fact that electrochemical biosensors can provide more precise and sensi-
tive results, as well as lower testing costs, user-friendly due to simple instrumentations,
robust diagnosis, and rapid response time [26,130]. In the fabrication of electrochemical
biosensors, DNA or RNA, aptamer, antibodies, and peptides are the common biorecogni-
tion elements used to detect various pathogens, including human coronaviruses [115,131].
Table 3 summarises the advantages and limitations of different biorecognition elements
in the fabrication of electrochemical biosensors. Two types of electrochemical biosensors
namely electrochemical immunosensor and electrochemical DNA sensors mainly utilized
for SARS-CoV-2 detection are extensively discussed in the following section.

Table 3. Advantages and drawbacks of common biorecognition elements applied in the fabrication
of electrochemical biosensors for SARS-CoV-2 detection.

Type of
Electrochemical

Biosensors

Biorecognition
Elements Binding Interaction Advantages Drawbacks

Nucleic acid-based

ssDNA/RNA DNA-DNA,
DNA-RNA

Detection of ssDNA PCR
products, simple to
produce, stable, very
specific, ability to
miniaturize, easy to
implement

Restricted for gene
sequence detection, strict
to hybridization
conditions and expensive

Aptamer

Aptamer-binding
protein

Aptamer-DNA
Aptamer-antibody

Small size, low-cost,
stable, simple to produce,
high affinity and
selectivity, wide variety
of targets

Strict to hybridization
conditions, long-term
SELEX process and may
require additional
complex steps

Immunosensor

Monoclonal
antibodies

(mAb)

Non-covalent
interaction between

antibody-
antigen/protein

More specific than pAb,
low chances of
cross-reaction

High cost, unstable (very
sensitive to
environmental
conditions) and complex
production

Polyclonal
antibodies

(pAb)

Low production cost,
various epitopes and
mass-produce

Unstable (very sensitive
to environmental
conditions) and high
chances of cross-reaction

Antibody single
chain

Fv fragments (scFv)

Small size compared
with the whole antibody
and low variability

Longer time to produce,
lower affinities compared
with whole antibodies
and not applicable for
small molecules

Adapted from reference [74,79].
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3.2.1. Electrochemical Immunosensor

Antibodies are recognized as the biorecognition molecules for electrochemical im-
munosensors. They are often chosen in most bioanalytical labs and commercial diagnostic
kits to detect proteins, viruses and cancer cells because of their good affinity, high sensi-
tivity, and specificity [132]. Among various types of antibodies, monoclonal antibodies
(mAb), polyclonal antibodies (pAb) and antibody single-chain Fv (scFv) fragments are
found as the most significant antibodies used to detect the respiratory virus infection. In
particular, the reaction of mAb is highly specific compared with pAb as it can only bind
with a single epitope. Thus, there are no chances of cross-reaction. Unlike mAb, pAb can
recognize various epitopes on a single antigen [133]. Due to this characteristic, pAb is
broadly applied in biosensors fabrication since its production cost is less expensive and can
be mass-produced. The scFv fragments are preferably used for antigen capture compared
with the whole antibody due to their smaller size and low variability [74,134]. A good
affinity of antibodies towards antigens (can achieve nanomolar level) yielded numerous
types of electrochemical biosensors. It can be in the form of enzyme-amplified ELISA to
label-free formats [23]. Nevertheless, the antibody-based assay faced some limitations such
as the production process being complex and expensive. Moreover, the addition of signals
tags to the antibodies might disrupt their affinity [135].

In an electrochemical immunosensor, specific antibodies are immobilized onto the
surface of the working electrode using several techniques such as direct absorption, mag-
netic beads (MBs) or self-assemble monolayer (SAM). They bind to specific target analytes
(antigens) to generate electrical signals that can be measured using various transducing
methods (Figure 3) [74,79]. Among the immobilization techniques of antibodies, SAMs
of alkanethiols is mostly applied due to the capability to create strong covalent bonds on
the surface of the working electrode in a simple way [136]. The generated signals in im-
munosensing assay are correlated to the reaction rate of antigen-antibody. Electrochemical
immunosensors have been proven to detect most infectious diseases due to their excellent
sensitivity, fast detection time, and the ability of miniaturization [132].
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label-free and labelled systems (e.g., sandwich-type immunosensor) using gold electrode substrates.

