
Citation: Poghossian, A.; Karschuck,

T.; Wagner, P.; Schöning, M.J.

Field-Effect Capacitors Decorated

with Ligand-Stabilized Gold

Nanoparticles: Modeling and

Experiments. Biosensors 2022, 12, 334.

https://doi.org/10.3390/

bios12050334

Received: 13 April 2022

Accepted: 11 May 2022

Published: 13 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

Field-Effect Capacitors Decorated with Ligand-Stabilized Gold
Nanoparticles: Modeling and Experiments
Arshak Poghossian 1,*,†, Tobias Karschuck 2,† , Patrick Wagner 3 and Michael J. Schöning 2,4,*

1 MicroNanoBio, 40479 Düsseldorf, Germany
2 Institute of Nano- and Biotechnologies, FH Aachen, 52428 Jülich, Germany; karschuck@fh-aachen.de
3 Laboratory for Soft Matter and Biophysics, KU Leuven, 3000 Leuven, Belgium;

patrickhermann.wagner@kuleuven.be
4 Institute of Biological Information Processing (IBI-3), Forschungszentrum Jülich, 52425 Juelich, Germany
* Correspondence: a.poghossian@gmx.de (A.P.); schoening@fh-aachen.de (M.J.S.)
† These authors contributed equally to this work.

Abstract: Nanoparticles are recognized as highly attractive tunable materials for designing field-
effect biosensors with enhanced performance. In this work, we present a theoretical model for
electrolyte-insulator-semiconductor capacitors (EISCAP) decorated with ligand-stabilized charged
gold nanoparticles. The charged AuNPs are taken into account as additional, nanometer-sized
local gates. The capacitance-voltage (C–V) curves and constant-capacitance (ConCap) signals of the
AuNP-decorated EISCAPs have been simulated. The impact of the AuNP coverage on the shift of
the C–V curves and the ConCap signals was also studied experimentally on Al–p-Si–SiO2 EISCAPs
decorated with positively charged aminooctanethiol-capped AuNPs. In addition, the surface of the
EISCAPs, modified with AuNPs, was characterized by scanning electron microscopy for different
immobilization times of the nanoparticles.

Keywords: electrolyte-insulator-semiconductor capacitors; field-effect sensor; gold nanoparticles;
capacitive model; nanoparticle coverage; aminooctanethiol

1. Introduction

Biosensing technologies using a field-effect device (FED) platform have received im-
mense interest in recent years, motivated by the need for miniaturized, low-cost, and
highly sensitive and selective point-of-care diagnostic devices capable of fast, label-free,
real-time and multiplexed detection of analyte molecules. Typically, silicon-based bio-
logically sensitive FEDs (BioFEDs) consist of an electrolyte-insulator-semiconductor (EIS)
structure modified with receptors, which serves as basic transducer architecture for con-
structing a wide variety of chemical sensors and biosensors (see, e.g., recent reviews [1–9]).
For instance, BioFEDs were developed for the analysis of metabolites [10–13], antibi-
otics [13,14], and for the label-free detection of charged molecules (nucleic acids [15–18],
protein biomarkers [19–23], polyelectrolytes [24,25]) and charged nano-objects (e.g., ligand-
stabilized gold nanoparticles (AuNP)) [26,27], nanoparticle/molecule hybrids [28], virus
particles [5,29–31]). The concept also enabled us to design enzyme-based logic gates, which
mimic the functioning of electronic logic gates [32,33]. Furthermore, a multifunctional
sensor chip was developed for the detection of both biochemical and physical parameters
in liquids (temperature, flow velocity and direction, diffusion coefficient and liquid level)
by using the same FED principle [34].

Recent progress in nanomaterials and nanotechnology has opened new horizons
in BioFED development. Decoration of the BioFED surface with chemically, electrically,
or magnetically tunable nanomaterials, such as AuNPs, oxide nanoparticles, magnetic
beads, carbon nanotubes and virus-like particles, is considered as a very promising strategy
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for designing biosensors with enhanced performance. The benefits of these nanomateri-
als include a high surface-to-volume ratio, easy surface modification with various shell
molecules for coupling of bioreceptors, a high and reproducible density of these receptors
with orientational freedom for receptor-target interactions, an enhanced transport of target
molecules to the nanomaterial surface, and the facile integration with macroscopic trans-
ducers [35–37]. All these factors result in an improvement of the biosensor performance.
This holds, for example, for EIS capacitors (EISCAP), ion-sensitive field-effect transistors (IS-
FET) and silicon nanowire transistors decorated with AuNPs to study DNA-hybridization
and denaturation [16], and to detect protein kinase A [38], hemoglobin-A1c (HbA1c) [39]
and prostate specific antigen [40] biomarkers. The approach was also used to study the
streptavidin–biotin interaction [41], small proteins [28] and the electrostatic adsorption
of polyelectrolytes [27,28]. It has been shown that the modification of a light-addressable
potentiometric sensor with a carbon nanotube/enzyme layer significantly improves the
sensitivity of the biosensor [42]. Furthermore, an EISCAP covered with magnetic nanopar-
ticles terminated with carboxylic acid was used to develop a biosensor for ochratoxin
A antigens [43]. Finally, a highly sensitive penicillin biosensor with a long shelf-life was
engineered by modifying the EISCAP surface with nanotubular tobacco mosaic virus particles
acting as enzyme nanocarriers [44].

