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Abstract: A rapid point-of-care method for the colorimetric detection of cisplatin was developed,
exploiting the efficient conversion of the chemotherapeutic drug into a high-performance nanocatalyst
with peroxidase enzyme mimics. This assay provides high specificity and ppb-detection sensitivity
with the naked eye or a smartphone-based readout, outperforming many standard laboratory-
based techniques. The nanocatalyst-enabled colorimetric assay can be integrated with machine-
learning methods, providing accurate quantitative measurements. Such a combined approach opens
interesting perspectives for the on-site monitoring of both chemotherapeutic patients to achieve
optimal treatments and healthcare workers to prevent their unsafe exposure.

Keywords: point-of-care; cisplatin; nanocatalyst; colorimetric test; machine learning

1. Introduction

Platinum-based chemotherapy drugs, such as cisplatin, are extensively used for the
treatment of several types of cancer [1–4], either as single agents or in combination with
other antineoplastic drugs [5–8]. Cisplatin is, however, highly toxic and can induce severe
side effects in treated patients, including nausea, ototoxicity, neurotoxicity, and serious
kidney damage, which partly limits its clinical efficacy [9–11]. Therefore, the monitoring
of cisplatin in patients’ body fluids, such as in blood or urine, would be fundamental to
study dose-related pharmacokinetics and toxicodynamics, achieving optimal treatment
and efficacy. Moreover, emerging evidence reveals cisplatin can be highly detrimental to
healthcare workers, who are daily exposed during the preparation and/or administration
of chemotherapy [12–14]. The continuous work-related exposure to cisplatin might cause
various organ damage and severe renal toxicity [13,15–18]. Other chronic effects linked
with exposure to antineoplastic drugs, including spontaneous abortion and congenital
anomalies [18–21], have also been reported. Considering such toxicological profile and the
possible long-term health effects, it would be crucial to frequently monitor environmental
contaminations, to prevent unsafe handling of chemotherapeutics and their consequent
dispersion, with the aim of safeguarding healthcare workers. However, for both cancer
patients and healthcare workers, the continuous monitoring of cisplatin levels in biological
fluids or as surface contaminations is hampered by the time-consuming and lengthy pro-
cedures required by state-of-the-art technology, relying on complex instrumentation and
centralized laboratories. To date, the reference analytical techniques are atomic absorption
spectrometry [22,23], inductively coupled plasma mass spectrometry [22,24,25], stripping
voltammetry [24–26], HPLC coupled to different kinds of detectors [27–30], and/or electro-
chemical methods [31–33], whereas fast and on-site sensing methods would represent a key
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technological advancement. To address such issues, some alternative approaches based on
aptamers and biosensors have been recently explored, although they do not completely
overcome the use of complex procedures and instrumentations, such as electrochemical sta-
tions, spectrophotometers, quartz crystal microbalances, or sequencing machines [32,34–39].
In this work, we developed a point-of-care (POC) strategy for frequent on-site analyses of
cisplatin with high sensitivity. We introduced a method harnessing the quick reduction of
the chemotherapeutic drug to form small platinum nanoparticles, which are then exploited
to efficiently catalyze a chromogenic reaction with consequent color generation, detectable
by the naked eye. This strategy allows a fast, specific, and instrument-free detection of
cisplatin with ppb sensitivity, outperforming many laboratory-based techniques.

2. Materials and Methods
2.1. Reagents and Equipment

Cis-diammine platinum dichloride, hydrochloric acid puriss. p.a., ACS reagent, reag.
Ph. Eur., ≥37%, sodium citrate tribasic dehydrate BioUltra, sodium borohydride, and citric
acid anhydrous were purchased from Merck/Sigma-Aldrich (Darmstadt, Germany) and
used as received. Hydrogen peroxide (H2O2) solution was obtained from Sigma-Aldrich
(Darmstadt, Germany). 3,3′,5,5′-tetramethylbenzidine (TMB) solution was purchased
from Kementec (Taastrup, Denmark). All chemicals were used as received. All solutions
were prepared with distilled, deionized water (Millipore, Milli-Q system, Darmstadt,
Germany) with a resistivity of 18.2 MΩ·cm. UV-vis measurements were performed by
using NanoDrop OneC spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA)
equipped with a 1 cm path length cell.