Accordingly, numerous immunosensors have been developed for the detection of
various groups of viruses. The first immunosensor for detecting SARS-CoV had been
developed by Ishikawa et al. [137] based on field-effect transistor (FET). In this study, the
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biochemical reaction between antibody and antigen was quantified based on the conducto-
metric method. The virus antigen nucleocapsid (N) protein was used as a target analyte
to fabricate this electrochemical biosensor. Antibody mimic proteins (AMPs) were used
as an alternative for conventional antibodies due to their simple and low-cost production,
smaller size (usually 2–5 nm, less than 10 kDa), and has stability in a broad range of pH
and electrolyte concentrations. The surface of the working electrode was modified with an
AMP capture agent namely fibronectin-based protein (Fn) to improve the selectivity of the
designed sensor. The well-developed sensing platform could detect the N protein in 44 µM
of bovine serum albumin (BSA) as low as 2 nM within 10 min.

Recently, Zaccariotto et al. [97], an impedimetric immunosensor was developed by
immobilizing antibodies on modified glassy carbon for SARS-CoV-2 detection. Figure 4
illustrates the fabrication steps of the electrochemical immunosensor. The successful fabri-
cation of the electrochemical immunosensor was evaluated using CV and EIS techniques.
The modification of glassy carbon electrodes with reduced graphene oxide presents a
low-cost diagnostic technology. Hence, this strategy can directly be implemented to single
printed carbon electrodes to make the developed immunosensor become a POC device
in the future. In this study, the fabricated impedimetric immunosensor was successfully
detected the SARS-CoV-2 spike protein with LOD of 150 ng/mL in the range of linear
concentration from 0.16 to 40 µg/mL. Besides an impedimetric method, the developed
diagnostic platform can use a voltammetric technique such as SWV to detect this virus.
The developed electrochemical immunosensor can detect this pathogenic virus at a concen-
tration as low as 2.40 ng/mL using the SWV technique. The proposed immunosensor is
a practical diagnostic test for screening SARS-CoV-2 infection as it demonstrated a good
performance towards detecting the virus in the saliva samples. Hence, the detection process
for the developed sensor is much simpler and rapid compared to other antibody-based
antigen diagnostic methods.
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Figure 4. Schematic representation of fabrication steps for a label free impedimetric immunosensor
for detection of SARS-CoV-2 in a saliva sample. (a) CV and (b) EIS measurements for each fabrication
step in 0.2 mol/L PBS, pH 7.4, 0.1 mol/L KCl containing 5.0 mmol/L of [Fe(CN6)]3−/4− for the
working electrodes. (c) CV measurement of the immunosensor after the incubation with different
antigen concentrations. Reproduced with permission from [97]. Copyright 2021 Multidisciplinary
Digital Publishing Institute (MDPI).
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In another study conducted by Liv [96], a novel electrochemical immunosensor was
developed to detect the spike protein of the SARS-CoV-2 antigen in spiked saliva and
oropharyngeal swab samples. This research group fabricated the sensor using a glassy
carbon electrode modified with gold and capped with cysteamine and glutaraldehyde. The
developed immunoassay platform employs the voltammetric method (CV and SWV) to de-
tect the spike antibody in synthetic and real samples. The viral surface spike (S) protein was
chosen as a biomarker for SARS-CoV-2 detection since it is a core transmembrane protein of
the virus and highly immunogenic [138]. The fabricated electrochemical immunosensor can
detect the target SARS-CoV-2 antigen protein with a LOD of 0.01 ag/mL in both synthetic
media and clinical samples. This is the best reported LOD compared to another voltammet-
ric immunoassay [102,113,118]. In addition, the developed electrochemical immunosensor
demonstrated a simple sample preparation and shorter detection time (~35 min) compared
to other established electrochemical methods in the literature [93,102,115]. The fabricated
biosensor also showed high selectivity by the ability to distinguish the SARS-CoV-2 and
MERS-CoV antigens. The accuracy of the developed immunosensor for detection of SARS-
CoV-2 using saliva and oropharyngeal swab samples proved the successful fabrication of
this immunosensor as most of the existing diagnostic tools used blood and serum samples
that required a lengthy sample preparation process. However, further study is needed
to integrate the ultrasensitive developed immunosensor into a ready-to-use commercial
sensor and kit.