To our knowledge, detailed theoretical models for nanoparticle-decorated FEDs are
missing so far. A simplified model for the interfacial potential changes, induced by the
electrostatic adsorption of charged molecules onto AuNP-modified EISCAPs, was proposed
in [28]. A refined, theoretical description and simulation of BioFEDs decorated with various
nanoparticles will allow to understand the signal generation at a more fundamental level.
In turn, this will lead to optimized devices and will enable to predict their technological
potential. In this work, we establish a capacitive model for the AuNP-decorated EISCAP.
The capacitance-voltage (C–V) curves of the EISCAPs are simulated as a function of the
AuNP coverage. In addition, EISCAPs decorated with positively charged aminooctanethiol-
capped AuNPs (AOT-AuNP) were prepared and characterized electrochemically in the C–V-
and constant-capacitance (ConCap) modes. The surface of these EISCAPs was physically
characterized by scanning electron microscopy (SEM) for different immobilization times
of the nanoparticles to correlate the AuNP coverage with the shift of the C–V curves and
ConCap data.

2. Modeling and Simulation of AuNP-Decorated EISCAPs

Figure 1 shows the structure and shape of the depletion layer in p-Si for a bare EISCAP
(a) and an EISCAP decorated with ligand-stabilized positively charged AuNPs (b). Due to
electrostatic and other interactions between the AuNPs and the EISCAP surface, as well
as inter-particle repulsion, the immobilized AuNPs usually do not form densely packed
layers (i.e., the EISCAP surface is partially covered with NPs). Hence, AuNPs can be
considered as additional, nanometer-sized local gates, whose potential can be tuned by the
intrinsic charge of attached target biomolecules. Figure 1b illustrates schematically how the
depletion layer in the p-Si is modulated locally by the presence of the charged NPs. The
effect of immobilizing AuNPs and of coupling charged molecules to the AuNPs surface is
similar to applying an additional voltage to the local gates. In a first approach, we assume
that the distance between the AuNPs is sufficiently large to prevent possible overlapping
of the local depletion regions in the Si due to the fringing effect [45]. Hence, the AuNP-
decorated EISCAP can be considered as consisting of two regions: (i) an AuNP-covered
region with a surface coverage of n = ANP/A and an interfacial potential of ϕNP, and (ii) an
AuNP-free region with a surface area of A0 = (1 − n)A and an interfacial potential of ϕ0.
Here, ANP is the surface area covered with AuNPs and A is the whole surface area of the
EISCAP in contact with the electrolyte.
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Figure 1. Schematic structure and shape of the depletion layer in p-Si for a bare EISCAP (a) and an 
EISCAP decorated with ligand-stabilized positively charged AuNPs (b); (c) electrical equivalent cir-
cuit of an AuNP-decorated EISCAP; and (d) local changes in the width of the depletion layer at the 
gate voltage (VG-NP), which is applied to the AuNP-decorated EISCAP in the ConCap mode to keep 
the working capacitance constant. RRE: resistance of the reference electrode; VG: gate voltage; VAC: 
alternating current voltage; CiNP, CsNP and CNP: gate-insulator, space-charge and total capacitances 
in an AuNP-covered region, respectively; Ci, Cs and C0 are the corresponding parameters for AuNP-
free regions; φ0 and φNP: gate insulator-electrolyte interfacial potential in the AuNP-free and AuNP-
covered regions. 