2.2. Preparation of Cisplatin

The stock solution of cisplatin was obtained by dissolving 1 mg of the reagent in
1 mL of HCl at 3.3 mM. To obtain a good dispersion, the solution was kept 15 min at
80 ◦C. Immediately after this step, the stock solution was diluted at different concentrations
ranging from 0 to 1600 ppb.

2.3. Synthesis of PtNPs from Cisplatin Precursor

PtNPs were synthesized by adding 954 µL of diluted solution of cisplatin in a 2-mL
glass vial immediately followed by a quick addition of 24 µL solution containing sodium
citrate and citric acid (at 0.03 M and 2 mM concentration, respectively) and 22 µL of freshly
prepared NaBH4 (0.02 M). The vial was moved into a thermoblock at 100 ◦C to obtain a
quick reduction of the Pt ions. The reaction time was 10 min.

2.4. Synthesis of PtNPs from Cisplatin Precursor with Pt Seed Baseline

PtNPs were synthesized by adding in a 2-mL glass vial 100 µL of Pt seeds (3 nm size,
20 ppb concentration), 854 µL of diluted solution of cisplatin followed by the addition
of the solution containing sodium citrate and citric acid and freshly prepared NaBH4, as
described above. The vial was moved into a thermoblock for 10 min at 100 ◦C to obtain
seed-mediated growth.

2.5. Synthesis of PtNPs from Cisplatin Precursor with Chloroplatinic Acid Hexahydrate Baseline

PtNPs were synthesized by adding in a 2-mL glass vial 100 µL of aqueous solution
of chloroplatinic acid hexahydrate (at 2.3 µM), 854 µL of diluted solution of cisplatin,
and previously described solutions containing sodium citrate and citric acid and freshly
prepared NaBH4. The vial was placed into a thermoblock at 100 ◦C for 10 min to obtain
a quick reduction of the Pt ions. The characterization of the PtNPs obtained is the same
mentioned above.
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2.6. Synthesis of PtNPs in Synthetic Urine

A stock solution of synthetic urine was prepared as reported by Sarigul et al. [40].
Then, 900 µL of this solution was mixed with 100 µL of aqueous solution containing
chloroplatinic acid hexahydrate (at 2.3 µM) and cisplatin (at 4.4 or 8.5 µM for 850 and
1650 ppm concentration, respectively). The solution of the synthetic urine and precursors
was diluted 50 times before use. PtNPs were synthesized by adding 954 µL of the diluted
solution in a 2-mL glass vial followed by the addition of the solution containing sodium
citrate and citric acid and freshly prepared NaBH4. The reduction of Pt ions was obtained
with the same method described for PtNPs from cisplatin precursor.

2.7. PtNP Characterization

The characterization of the PtNPs was performed by transmission electron microscopy
(TEM) by using a JEOL JEM 1011 microscope (Genoa, Italy), after deposition on carbon-
coated grids. The diameter of PtNPs was obtained by applying a threshold on the BF-TEM
images, followed by automatic measurement by using ImageJ.

2.8. Colorimetric Method

A total of 167 µL of TMB solution (used as received from Kementec) and 267 µL of
2 M H2O2 were quickly added to the previously obtained PtNP suspension at pH 6 in
water and pH 6.5 in synthetic urine. After 5 min at room temperature, the color change
was quantified by measuring the absorbance at 652 nm by NanodropC spectrophotometer.
Water was used as a negative control.

2.9. Machine Learning

A dataset with 62 test tubes has been prepared with fixed lighting and framing. The
dataset contains 22 test tubes with concentration lower or equal to 65 ppm, covering values
1.5, 3, 6.5, 17, 33, 45, 65. The remaining 40 test tubes were equally divided between the
following concentrations: 100, 200, 350, 500, 600, 700, 900, 1000, 1100, and 1200. The
recording lasts for 150 sec, 1 frame per second. The Knn K parameter was set to 1. The
time series are preprocessed by using a moving average with a five-second window and 5 s
stride leading to time series with 30 samples. The distances were measured as the average
distance computed over the channels. A holdout procedure assessed the performance of
the algorithm. In particular, a leave-one-out procedure was employed.