Accordingly, numerous electrochemical immunosensors have been developed for high
sensitivity detection of different kinds of viruses. The first electrochemical immunosensor
for the detection of SARS-CoV had been developed by Ishikawa et al., (2009) based on
field-effect transistor (FET) [137]. Here, the change in conductance generated by the
interaction of antibody-antigen can be measured and correlated to the concentration of
the analyte. This FET-based electrochemical sensor used the virus antigen nucleocapsid
(N) protein as a SARS biomarker. As an alternative for conventional antibodies, antibody
mimic proteins (AMPs) were utilized as affinity binding agents due to their simple and
low-cost production, smaller size (usually 2–5 nm, less than 10 kDa), and stability to a
broad range of pH and electrolyte concentrations. The surface of working electrode was
modified with a fibronection-based protein (Fn) as AMP capture agent to selectively bind
the antigen N protein. To further improve the immobilization of the AMPs and transduced
signal, the exposed gate region of the FET-based immunosensor was modified with In2O3
nanowires on a Si/SiO2 substrate. The well-developed sensing platform was able to detect
the N protein at sub-nanomolar concentrations in a shorter time without the need for
labelled reagents.

To date, a great number of electrochemical immunosensors have been reported for the
detection of SARS-CoV-2 infection with good selectivity and LOD as presented in Table 2.
In early 2020, Seo et al., (2020) have developed FET-based immunosensor for the detection
of SARS-CoV-2 in clinical samples [91]. The surface of FET sensor was immobilized with
a SARS-CoV-2 spike antibody through 1-pyrenebutyric acid N-hydroxysuccinimide ester
(PBASE), an efficient interface coupling agent used as a probe linker. In this study, the
viral surface spike (S) protein was chosen as a biomarker for virus detection because it is
a major transmembrane protein of the virus and highly immunogenic. Moreover, the S
protein exhibits diverse amino acid sequences among coronaviruses and thus enabling the
specific detection of SARS-CoV-2 [138]. This FET immunosensor can detect the target SARS-
CoV-2 antigen protein with LOD of 1 fg/mL in phosphate-buffered saline. In addition, the
developed sensor demonstrated high sensitivity and selectivity by the ability to distinguish
the SARS-CoV-2 antigen protein from those of MERS-CoV. The successful fabrication of this
immunosensor enabling sensitive detection of the SARS-CoV-2 virus in clinical samples
with LOD of 2.42 × 102 copies/mL without sample pre-treatment or any labelling.
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3.2.2. Electrochemical DNA Sensor

Viral nucleic acids are considered the most appropriate biorecognition elements for
screening SARS-CoV-2 infection since the IgM and IgG immune responses are very low
during the early stage of infection [23]. The common biorecognition elements that have
been used in viral nucleic acid-based electrochemical sensors are ssDNA, RNA, peptide
nucleic acid, and hairpin DNA [139]. Among them, ssDNA probes have been widely
utilized in the construction of electrochemical-sensor-based nucleic acid which is known
as electrochemical DNA sensor [74]. In an electrochemical DNA sensing, the ssDNA
probe (15–30 kb) was immobilized onto the surface of the working electrode to recognize its
complementary ssDNA target and produced a double-strand DNA (dsDNA) (Figure 5). The
main interaction that occurred between the ssDNA probe and its complementary ssDNA
target is called DNA hybridization. This hybridization reaction can be transferred into a
quantifiable electrical signal via electrochemical techniques. The electrical signals were
proportional to the concentration of viral nucleic acids [140,141]. Generally, the electrical
signals are generated from the electron transfer of the redox-active probe with the electrode.
In most electrochemical detection, [Fe(CN)6]3−/4− and [Ru(NH3)6]3+/2+ complexes re
used as redox-active probes [142]. The immobilization of ssDNA onto the surface of the
working electrode is a crucial step in fabricating an electrochemical DNA sensor because
it will determine the excellent reactivity and orientation of the DNA probe to hybridize
with its ssDNA target [143,144]. In an electrochemical DNA sensor, the ssDNA can be
immobilized onto the surface of the working electrode through several techniques such as
adsorption, covalent-bonding, and avidin-biotin interaction [145]. Among the techniques,
chemisorption is widely applied for the covalent immobilization of thiol-modified DNA
probe onto the gold electrode surface to form a self-assembly monolayer (SAM) due to the
high-affinity interaction between the thiol group and gold electrode [146,147].
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chemical DNA sensors based on gold electrode substrates via self-assembly monolayer technique
(thiol chemistry).