The simplified electrical equivalent circuit of the AuNP-decorated EISCAP is de-
picted in Figure 1c. The resistances of the electrolyte, bulk Si and Al-Si rear-side contact 
are typically much smaller than the resistance of the reference electrode (RRE) and are 
therefore not included in the equivalent circuit. In addition, for typical thicknesses of the 
gate insulator materials (10–100 nm), measuring frequencies of below 1 kHz and an ionic 
strength of the electrolyte of >0.1 mM, the double-layer capacitance can also be neglected, 
see refs. [46,47]. Hence, the equivalent capacitance (Ceq) of the AuNP-modified EISCAP is 
given by: 

Ceq = CNP + C0 =  CiNPCsNP CiNP + CsNP  + CiCs (Ci + Cs)⁄⁄  (1)

where CNP is the total capacitance of the AuNP-covered region consisting of the gate-in-
sulator (CiNP = εiAn/di) and space-charge (CsNP = εsAn/wNP) capacitances in series. C0 is the 
total capacitance of the AuNP-free region and combines the gate-insulator (Ci = εiA(1 − 
n)/di) and space-charge (Cs = εsA(1 − n)/ws) capacitances in series. The symbols εi and εs 

Figure 1. Schematic structure and shape of the depletion layer in p-Si for a bare EISCAP (a) and
an EISCAP decorated with ligand-stabilized positively charged AuNPs (b); (c) electrical equivalent
circuit of an AuNP-decorated EISCAP; and (d) local changes in the width of the depletion layer at
the gate voltage (VG-NP), which is applied to the AuNP-decorated EISCAP in the ConCap mode
to keep the working capacitance constant. RRE: resistance of the reference electrode; VG: gate
voltage; VAC: alternating current voltage; CiNP, CsNP and CNP: gate-insulator, space-charge and
total capacitances in an AuNP-covered region, respectively; Ci, Cs and C0 are the corresponding
parameters for AuNP-free regions; ϕ0 and ϕNP: gate insulator-electrolyte interfacial potential in the
AuNP-free and AuNP-covered regions.

The simplified electrical equivalent circuit of the AuNP-decorated EISCAP is depicted
in Figure 1c. The resistances of the electrolyte, bulk Si and Al-Si rear-side contact are
typically much smaller than the resistance of the reference electrode (RRE) and are therefore
not included in the equivalent circuit. In addition, for typical thicknesses of the gate
insulator materials (10–100 nm), measuring frequencies of below 1 kHz and an ionic
strength of the electrolyte of >0.1 mM, the double-layer capacitance can also be neglected,
see refs. [46,47]. Hence, the equivalent capacitance (Ceq) of the AuNP-modified EISCAP is
given by:

Ceq = CNP + C0 = CiNPCsNP/(CiNP + CsNP) + CiCs/(C i +Cs
)

(1)

where CNP is the total capacitance of the AuNP-covered region consisting of the gate-insulator
(CiNP = εiAn/di) and space-charge (CsNP = εsAn/wNP) capacitances in series. C0 is the total
capacitance of the AuNP-free region and combines the gate-insulator (Ci = εiA(1 − n)/di)
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and space-charge (Cs = εsA(1 − n)/ws) capacitances in series. The symbols εi and εs denote
the permittivity of the gate insulator and semiconductor, wNP and ws are the widths of the
space-charge regions in the semiconductor with and, respectively, without, AuNP coverage.

The EISCAPs are conveniently characterized by using the C–V and/or ConCap mea-
surement mode. To determine the impact of the AuNP coverage on the C–V curve of
the AuNP-decorated EISCAPs, we define the equivalent capacitance in the accumulation,
depletion and inversion regions. For the p-type Si, in the accumulation region (at gate
voltages of VG < 0), CiNP << CsNP and Ci << Cs. Hence, the equivalent capacitance of
the AuNP-decorated EISCAP in the accumulation region (Ceq-acc) can be obtained from
Equation (1) as:

Ceq-acc = CiNP + Ci = εi A/di (2)

It is well known, that the space-charge capacitance in the Si, and consequently the
overall capacitance of the EISCAP sensor, is affected by the potential changes at the gate-
insulator/electrolyte interface due to adsorption or binding of charged molecules or parti-
cles. This results in a shift of the C–V curve along the voltage axis in the depletion region,
see, e.g., ref. [6]. The width of the depletion layer in the Si underneath the AuNP-covered or
AuNP-free regions can be derived from the expression for the space-charge width (wMOS)
of a MOS (metal-oxide-semiconductor) capacitor [48]:

wMOS =
(

ε2
s/C2

i0 + 2εsVG/qNa

)1/2
− εs/Ci0 (3)

where Ci0 = εi/di is the insulator capacitance per unit area, Na is the density of ionized
acceptors and q is the elementary charge. To obtain wNP or ws, VG in Equation (3) should
be replaced with (VG − VfbNP) or (VG − Vfb), respectively, where VfbNP and Vfb are the
flat-band voltages of the EISCAP in the AuNP-covered and AuNP-free region. VfbNP and
Vfb can be expressed as [46]:

Vfb = Vip − ϕ0 (4)