3. Results
3.1. Nanozyme-Based Method for the Detection of Cisplatin

The POC method here proposed for the rapid and visual evaluation of cisplatin con-
taminations is described in Figure 1a. The underlying principle of cisplatin sensing relies on
the use of the chemotherapeutic drug as a precursor for the fast growth of Pt nanoparticles,
a highly catalytic nanomaterial [41,42]. In particular, PtNPs are very efficient peroxidase
enzyme mimics, able to catalyze the oxidation of a chromogenic probe (e.g., TMB) into
an intense blue-colored compound [43–47]. Thanks to a careful design of the reaction
conditions and stabilizing agents, leading to the formation of small nanoparticles with
high surface-to-volume ratio, such a process enables the visual detection of an extremely
low concentration of cisplatin in only 15 min, without the use of any instrument, apart
from a small and portable heating block. Moreover, the method provides high specificity
toward platinum species, offering a clear optical readout, detectable either by the naked
eye or by a standard smartphone camera for quantitative measurements. Our strategy is
based on two main steps (Figure 1a). In the first phase of the assay, the use of a reducing
agent (NaBH4) rapidly elicits the formation of Pt(0) species from cisplatin, followed by their
nucleation and final growth of Pt nanoparticles (PtNPs) stabilized by citrate capping (see
Methods for details). Optimizing the synthesis conditions, we managed to produce very
small PtNPs of ca. 4.5± 0.7 nm, in the whole concentration range tested (Figures 1b and S1,
see the Supplementary Materials), boosting their surface-to-volume ratio (namely the cat-
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alytic activity per Pt mass unit) and thus the overall sensitivity of the POC method. In
addition, the reaction is completed in only 5–10 min. The accurate control of the particle
size along with the low size dispersion were achieved through the interplay of temperature
and sodium borohydride. In particular, the concentration of the reducing agent plays a
crucial role in determining the final size of the nanomaterial. Low concentrations of NaBH4
were not sufficient to promote the growth of the NPs (losing cisplatin detection sensitivity),
whereas high concentrations favored particle aggregation and polydispersity (decreasing
the available catalytic surface) (see Figure S2). Indeed, although NaBH4 is necessary for
the formation of PtNPs, an excess of its concentration is deleterious for the reaction, pro-
moting uncontrolled particle growth and resulting in the formation of large polydisperse
particles. Therefore, NaBH4 was used at a high temperature (100 ◦C) and at a concentration
guaranteeing a quick controlled reaction and resulting in its complete consumption (thus
preventing possible interference during the second step of the sensing scheme). On the
other side, the citrate molecules in solution act as the particle capping agents to stabilize the
NPs. Unlike other surface shielding ligands (i.e., polymers or other sticky surface coatings,
such as PVP, which limit the particle surface accessibility to catalytic reactions), citrate
also maximizes the catalytic performance of the formed particles [48–52] and, in turn, the
detection sensitivity. In the second step, the formed PtNPs, specifically derived from the
presence of cisplatin, are detected by adding a color-development solution, containing a
chromogenic substrate (TMB) and hydrogen peroxide. The color change is based on the
reaction of H2O2 and TMB catalyzed by the Pt nanozymes acting as peroxidase mimics. In
particular, H2O2 is first activated on the particle surface, leading to the formation of the
OH• radical [53–56], eliciting the oxidation of the TMB substrate [54,55] with the release of
water and formation of a colored TMB compound [44,57,58]. The fast generation of a blue
color (<5 min), detectable by the naked eye, is then indicative of the presence of cisplatin,
whereas a transparent solution indicates a cisplatin-free sample.
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Figure 1. (a) Scheme of the two-step colorimetric method for the detection of cisplatin. In the presence
of the chemotherapeutic drug, the reducing agent quickly promotes the formation of small (ca. 4 nm
diameter) monodisperse PtNPs, which in turn catalyze the oxidation of the TMB chromogen, with
consequent formation of a visible blue color. In the absence of cisplatin contaminations, the solution
remains transparent. (b) Representative TEM image of the PtNPs formed from cisplatin.