In early 2005, Abad-Valle et al. [148] developed the electrochemical DNA sensor to
detect the SARS-CoV. This work designed the surface of the working electrode using 100 nm
sputtered gold films. The gold surface was immobilized with a labelled thiolated DNA
probe and hybridized with 30-mer complementary ssDNA that encodes a short lysine-rich
region as target molecules. The electrochemical detection was measured indirectly using an
alkaline-phosphatase-labelled streptavidin that converts a substrate into an electroactive
product. The fabricated electrochemical DNA sensor successfully detects the SARS virus-
specific sequence within 1 h with a LOD of 6 pM. Among many types of electrochemical
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DNA sensors, aptamers stand as the ideal probe on the sensing surface due to their
extraordinary characteristics including high affinity and specificity to their target molecules,
resistance to a wide range of temperatures, and can be easily modified by chemical groups
for immobilization or labelling purposes [149]. Indeed, aptamers can be designed for a
wide variety of targets, including antibodies, protein, enzymes, amino acids, growth factors,
cancer biomarkers, toxins, metal ions and low molecular weight vitamins [150–156]. Owing
to these properties, they exhibit various recognition mechanisms during electrochemical
detection. In most electrochemical detections, their sensing mechanism relies on target-
induced conformational changes that bring a redox reporter close to an electrode surface,
triggering an increase in electrochemical signal [157]. The aptamer can be either artificial
synthesis in vitro or biochemically synthesis via the systematic evolution of ligands by
exponential enrichment (SELEX) process [131].

Unlike antibodies, aptamer offers enormous advantages such as small size, short
synthesis time, cost-saving production, not involving animal production, and no batch-
to-batch variation. More importantly, they possess lower detection limits (can reach the
zeptomolar (zM) level) which are necessary for developing the high sensitivity electro-
chemical biosensor [131,158]. The utilization of aptamer as a recognition element for virus
detection has been well described and reported in several pieces of literature. For instance,
Bhardwaj et al. [159] fabricated the electrochemical sensor using ssDNA aptamers that
target recombinant influenza A mini-hemagglutinin (mini-HA) protein and whole H1N1
viruses for detection of influenza H1N1 viruses. In this study, the selected aptamer was
immobilized onto the surface of the glass working electrode that was chemically modified
with indium tin oxide (ITO). The fabricated aptasensor demonstrates the high sensitivity
and selectivity detection of the H1N1 virus with the LOD of 3.7 plaque-forming units
(PFU)/mL. Besides using a single DNA aptamer as a recognition molecule, the aptamer
target-antibody sandwich technique is another common sensing mechanism applied. The
utilization of duplex recognition patterns in electrochemical detection would enhance
accuracy and selectivity and give the lowest LOD of electrochemical biosensors [74].

Idili et al. [95] developed an electrochemical aptamer-based (EAB) biosensor for the
detection of SARS-CoV-2 spike (S) protein in undiluted biological fluids (serum and ar-
tificial saliva). In this study, a redox reported-modified aptamer (Atto MB2 (methylene
blue derivative)-aptamer) was covalently attached onto the surface of the gold working
electrode. The binding of spike protein will trigger a change in the aptamer conformation,
subsequently bringing the redox reporter closer to the gold electrode surface and generating
the electrochemical signals. The SWV analysis was used to characterize the performance of
the EAB biosensor in detecting different concentrations of spike protein in PBS buffer to
mimic the condition of real clinical samples. The developed EAB biosensor can detect the
SARS-CoV-2 RBD target as fast as within seconds (15 s), demonstrating its ability for POC
devices. Moreover, this sensing platform showed a similar analytical performance to other
diagnostic methods that use antibody and aptamer as they can detect the SARS-CoV-2
antigen down to picomolar levels in serum, buffer, and 50% artificial saliva.