VfbNP = Vip − ϕNP = Vip − (ϕ0 ± ∆ϕ) (5)

with
Vip = Eref + χsol − φs/q + (Qi + Qss)/Ci (6)

where ∆ϕ is the interfacial potential change induced by the coupled ligand-stabilized
charged AuNPs, Vip represents a group of AuNP-independent potentials, Eref is the poten-
tial of the reference electrode relative to vacuum, χsol is the surface-dipole potential of the
solvent, φs is the silicon electron work function, and Qi and Qss are the charges located in
the oxide and the surface and interface states, respectively. Equations (3)–(6) allow us to
derive the following expressions for CsNP and Cs:

CsNP =
εs An
wNP

=
An

[1 /C2
i0 + 2

(
VG − Vip + ϕ0 ± ∆ϕ

)
/qεsNa

]1/2 − 1/Ci0

(7)

Cs =
εs A(1 − n)

ws
=

A(1 − n)

[1 /C2
i0 + 2

(
VG − Vip + ϕ0

)
/qεsNa

]1/2 − 1/Ci0

(8)

The equivalent capacitance of the AuNP-modified EISCAP in the depletion region
(Ceq-dep) is obtained by substituting Expressions (7) and (8), CiNP = εiAn/di = AnCi0 and Ci
= εiA(1 − n)/di = A(1 − n)Ci0 into Equation (1):

Ceq-dep =
An

[1 /C2
i0 + 2

(
VG − Vip + ϕ0 ± ∆ϕ

)
/qεsNa

]1/2 +
A(1 − n)

[1 /C2
i0 + 2

(
VG − Vip + ϕ0

)
/qεsNa

]1/2 (9)
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The analysis of Equation (9) reveals that, at a constant gate voltage VG, the equivalent
capacitance in the depletion region (Ceq-dep) is, among others, a function of the AuNP
coverage (n) and an interfacial potential change (∆ϕ) caused by the coupling of charged
AuNPs on the EISCAP surface. The direction of this potential change depends on the
charge sign of ligand-stabilized AuNPs. A simplified relation between ∆ϕ and the effective
AuNP charge (QNP) can be expressed as [28]:

∆ϕ = NNPQNP/Cd (10)

where NNP is the density of AuNPs and Cd is the double-layer capacitance per surface area
in the AuNP-covered region. Note that due to the counterion-screening effect, the effective
charge of AuNPs and, therefore, the interfacial potential changes will also depend on the
ionic strength of the measurement solution. While Equation (10) describes a simplified
approximation, it indicates nonetheless that Ceq-dep, and therefore the C–V curves of the
EISCAP, are gated by the effective charge of the decorated AuNPs.

To obtain the expression for the equivalent capacitance of the AuNP-decorated EISCAP
in the inversion range, we assume that by strong inversion, the depletion layer in both the
NP-covered and NP-free regions will reach its maximum width, wm [48]:

wm = [
4εskT ln(Na/ni)

q2Na
]1/2 (11)

where k is the Boltzmann constant, T is the absolute temperature, and ni is the electron
density in the intrinsic semiconductor. Correspondingly, the high-frequency inversion ca-
pacitances of the NP-covered (CinvNP) and NP-free (Cinv) regions will reach their minimum:

CsNP = CinvNP= εs An/wm and Cs= Cinv= εs A(1 − n)/wm (12)

The equivalent capacitance of the NP-decorated EISCAP in the inversion range (Ceq-inv)
can be obtained by substituting expressions (12) into Equation (1):

Ceq-inv = CiNPCinvNP/(CiNP + CinvNP) + CiCinv/(C i + Cinv
)

(13)

Considering that usually CiNP >> CinvNP and Ci >> Cinv, Equation (13) can be simplified as:

Ceq-inv =
εs A
wm

= εsqA[
Na

4εskT ln(Na/ni)
]1/2 (14)

The combination of Equations (2), (9) and (13) gives the complete course of the C–V
curve of the AuNP-decorated EISCAP. We simulated C–V curves of the AuNP-decorated EIS-
CAP with different AuNP coverages using Equations (2), (9) and (13) in Python 3.9 (Python
Software Foundation). The simulation parameters were: εi = ε0εir, ε0 = 8.854 × 10−12 F/m,
εir = 3.9 (SiO2), di = 35 nm, εs = ε0εsr, εsr = 11.7 (Si), ni = 1.5 × 1010 cm−3,
Na = 2.76 × 1015 cm−3 (that corresponds to the resistivity of a Si wafer of 5 Ω·cm),
q = 1.6 × 10−19 C, k = 1.38 × 10−23 J/K, T = 300 K, A = 0.5 cm2, Vip = 0, ϕ0 = −10 mV,
ϕNP = 30 mV, n = 0, 0.25, 0.5, 0.75, and 0.9.