3.2. Selectivity and Sensitivity of the Detection Scheme

This detection scheme has been designed to be highly sensitive and selective, because
PtNPs are formed only in the presence of cisplatin in solution, eliciting the oxidation of the
TMB and the typical color change from transparent to blue. A representative photograph
of the colorimetric assay is reported in Figure 2a. Upon careful design of the various
reaction parameters and sizing the PtNPs around 4 nm, we achieved an excellent detection
sensitivity for cisplatin, with a visual limit of detection (LOD) around 30 ppb. This is
also due to the very efficient reduction of cisplatin to Pt(0) during the initial phase of the
reaction with subsequent formation of PtNPs. Interestingly, under identical conditions,
cisplatin was found to be a significantly more efficient precursor for the formation of
PtNPs than the reference hexachloroplatinic acid, which has a higher oxidation state (see
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Figure S3). However, despite such very good detection limit by an instrument-free readout,
we were able to further improve it, by introducing a sensitivity enhancement strategy.
Specifically, we relied on the addition of a very low Pt concentration in the first step of the
reaction, with the aim of boosting the assay sensitivity without causing any interference in
absence of cisplatin (no false positives). To this purpose, we designed two experiments,
probing either a Pt salt or Pt seeds. In the latter setup, we tried to take advantage of a
seed-mediated growth method to decrease the LOD. Cisplatin was reduced directly on
the surface of the Pt seeds previously inserted in the solution, allowing their growth to
form larger nanoparticles. With this method, a LOD of 7 ppb of cisplatin was reached
(Figure S4). In this configuration, to avoid false positive results, a very low concentration
of Pt seeds in solution must be used, because of the catalytic properties of the starting
material itself, which limits the overall sensitivity gain. On the other hand, we probed
the performance of Pt ions (hexachloroplatinic ions, PtCl62−) as the Pt species baseline.
Interestingly, the combination between cisplatin and hexachloroplatinic ions (which have
no catalytic activity alone) could overcome the sensitivity limit, achieving an outstanding
naked-eye LOD of ca. 3 ppb (Figure 2b), which is comparable to or even better than many
instrumental techniques, such as UV-vis spectrophotometers and ICP-OES (see, for instance,
Figure S5). Hexachloroplatinic ions are stable in water and are an ideal reagent to promote
controlled NP growth in presence of cisplatin traces, leading to a significant sensitivity gain
(ca. 1-order of magnitude). Under the optimized conditions, in absence of cisplatin, the
selected concentration of hexachloroplatinic ions did not cause the formation of PtNPs, so
no colorimetric signals were detected in the negative controls (Figures 2b and S4).
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Figure 2. Representative colorimetric results of the assay, after 5 min color development. (a) Color
change obtained at different concentrations of cisplatin (LOD ~30 ppb) in the standard configuration.
(b) Colorimetric results in the enhanced configuration of the test (LOD ~3 ppb).

After we maximized the test sensitivity, we proved its specificity, because real samples
could contain various metal cations that need to be discriminated by the assay to avoid false
positive results. We thus analyzed the selectivity of the proposed method, by evaluating the
effect of different ions, at a concentration 1000 times higher than the test LOD. As shown
in Figure 3, only cisplatin could induce a clear colorimetric response, with a significant
increase in absorption at 652 nm (corresponding to the generation of an intense blue color),
unlike the other cations analyzed, which did not produce any significant spectral changes,
with the relative solutions remaining transparent. Only in the case of silver ions, a slight
increase in the absorbance value occurred, but only for very high concentrations (3500 ppb),
extremely unlikely in biological fluids or in hospital environment. The high selectivity of
the test is due to the unique capacity of cisplatin, with respect to other metals tested herein,
to combine the efficient formation of nanoparticles with their very high peroxidase activity
generating the colorimetric readout.
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Figure 3. Selectivity of the colorimetric assay with respect to other toxic metal cations, in terms
of absorbance signal measured after 5 min of reaction. Results are expressed as mean ± SD of
tripled experiments.