Yousefi et al. [100] reported the first reagent-free electrochemical sensor using DNA
aptamer-antibody conjugate as biorecognition elements to detect the SARS-CoV-2 infection
(Figure 6). This research group successfully fabricated the electrochemical sensor that
can directly detect the SARS-CoV-2 virus and its associated spike protein in processed
and unprocessed patient saliva within 5 min, without any reagents. The designed sensor
adopted a sensing mechanism that detects the potential triggered transport of a DNA-
antibody conjugate. Here, an analyte-recognizing antibody was attached to a rigid, negative-
charged linker composed of DNA and immobilized onto the surface of the gold working
electrode. Ferrocene redox reporter molecule was attached to a thiolated DNA probe
at 3′ to monitor the interaction on the surface working electrode. The electrochemical
signals of the fabricated aptasensor were recorded using chronoamperometry (CA) using a
potential window from 0 to +500 mV for 50 ms using Ag/AgCl as a reference electrode.
Such electrochemical sensor demonstrates long-term stability as its performance was not
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much affected after 9 months of storage. Despite their benefits and versatility, aptamer
also possesses some limitations that restrict their applications, such as being susceptible to
nuclease degradation and not binding to the targets that lack functional groups [132].
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Figure 6. The fabrication of electrochemical sensors based on a labelled system using DNA aptamer-
antibody conjugate as recognition elements for detection of SARS-CoV-2 virus. (a) Detection of
SARS-CoV-2 viral particles by the fabricated sensor coated with gold on the electrode surface. (b) The
design of the sensor consists of an analyte-specific antibody tethered to a linker composed of dsDNA
that also includes the redox probe ferrocene. (c) The changes in electrical properties that occurred
on the electrode sensor surface. (d–f) The peak chronoamperometric current of fabricated biosensor
after exposure to target. The figure has been reproduced with permission from [100]. Copyright 2021
American Chemical Society (ACS).

4. The Advanced Electrochemical Sensing Technologies for Point-of-Care (POC)
Detection of SARS-CoV-2

It is no doubt that the rise in SARS-CoV-2 outbreak cases demands rapid on-site and
accurate diagnosis devices without the need for skilled technicians and sophisticated labo-
ratories for high throughput sample screening [82,160]. In such situations, POC devices are
urgently needed for the early detection of SARS-CoV-2 infection as this may be the best
solution for now. Nowadays, the utilization of POC devices allows the diagnostic test to
be performed near the patient site, providing faster results than conventional laboratory
testing. Due to these features, they are significant in situations where rapid medical de-
cisions need to be taken for example in emergency departments [161,162]. Notably, the
use of POC diagnostic tools for early screening of viral infection in the population could
potentially combat the spread of infection. Owing to the excellent diagnostic performance
mentioned earlier, the electrochemical biosensors show potential and could be integrated
into point-of-care testing (POCT) for SARS-CoV-2 diagnosis. The advanced design in elec-
trochemical sensing platforms such as miniaturized sensors and microfluidic chips makes
them a good alternative to the existing mainstream diagnostic COVID-19 methods [160].
As tabulated in Table 2, most of the developed SARS-CoV-2 electrochemical biosensors
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employed miniaturized electrode and microfluidic technologies for the ultrasensitive and
on-site detection of this contagious virus that will be discussed further in the next section.

4.1. Nanomaterials as the Surface Modifier on the Miniaturized Electrochemical Sensor

In the current pandemic crisis, most sensor research moves towards developing nano-
enabled miniaturized electrochemical biosensors to gain more accurate and fast detection
of the SARS-CoV-2. The introduction of nanotechnology greatly improves the performance
of SARS-CoV-2 electrochemical biosensors by enabling the detection at a very low level
(picomolar (pM) to femtomolar (fM) level) and high selectivity toward virus protein [89].
Nanomaterials possess unique physical and chemical surface characteristics compared
with the bulk material such as diffusivity, solubility, optical, thermodynamic, colour and
magnetic features [163,164]. In biochemical sensing, nanomaterials exhibit functional elec-
trical and mechanical characteristics that are responsible for enhancing the electrochemical,
optical, and magnetic properties of biosensors [165,166]. Particularly, the addition of nano-
materials onto the surface of the working electrode can enlarge the biocompatible areas with
the target analytes (e.g., enzymes, proteins, antibodies, DNA, and cells) which subsequently
enhanced the sensor reactivity and sensitivity in an electrochemical sensing platform [165].
Moreover, the implementation of nanotechnology in viral electrochemical biosensors can
reduce the detection time and experimental cost since a small volume of samples is needed
for analysis [165,167].

Various types of nanomaterials have been used for fabricating the SARS-CoV-2 elec-
trochemical biosensors such as gold nanoparticles (AuNPs), quantum dots (QDs), carbon
nanotubes (CNTs), and graphene or graphene-derived nanomaterials (Figure 7). In an
electro- chemical sensing platform, graphene is a good surface modifier to interface with
diverse biomolecules and cells [167,168]. Meanwhile, graphene-derived nanomaterials
namely graphene oxide (GO) and reduced graphene oxide (rGO) are an excellent choice for
electrode surface modification because they possess good mechanical, chemical, electronic,
and thermal characteristics. Sengupta and Hussain [169] had extensively reviewed the ap-
plication of graphene-based electrochemical biosensors for rapid detection of SARS-CoV-2
and other pathogenic viruses.