Figure 2a illustrates the simulated C–V curves of a p-type bare EISCAP and an EISCAP
decorated with positively charged AuNPs with different coverages n. At a constant gate
voltage, the existence of positively charged AuNPs on the EISCAP surface leads to an
increasing width of the depletion layer in the Si underneath AuNP-covered regions; the
corresponding space-charge capacitance in the Si will decrease. As a result, the overall
capacitance of the AuNP-decorated EISCAP will decrease as well, resulting in a shift of the
original C–V curve (n = 0) towards less positive gate voltages (or more negative voltages).
By increasing the coverage of positively charged AuNPs, the magnitude of these voltage
shifts is increasing. The capacitance changes (at a constant gate voltage of VG = 50 mV)
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and voltage shifts (at a constant capacitance of Ceq-dep = 30 nF) as a function of the AuNP
coverage, evaluated from the C–V curves, are shown in Figure 2b.
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Figure 2. (a) Simulated C–V curves of a bare, p-type EISCAP and an EISCAP decorated with
positively charged AuNPs with different coverages n (from 0.25 to 0.9). The dashed curves illustrate
the expected course of the overall equivalent capacitance of the EISCAP in the transition region
from depletion to accumulation. (b) Capacitance changes (at a constant gate voltage of VG = 50 mV)
and voltage shifts (at a constant capacitance of Ceq-dep = 30 nF) as a function of the AuNP coverage,
evaluated from the C–V curves.

In addition to the dependency of the C–V curve on the AuNP coverage and interfacial
potential changes, it is very interesting to determine the ConCap signal changes generated
by the coupling of charged AuNPs. In contrast to the C–V method, the ConCap measuring
mode allows us to study the dynamic behavior of the EISCAP sensor signal. It is widely
accepted that in the ConCap mode, by setting the working capacitance at a fixed value using
a feedback control circuit, the interfacial potential changes due to the adsorption/binding
of charged molecules or nano-objects on the sensor surface can be directly recorded.

Hence, it is suggested that the recorded change in the ConCap signal is equal to the
interfacial potential change. This statement is correct if the entire sensor surface is covered
with charged molecules or nano-objects, i.e., when the coverage is n = 1. However, this is
often not the case for NP-decorated BioFEDs: usually, due to the inter-particle repulsion
and/or immobilization conditions, the sensor surface is only partially covered with charged
NPs (i.e., n < 1). As a result, the recorded ConCap signal change will not be equal to the
interfacial potential change, which occurs in the NP-covered region. Moreover, it will
depend, among others, on the AuNP coverage. The gate voltage (VG-NP) in the ConCap
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mode, which should be applied to the AuNP-decorated EISCAP to keep the working
capacitance (chosen from the depletion region of the C–V curve of the bare EISCAP)
constant, can be obtained by using Equation (9) and the condition Ceq-dep = Ceq-dep(n = 0),
where Ceq-dep(n = 0) is the equivalent capacitance of the non-modified EISCAP in the
depletion region:

n√
1

C2
i0
+

2(V G-NP−Vip+ϕNP)
qεs Na

+
1 − n√

1
C2

i0
+

2(V G-NP−Vip+ϕ0)
qεs Na

=
1√

1
C2

i0
+

2(V G−Vip+ϕ0)
qεs Na

(15)

Local changes in the width of the depletion layer in NP-covered and NP-free regions
at the gate voltage (VG-NP) applied in the ConCap mode are sketched in Figure 1d. The ad-
ditional gate voltage (∆VG-NP = VG-NP − VG) in the ConCap mode (i.e., the ConCap signal
change), which is applied to the AuNP-decorated EISCAP to keep the working capacitance
constant, was calculated as a function of the AuNP coverage using Equation (15) and is
shown in Figure 3. As can be seen, with increasing the AuNP coverage from n = 0.25
to n = 0.9, ∆VG-NP increases from −7 mV to −33 mV. However, the ∆VG-NP values
are always smaller than the interfacial potential changes in the AuNP-covered region
(∆ϕ = ϕNP − ϕ0 = 40 mV), which is supported by the discussion above.
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3. Experimental
3.1. Preparation of AuNPs

Gold nanoparticles covered with aminooctanethiol (AOT) were prepared from citrate-
capped AuNP (Ct-AuNP) using the ligand-exchange reaction from citrate to aminooc-
tanethiol. The negatively charged Ct-AuNPs were synthesized with the Turkevich method
using the tetrachloroauric acid (HAuCl4) reduction reaction [49,50]. Citrate acts as the re-
ducing agent and as stabilizing ligand to prevent AuNPs from aggregating. Briefly, 100 mL
of a 0.25 mM HAuCl4·3H2O (hydrogen tetrachloraurate(III) trihydrate, Thermo Fisher,
Bremen, Germany) solution was brought to boiling under continuous stirring. Then, 1 mL
of a 500 mM Na3Ct (trisodium citrate dihydrate, Merck, Darmstadt, Germany) solution was
added and boiling continued until the color changed from yellow to burgundy, indicating
the formation of nanoparticles. The solution was kept boiling for an additional 5–10 min,
then left to cool down to room temperature and stored at 4 ◦C.