3.3. Cisplatin Detection in Urine Matrix

As mentioned above, this POC method would be very advantageous to rapidly moni-
tor the pharmaco-dynamics of cisplatin through the continuous analysis of the drug concen-
tration in the biofluids of patients. During chemotherapeutic treatment, the concentration
of cisplatin in the urine is known to range from an initial peak value (~1.2 ppm) down to be-
low 0.4 ppm [53]. Here, as a preliminary proof-of-principle test, we evaluated the suitability
of the nanocatalyst-mediated colorimetric assay to work in spiked samples of synthetic
urine [54], without complex pre-analytical steps, such as purification. Urine, like other bio-
logical fluids, has a complex matrix that may cause interferences and/or signal attenuation.
Interestingly, our method was proven to also be specific in urine samples, with no false
positive results. Taking advantage of the high sensitivity of the assay, a simple pre-dilution
of urine was sufficient to guarantee colorimetric detection of cisplatin around the 0.8 ppm
level, namely in the clinically relevant range during treatments (Figure 4). Moreover, for
urine samples, the blue color generation was clearly detectable by the naked eye after only
5 min. This POC approach is thus promising as a novel clinical tool for patient monitoring,
although a systematic clinical validation and further improvements/optimizations are still
necessary before its possible use in diagnostic applications.
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Figure 4. Color change obtained after 5 min at two different concentrations of cisplatin vs. negative
control, in diluted synthetic urine (1:50).

3.4. Machine-Learning Analysis

The proposed method allows very sensitive cisplatin detection by simple visual inspec-
tion, yet the optical readout can only provide a qualitative ON/OFF response. However,
several applications, especially in patient treatment monitoring, would strongly benefit
from quantitative cisplatin measurements in biological fluids. Hence, with the aim of com-
bining accurate quantitative analyses with POC characteristics for fast on-site screenings,
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we designed and developed a quantitative approach relying on machine-learning (ML)
methods, working with very basic video cameras (thus being also suitable for application
with standard smartphones). In particular, our ML approach exploited the kinetic informa-
tion of the colorimetric reaction and a combination of dynamic time warping (DTW) [59–62]
with the K-nearest neighbors (KNN) algorithm [63–65], allowing the use of a very lim-
ited experimental dataset. The details of the ML procedure are reported in Supporting
Information and Materials and Methods.

The results obtained by the KNN/DTW method showed that such approach can
provide accurate quantitative measurements of cisplatin concentrations, based on our
colorimetric technique (Figure 5). In particular, Figure 5 reveals that the average predictions
were always close to the ideal reference (red line) in the whole concentration range analyzed.
Notably, the quantitative predictions in the low concentration range (<400 ppb) were
extremely accurate with practically negligible errors. At a higher concentration, relatively
larger errors were found, but always lower than 10%, which is an excellent result for a
POC system. Indeed, the algorithm never assigned a concentration level that was distant
more than one of the two neighbor concentrations inside the dataset. The experiments
confirmed that DTW is an excellent distance measure for the kinematic time series [59]. In
combination with KNN, the results highlighted a very good estimation of the concentration
level even in presence of a dataset with a limited number of samples. Accordingly, the
proposed solution can support quantitative measurements of the cisplatin by using the
novel POC method proposed in this paper.
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standard deviations). The red line sets the reference for the correct prediction.

4. Conclusions

In conclusion, in this work we have reported a very sensitive (3 ppb LOD) colori-
metric method for fast on-site analyses of cisplatin levels, exploiting the efficient and
rapid synthesis of PtNPs from a cisplatin precursor and their superior catalytic properties
for the fast oxidation of a chromogenic substrate. The whole assay can be performed in
only 15 min, without the use of any complex instrument. The development of a reliable
machine-learning method allows accurate quantitative measurements, opening interesting
perspectives for the monitoring of both chemotherapeutic patients and healthcare workers.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12060375/s1, Figure S1: Size distributions of PtNPs obtained with
different concentrations of cisplatin; Figure S2: BF-TEM images of aggregated PtNPs obtained with
a high concentration NaBH4; Figure S3: Comparison of 230 nM of cisplatin and chloroplatinic acid;
Figure S4: Comparison of sensitivity using chloroplatinic acid or Pt seeds.
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