Along with utilizing nanomaterials as the substrates for biorecognition element im-
mobilization, the introduction of miniaturization technology makes the electrochemical
biosensors suit for on-site diagnostics applications [160,170]. Due to the high demands for
POCTs, miniaturized electrochemical sensors are broadly used to detect different target
analytes including metal ions, small organic molecules, and biomolecules in diverse sec-
tors such as food safety, environmental and healthcare [171]. Such sensor systems offer
many benefits to electrochemical sensing platforms such as portability, simple sample
preparation, ease to operate, good selectivity and sensitivity, rapid detection time, and
low experimental cost [172,173]. Owing to their remarkable benefits, various designs of
miniaturized electrochemical biosensors have been developed to detect SARS-CoV-2.

Last year, Alafeef et al. [108] research group developed the miniaturized electrochem-
ical DNA sensor for quantitative measurement of SARS-CoV-2 in clinical samples. The
electrochemical DNA sensor was fabricated using highly specific antisense thiolated ssDNA
capped with gold nanoparticles (AuNPs) which target the viral nucleocapsid phospho-
protein (N gene) (Figure 8). The developed sensor can detect the SARS-CoV-2 RNA for
only 5 min with a LOD of 6.9 copies/µL and a sensitivity of 231 copies/µL without any
additional amplification technique. The obtained LOD in this study is comparable with
other clinical approaches. Interestingly, the high sensitivity and specificity of this sensor
manage to discriminate the positive COVID-19 samples from the negative ones with an
accuracy of nearly 100%. Tripathy and Singh [66] proposed a miniaturized electrochem-
ical sensor based on the DNA hybridization method for detecting SARS-CoV-2 as they
successfully developed the label-free electrochemical DNA sensor for detection of dengue
fever and breast/ovarian cancer in previous research [174,175]. The miniaturized device
was fabricated on oxidized silicon substrates, using standard CMOS fabrication process
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flow and electrodeposition techniques. Such sensors utilized gold nanoparticles (AuNP)
as the transducing element. In this sensing approach, a thiolated ssDNA probe which is
complementary to SARS-CoV-2 RNA or its corresponding cDNA was immobilized on the
surface of AuNP via gold-thiol self-assembly. Although this label-free miniaturized sensor
could potentially become a POC biosensing device, additional steps such as the extraction
of target DNA/RNA from the infected host and the following sample preparations are
needed before the electrochemical detection. Such tedious sample preparation steps could
affect the diagnostic accuracy and prolong the time required for analysis.
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A further advance in the electrochemical sensing platform allows Mahari et al. [89] to
develop an in-house built single printed carbon electrode (SPCE) called eCovSens. They
fabricated the sensor by drop-casting the gold nanoparticles (AuNPs) onto the surface of the
fluorine-doped tin oxide electrode (FTO) electrode before being allowed for immobilization
with antibody probe. The addition of AuNPs on the surface of the FTO electrode will
amplify the electrical signals of the fabricated sensor. Then, an nCOVID-19 monoclonal
antibody probe was immobilized onto FTO/AuNPs electrode to recognize the spike antigen
of nCOVID-19. This surface modification and antibody immobilization strategies provide
rapid detection (10–30 s) with LOD of 90 fM using saliva samples. Furthermore, the
eCovSens is an ultrasensitive sensor as they require only 20 µL sample volume compared to
the other electrochemical biosensors that require at least 100 µL sample volume. Therefore,
eCovSens could be a promising POC device as it is portable and stable until one month
of storage.
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Figure 8. Schematic representation of the principal detection of label-free paper-based electrochemical
DNA biosensors for SARS-CoV-2 detection in nasal swabs or saliva of the patients. (a) Step 1: Samples
will be collected from the nasal swab or saliva of the infected individuals. (b) Step 2: The viral RNA of
SARS-CoV-2 will be extracted from samples. (c) Step 3: The extracted RNA samples will be dropped
onto the paper-based electrochemical DNA biosensor and (d) incubated for 5 min. (e) Step 4: The
electrochemical measurement will be performed using a potentiostat. The figure has been reproduced
with permission from [108]. Copyright 2022 American Chemical Society (ACS).