The exchange of capping ligands on AuNPs from citrate to AOT was achieved by
mixing 10 mL Ct-AuNP solution with 4 mL of 100 mM HCl and 400 µL of 2 mM AOT
(8-amino-1-octanethiol hydrochloride in ethanol, Merck, Germany). Due to the higher
binding affinity of the thiol groups to gold, the citrate molecules are completely replaced
by AOT ligands [51]. After removing unbound AOT residues in the solution by cen-
trifugation, the AOT-AuNPs were stored at 4 ◦C. For the AuNP loading experiments, the
AOT-capped pellets were redispersed in 250 µL of 20 mM HEPES buffer (4-(2-hydroxyethyl)-
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1-piperazineethanesulfonic acid, Carl Roth, Karlsruhe, Germany) containing 20 mM NaCl,
pH 3 (further referred to as AuNP solution), resulting in an AuNP concentration of 0.8 nM.
For more details on the preparation of AOT-stabilized AuNPs, see refs. [27,51].

In order to verify the ligand exchange from negatively charged citrate to positively
charged AOT, the zeta potential of the AuNPs was measured by electrophoretic light
scattering using the Litesizer 500 (Anton Paar, Ostfildern, Germany). Measurements were
conducted in citrate buffer of pH 6.5 (ionic strength: 4 mM) and HEPES buffer of pH 3
(ionic strength: 30 mM) for citrate- and AOT-capped AuNPs, respectively. As expected,
the synthesized Ct-AuNPs were negatively charged (due to the carboxylic acid groups of
the citrate molecules) with a zeta potential of −59 mV, while AOT-AuNPs were positively
charged (due to the ammonium groups) with a zeta potential of ca. +35 mV. These results
confirm a successful ligand-exchange reaction.

3.2. Fabrication of EISCAPs

The field-effect EISCAPs were fabricated from commercially available p-Si-SiO2 wafers
(Siegert Wafer, Aachen, Germany) with a 30 nm SiO2 layer prepared by dry thermal
oxidation of Si. After etching the rear-side SiO2 layer with hydrofluoric acid (HF, 5%), a
300 nm thick Al layer was deposited on the Si substrate by electron-beam evaporation
as back-side contact layer and annealed under nitrogen atmosphere at 400 ◦C for 10 min.
Then, the Al-p-Si-SiO2 wafer was cut into single EISCAP chips with a size of 1 cm × 1 cm,
followed by cleaning the chips in an ultrasonic bath and drying with N2.

For the experiments, the EISCAP chip and the reference electrode (Ag/AgCl filled
with 3 M KCl, Metrohm, Filderstadt, Germany) was mounted in a homemade measurement
cell and connected to an impedance analyzer (Zahner Zennium, Zahner Elektrik, Kronach,
Germany). The front side contact area of the EISCAP chip with the electrolyte solution was
ca. 50 mm2.

3.3. Immobilization of AOT-Capped AuNPs onto the EISCAP Chip Surface

Before decorating the EISCAP surface with AOT-capped AuNPs, the EISCAP was
mounted in the measurement cell and preconditioned in 0.33 mM PBS (phosphate buffered
saline, pH 3) for at least 12 h. Thereafter, 40 µL of 0.8 nM AOT-capped AuNP solution was
dropped on the chip surface and incubated for 0.5 h, 1 h and 2 h. After immobilization of
AuNPs, the chips were rinsed three times with 1 mL of 0.33 mM PBS to remove unattached
AuNPs, and dried in N2 gas. Two groups of AuNP-decorated EISCAP chips were prepared
identically: three chips for the electrochemical characterization and three chips for SEM
characterization. For SEM characterization, the AuNP-decorated EISCAP chips were
removed from the measurement cell, rinsed with deionized water to remove salt residues
and dried in a N2 stream.

4. Results and Discussions
4.1. Immobilization of AOT-Capped AuNPs onto the EISCAP Chip Surface

SEM images of the AuNP-decorated EISCAP surface were taken with a high-resolution
JSM-7800F Schottky field-emission scanning electron microscope (Jeol GmbH, Freising,
Germany). An ImageJ-software macro [52] was utilized to determine the size of decorated
AuNPs and to calculate their surface density and coverage from the SEM images (15 images
were taken per EISCAP chip). Figure 4 shows representative SEM images of EISCAP
surface decorated with AOT-AuNPs with immobilization times of 0.5 h, 1 h and 2 h (from
left to right).



Biosensors 2022, 12, 334 9 of 14Biosensors 2022, 12, x FOR PEER REVIEW 9 of 14 
 

 
Figure 4. Representative SEM images of an EISCAP surface decorated with AOT-AuNPs with im-
mobilization times of 0.5 h (a), 1 h (b) and 2 h (c). 

The core diameter of the AOT-AuNPs was found to be 28 ± 3 nm. In our previous 
work with the same preparation procedures, the number of AOTs per AuNP was esti-
mated to be ≈8.8 × 103 molecules [27]. As expected, the longer immobilization time signif-
icantly increases the particle density on the chips: We found (235 ± 6) × 108 AOT-NPs per 
cm2 for 0.5 h of incubation which increases to (381 ± 15) × 108 AOT/cm2 for 1 h and to (617 
± 19) × 108 AOT/cm2 for 2 h. The maximum density of AOT-AuNPs achieved in this study 
is comparable to literature values for AuNP-decorated SiO2 surfaces [27,28,53,54]. The cor-
responding surface-coverage values were n = 0.12 (for 0.5 h incubation time, n = 0.22 (1 h) 
and n = 0.36 (2 h). Note, the adsorbed AuNPs on SiO2 surfaces withstood multiple uses 
and treatment steps. Even after multiple rinsing and drying procedures, we did not ob-
serve any significant decrease of the surface density of AuNPs evaluated from the SEM 
images. 

4.2. Capacitance-Voltage Curves and Constant-Capacitance Signal of AuNP-Decorated 
EISCAPs 

The EISCAPs were electrochemically characterized in the C–V and ConCap mode 
before and after immobilization of the AOTs for 0.5 h, 1 h and 2 h (see Figures 5 and 6). 

 
Figure 5. (a) Measured C–V curves of a bare EISCAP and an EISCAP decorated with positively 
charged AOT-AuNPs of different coverages n (for different times of immobilization between 0.5 
and 2 h) with a zoomed graph of the depletion region. (b) Capacitance changes (at a constant gate 
voltage of −528 mV) and gate voltage shifts (at a constant capacitance of 37 nF) evaluated from the 
C–V curves as a function of the AuNP coverage. 
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The core diameter of the AOT-AuNPs was found to be 28 ± 3 nm. In our previous
work with the same preparation procedures, the number of AOTs per AuNP was estimated
to be ≈8.8 × 103 molecules [27]. As expected, the longer immobilization time significantly
increases the particle density on the chips: We found (235 ± 6) × 108 AOT-NPs per cm2

for 0.5 h of incubation which increases to (381 ± 15) × 108 AOT/cm2 for 1 h and to
(617 ± 19) × 108 AOT/cm2 for 2 h. The maximum density of AOT-AuNPs achieved in this
study is comparable to literature values for AuNP-decorated SiO2 surfaces [27,28,53,54].
The corresponding surface-coverage values were n = 0.12 (for 0.5 h incubation time, n = 0.22
(1 h) and n = 0.36 (2 h). Note, the adsorbed AuNPs on SiO2 surfaces withstood multiple uses
and treatment steps. Even after multiple rinsing and drying procedures, we did not observe
any significant decrease of the surface density of AuNPs evaluated from the SEM images.

4.2. Capacitance-Voltage Curves and Constant-Capacitance Signal of AuNP-Decorated EISCAPs

The EISCAPs were electrochemically characterized in the C–V and ConCap mode
before and after immobilization of the AOTs for 0.5 h, 1 h and 2 h (see Figures 5 and 6).
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Figure 5. (a) Measured C–V curves of a bare EISCAP and an EISCAP decorated with positively
charged AOT-AuNPs of different coverages n (for different times of immobilization between 0.5 and
2 h) with a zoomed graph of the depletion region. (b) Capacitance changes (at a constant gate voltage
of −528 mV) and gate voltage shifts (at a constant capacitance of 37 nF) evaluated from the C–V
curves as a function of the AuNP coverage.
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It is well known that in electrolyte solution, the charge associated with the biomolecules
or NPs is screened or neutralized (in whole or part) by small counterions present in the
solution. FEDs are able to detect charge/potential changes occurring directly at the gate
surface or within the order of the Debye length from the surface, which is inversely pro-
portional to the ionic strength of the solution. In order to reduce the impact of the Debye
screening effect [55–57] and maximize the EISCAP signal amplitude, the measurements
were conducted in a low ionic-strength (5 mM) solution (0.33 mM PBS, pH 3). In a mea-
surement solution of pH 3, the terminal amino groups of the capped AOT molecules can be
considered as fully protonated [51] (that may ensure highly charged AuNPs and therefore,
large EISCAP signal), while the SiO2 surface is still slightly negatively charged (note that
the pHpzc (point of zero charge) of SiO2 is approximately 2.66–2.8 pH [58–60]).