Miripour et al. [116] presented a portable disposable sensor with an automatic electro-
chemical readout for real-time monitoring the reactive oxygen species (ROS) levels in the
sputum of COVID 19 patients. Multi-Wall Carbon Nanotubes (MWCNTs) were selected as
a nanomaterial to functionalized on the surface of the working electrode because they have
good mechanical and electrical characteristics [176]. In this sensing system, the reaction
between ROS molecules and the surface of the MWCNTs electrode generates an electrical
signal measured via cyclic voltammetry. Such electrical signals correlate with the viral
load in the sputum of COVID 19 samples. The responses of this disposable sensor were
comparable with the CT scan results of the COVID-19 patient. In addition, the electrochem-
ical ROS sensor could potentially use for rapid screening of patients that require prompt
medical examination since it can give results less than 30 s.

In recent work, Hashemi et al. [107] established the electrochemical nanosensor for
screening SARS-CoV-2 glycoprotein in biological samples. They fabricated the nanosensor
using a layer of GO coated with gold nanostars (AuNS). The addition of these excellent bio-
chemical sensing compounds on the surface of the working electrode allows this nanosensor
to demonstrate a good LOD (1.68 × 10−22 µg/mL) and sensitivity (0.0048 µAµg/mL/cm).
More importantly, the developed nanosensor can detect the trace of viruses in less than
1 min without the requirement of any biological marker and sample pre-treatment. In
addition, the fabricated nanosensor exhibits high sensitivity (95%) for the detection of
unknown clinical SARS-CoV-2 samples. Such good performances promote the developed
nanosensor as a rapid diagnostic test for the detection of viral disease.

Besides electrochemical sensing strategies, data transmission is another crucial aspect
that needs to be ascertained for rapid deliverable results to final-user and at-home diag-
nosis [177]. Following the previous miniaturized sensing strategies, Chandra [178] had



Biosensors 2022, 12, 473 22 of 32

proposed the miniaturized label-free electrochemical sensor integrated with smartphones
for rapid screening of SARS-CoV-2 (Figure 9). A smartphone-based “cloud” directory was
suggested to provide real-time surveillance of this pathogenic virus through geo-tagging.
Through this system, the sensors were capable of tracing the disease spreading around
the world and enabling the form of a library of data and details required for future prepa-
ration to manage and control such pandemics. A similar strategy has been reported by
Balaji et al. [114], where they developed an electrochemical biosensor-based smartphone
for assessing COVID-19 patients. Herein, the electrochemical signals generated from the
detection of RNA COVID-19 were transferred to the portable smartphone for displaying
the results. The obtained results are stored in a database using the Internet of Things (IoT).
Through an IoT system, the database can be shared with the concerned department to
monitor the patients to avoid contact with other people and health surveillance of the
infected patients. Accordingly, the risk of disease spreading can be reduced and expedited
the best therapy for patients. In another study, Zhao et al. [115] developed the super
sandwich-type electrochemical biosensor that can be adapted to a smartphone to detect
SARS-CoV-2 RNA. They implemented a ‘plug and play method’ to produce a portable
sensor that can easily be accessible by users to assess the diagnosis results conveniently.
Interestingly, the fabricated portable electrochemical smartphone does not require fur-
ther nucleic acid amplification to detect SARS-CoV-2, making them more convenient as a
POC device. Moreover, Torrente-Rodríguez et al. [118] introduced the advanced wireless
telemedicine-based electrochemical platform, SARS-CoV-2 RapidPlex, to screen COVID-19.
Such sensing systems possess multiplexed platforms that provide information on the level
of immune response (IgG and IgM), viral infection rate (nucleocapsid protein), and severity
of disease (C-reactive protein) [179,180]. The amperometric data from the multiplexed
sensor are recorded by custom PCB-based wireless potentiostat. The data are wirelessly
transferred to a user smartphone via Bluetooth. This sensor can be used for at-home
diagnosis since it is simple to operate and can give ultrasensitive detection of SARS-CoV-2.
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4.2. Microfluidic Chip