The experiment was carried out in the following order: First, the C–V curves and the
ConCap signal of the bare EISCAP were measured to define the baseline signal. Then, the
EISCAP surface was decorated with AuNPs by immobilization of AOT-AuNPs for 0.5 h.
After rinsing and drying, the AuNP-decorated EISCAP sensor was characterized again in
the C–V- and ConCap modes. To assess the impact of the AuNP coverage on the EISCAP
signal, these decoration- and measurement process steps were repeated for an additional
0.5 h (complete immobilization time: 1 h) and 1 h immobilization (complete immobilization
time: 2 h).

Exemplary C–V curves of the bare and AuNP-decorated EISCAP with different AuNP-
immobilization times and therefore, various AuNP coverages are presented in Figure 5.
As expected, the decoration of the EISCAP surface with positively charged AOT-AuNPs
shifts the original C–V curve of a non-modified EISCAP towards more negative voltages.
The reason for this behavior of the C–V curves in case of a p-type EISCAP covered with
positively charged AuNPs has been discussed in Section 2. The changes in the overall
capacitance of the AuNP-decorated EISCAP (at a constant gate voltage VG = −528 mV) and
the amplitude of the voltage shifts (at a constant capacitance of 37 nF) evaluated from the
C–V curves are depicted in Figure 5b. As predicted by the capacitive model described in
Section 2, the overall capacitance of the EISCAP decreases with increasing AuNP coverage,
while the amplitude of the gate-voltage shifts increases. A gate-voltage shift of −34 mV
was recorded for the maximum AuNP coverage of n = 0.36, which is achieved in this study.

The results of ConCap-mode measurements are presented in Figure 6. Similar to the
C–V curves, with increasing AuNP coverage, the ConCap signal shifts to more negative
voltages; at the maximum AuNP coverage of n = 0.36, the signal shift of about −30 mV was
recorded, which is comparable with the voltage shift evaluated from the C–V curve.
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The obtained experimental results support in good agreement the predicted course
and model simulations of the C–V curves and ConCap signals of the AuNP-decorated
EISCAPs. Thus, in addition to the NP charge [28], the NP coverage significantly affects
the performance of the NP-decorated EISCAP biosensors. At the same time, the model
enables a predictive comparison to the measurement data, having an additional control for
the performed experiments.

5. Conclusions

The possibility of gating field-effect EISCAP sensors by the charge of AuNP/molecule
hybrids is a very promising strategy for label-free biosensing. In this work, we devel-
oped the electrical equivalent circuit and a capacitive model for the EISCAPs decorated
with ligand-stabilized charged AuNPs. In this model, AuNPs are considered as tunable
nanometer-sized local gates, while the EISCAP is assumed to consist of two regions: an
AuNP-covered and an AuNP-free. The C–V curves and ConCap signal changes of the
AuNP-decorated EISCAPs have been simulated as a function of the AuNP coverage.

To determine the impact of the AuNP coverage on the shift of the C–V curves and
ConCap signals experimentally, EISCAPs structures (Al–p-Si–SiO2) were decorated with
different coverages of positively charged aminooctanethiol-capped AuNPs. As predicted
by the theoretical model, the amplitude of the gate-voltage shift increases with increasing
the AuNP coverage. A ConCap-signal shift of about −30 mV was registered at a maximum
AuNP coverage of n = 0.36, which was achieved in this study. The simulations and
experimental results indicate, that in addition to the AuNP charge, the surface coverage of
AuNPs may significantly influence the EISCAP signal and therefore, the performance of
the AuNP-decorated EISCAP sensors.

While the model developed in this study describes the particular case of AuNP-
decorated EISCAPs, it can be also be extended for EISCAPs modified with other charged
nano-objects, such as ligand-capped magnetic or oxide particles, carbon nanotubes and
virus particles. Moreover, the model can help to interpret the changes in the C–V curves and
ConCap signals of EISCAP biosensors caused by biorecognition events between charged
target molecules and receptors that are immobilized on the nanoparticles. Finally, the
fundamental assumption of the present work, that charged NPs act as nanometer-sized
local gates, may be transferred to other types of field-effect sensors such as ISFETs, silicon
nanowire transistors or light-addressable potentiometric sensors.
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