The integration of microfluidic technology with the miniaturized electrochemical
sensing platform can further accelerate the performance of virus detection. This device is a
so-called microfluidic chip or lab-on-chip (LoC). Microfluidic technology revolutionizes the
method for sampling, sample separation, mixing, chemical reaction, and electrochemical
detection in one device. Such technology is beneficial for real-time detection, enabling
multiplexing, and assembling multiple microfluidic components [76,181]. The use of mi-
crofluidic technology in an electrochemical sensing platform can significantly minimize
the volume of samples as it can process a small volume of fluids by using tiny channels
with dimensions at the microscale, usually tens to hundreds of micrometers [182]. Such
advanced features allow the microfluidic electrochemical devices to emerge as great alter-
natives to conventional diagnostic methods due to their huge benefits such as fast detection
times, better process control, automation, portability, reduced waste generation, low ex-
perimental cost and superior detection limit and sensitivity [183,184]. In addition, the
microfluidic electrochemical devices can offer a high quality of pathogenic viral assess-
ment since their physical and chemical environments can be precisely controlled [185].
The advancement in microfluidic technologies allows the integration of smart solutions
such as the Internet of Medical Things (IoMT), e-health, artificial intelligence (AI), and
machine learning to develop innovative healthcare technologies [186,187]. The microfluidic
devices can be fabricated using various material bases such as polytetrafluoroethylene
(PTFE), polydimethylsiloxane (PDMS), polycarbonate, silicon, glass, quartz, polymethyl
methacrylate (PMMA), paper, hydrogel, three-dimensional (3D) printing and thermoset
materials that subsequently offer diversity in their development [76,181,188].

To date, the application of microfluidic devices for SARS-CoV-2 detection are exten-
sively reported in the literature. For instance, a 3D-nanoprinted COVID-19 microfluidic
chip (3DcC) was presented by Ali et al. [103] (Figure 10). The integration of the PDMS
microfluidic channel with a 3D electrochemical sensor allows the utilization of a small
volume of antibodies (30 µL) and antigen (20 µL) to detect SARS-CoV-2. Such features
enable the 3DcC device to detect SARS-CoV-2 in seconds with LOD of 2.8 × 10−15 for spike
S1 protein and 16.9 × 10−15 M for its receptor-binding-domain (RBD) using a portable
smartphone-based potentiostat. Moreover, Li et al. [105] developed a microfluidic paper-
based analytical device (µPADs) to detect the IgG antibodies of SARS-CoV-2 in serum
samples. In this research, only 3 µL of spiked human samples and antibodies are needed
for the detection process completed within 30 min. A similar approach was applied by
Yakoh et al. [104] to monitor the level of IgG and IgM of SARS-CoV-2. They fabricated the
microfluidic chips using paper because it is cheaper, has a natural abundance and can be
discarded by incineration after use. This is highly preferable for infectious disease diagnos-
ing as the test kits need to be disposed of after testing. The electrochemical paper-based
device, COVID-19 ePAD, can detect the targeted antibodies in serum of infected patients
with 90% specificity and 100% sensitivity within 30 min.
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5. Conclusions

The existence of the COVID-19 pandemic encourages many researchers around the
world to develop robust and accurate diagnostic tests for screening of SARS-CoV-2 to
give immediate therapeutics and effective isolation of infected individuals. Up to now,
the primary clinical diagnostic tests for COVID-19 have relied on the detection of viral
nucleic acids, antigens, and antibodies specific for SARS-CoV-2. Due to the limitations
of currently available diagnostics kits, electrochemical biosensors may be an excellent
diagnostic tool for screening SARS-CoV-2 infection, as they meet the ASSURED criteria. The
present review discusses current electrochemical sensing platform strategies for detecting
SARS-CoV-2, including the use of the most sensitive biorecognition molecules, electrode
surface modification with nanomaterials in conjunction with the miniaturized electrode and
microfluidic technologies that could provide high-quality SARS-CoV-2 assessment. The
majority of studies on electrochemical biosensors have used antibodies rather than nucleic
acid as the biorecognition molecule since this method allows for easier sample preparation
while maintaining good selectivity and sensitivity results. The antibodies were mainly
immobilized on the surface of the working electrode, which had been modified using
graphene-derived nanomaterials such as GO and rGo. The developed electrochemical
biosensors can achieve the LOD as low as 2 copies/mL in clinical samples in less than
1 min of detection time without sample pre-treatment or labelling with any biorecognition
molecule. The integration of the most sensitive electrochemical sensing platforms with
smartphones enables the end-user to receive results quickly. The development of robust
electrochemical biosensors for SARS-CoV-2 detection could be used to combat future
pandemics. Although electrochemical biosensors have been proven for diagnosing a variety
of SARS-CoV-2 clinical samples, they face a few limitations when moving from laboratory
to on-site detection. Numerous issues, including the stability and reproducibility of the
electrochemical biosensors, sample preparation processes, device engineering scale-up, and
commercialization of electrochemical biosensors as a diagnostic device need to be further
investigated. This aims to facilitate the electrochemical biosensors as a precise platform for
rapid, simple, robust, and portable sensors for COVID-19 infection mass screening.
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