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Abstract: Low molecular weight thiols (biothiols) are highly active compounds extensively involved
in human physiology. Their abnormal levels have been associated with multiple diseases. In
recent years, major efforts have been devoted to developing new nanosensing methods for the low
cost and fast quantification of this class of analytes in minimally pre-treated samples. Herein, we
present a novel strategy for engineering a highly efficient surface-enhanced Raman scattering (SERS)
spectroscopy platform for the dynamic sensing of biothiols. Colloidally stable silver nanoparticles
clusters equipped with a specifically designed azobenzene derivative (AzoProbe) were generated as
highly SERS active substrates. In the presence of small biothiols (e.g., glutathione, GSH), breakage
of the AzoProbe diazo bond causes drastic spectral changes that can be quantitatively correlated
with the biothiol content with a limit of detection of ca. 5 nM for GSH. An identical response was
observed for other low molecular weight thiols, while larger macromolecules with free thiol groups
(e.g., bovine serum albumin) do not produce distinguishable spectral alterations. This indicates the
suitability of the SERS sensing platform for the selective quantification of small biothiols.

Keywords: plasmonics; surface-enhanced Raman scattering; nanoparticles; biosensing; low molecular
weight thiols

1. Introduction

Low molecular weight thiols play a key role in human physiology, most notably in
the maintenance of cellular redox homeostasis [1]. Abnormal levels, such as those of the
most abundant biothiols (e.g., glutathione (GSH) and cysteine (Cys)), have been associated
with cancer [2], neurodegenerative disorders [3], and cardiovascular diseases [4,5], among
others. Moreover, the overall dysregulation of the dynamic thiol-disulfide homeostasis
has also been related to multiple diseases [6,7]. Due to the clinical relevance of biothiols
in human health, the development of methods for their rapid determination in biological
fluids is essential for early diagnosis and disease monitoring, as well as for acquiring a
better understanding of biothiol-related pathophysiological processes [6,7]. It is to note that
the concentrations of these biomolecules vary widely in different bodily fluids. For instance,
GSH typically exists in the 1–5 µM range in plasma or serum samples from healthy human
subjects, while in the whole blood, its content increases to millimolar levels [8].

Conventional approaches, such as those based on high-performance liquid chromatog-
raphy (HPLC), capillary electrophoresis, and mass spectrometry (MS), provide robust and
highly sensitive responses. However, these techniques are time-consuming, expensive, and
not suitable to be used in remote settings [9]. Notably, as biothiols are prone to oxidation,
methods that allow for fast quantification with minimal sample pre-treatment and no
storage are particularly needed to improve the reliability of the analysis [10].

In recent years, major efforts have been devoted to developing new analytical ap-
proaches that would overcome the intrinsic limitations of traditional techniques, in par-
ticular fluorescent methods [9,11,12]. Several other nanosensors have also been designed
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to assay biothiols in biofluids beyond the realm of fluorescence, such as those based on
surface-enhanced Raman scattering (SERS) spectroscopy [10,13–21].

SERS combines Raman spectroscopy with nanotechnology into an ultrasensitive and
highly specific analytical tool. This is achieved by exploiting the giant intensification of the
Raman signal from molecular scatterers located close to nanostructured plasmonic surfaces
when localized surface plasmon resonances (LSPRs) are efficiently excited [22]. Conse-
quently, SERS has been continuously integrated into a very broad range of nanosensing
applications, including biomedicine and clinical diagnosis [23–26], environmental analy-
sis [27–29], forensic science [30], and food safety [31]. SERS biosensing of small thiols in
bodily fluids has been implemented using both direct and indirect approaches. Direct SERS
detection of thiolated molecules is facilitated by the strong affinity of the mercapto group
for metallic gold and silver [10,14]. Nonetheless, such an approach suffers from intrinsic
limitations posed by the direct nature of the method. In particular, the competition of
other molecules present in complex matrices for adsorbing onto the plasmonic surfaces can
negatively impact both the robustness of the response and the discrimination of the spectral
features of the biothiol from those of unknown interferences. This is further aggravated by
the typical low Raman cross-section of this class of analytes. To tackle this particular issue,
indirect approaches have been developed using external probes with high Raman cross-
section. For instance, SERS probes binding the metallic surface via pyridinic nitrogen can
be displaced by biothiols, leading to a decrease in the overall intensity (i.e., competitive ad-
sorption) [15,16]. Alternatively, several studies took advantage of the disulfide bond-sulfide
exchange reaction between GSH and Ellman’s reagent 5,5′-ditho-bis (2-nitrobenzoic acid)
(DTNB) or structurally analogous molecules [17–20] to design a “SERS on” response to the
presence of the biothiol. In this context, the breakage of the DTNB disulfide bridge causes
the release of the two thionitrobenzoate halves, which then can covalently bind the metallic
surface via their available mercapto group, giving rise to intense SERS signals. Nonetheless,
these strategies do not address the limitations associated with competitive adsorptions in
complex biological matrices. Recently, Shen et al. [32] developed a background-free SERS
method to eliminate spurious interferences by forming a compact mixed layer of thiolated
polyethyleneglycol (PEG-SH) and oligonucleotides modified by a disulfide bond. Pegy-
lated coating prevents nanoparticle aggregation while oligo sequences act as recognition
elements for biothiols. In this case, the breakage of the disulfide bond causes the release
of a short DNA chain labeled with Cy5 as the SERS reporter. These nanoparticles were
successfully employed for the in situ imaging and quantitative monitoring of the level of
small-molecule thiols in cells. However, the manufacturing cost of oligonucleotides, espe-
cially the chemically modified ones, remains extremely high. The cost aspect is frequently
ignored at the academic level but does pose a major obstacle to the successful translation of
SERS into routine real-life applications [33].

In the realm of SERS-based sensing, it has been gaining great interest the design of
molecular SERS transducers that can firmly bind the plasmonic surface while simultane-
ously presenting the ability to interact with analytes selectively. Such interactions generate
target-dependent alterations of their spectral profile, which, in turn, can be quantitatively
correlated with the number of binding events [34–38]. In this scenario, the molecular
transducer (also referred to as “chemoreceptor”) also performs the role of internal stan-
dard, further boosting the robustness and reproducibility of the nanosensor response as
compared to read-out strategies that solely rely on absolute intensity measurements.

With this in mind, we synthesized a mercapto-azobenzene probe (AzoProbe) to be
used as an efficient and low-cost chemoreceptor in the detection of biothiols. Our choice
was based on previous studies indicating that azobenzene and its derivatives undergo
significant structural changes upon reduction by thiols, a property that has also been
exploited for modulating the ratio between reduced and oxidized glutathione in cells [39].
The in situ generated chemoreceptor is directly conjugated to silver nanoparticles (AgNPs)
with no need for tedious post-purification processes, yielding highly SERS active AgNP
clusters. These aggregates are further encapsulated by PEG-SH to afford high colloidal
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stability in complex biological media. The SERS performances of the active substrates were
tested against the clinically relevant GSH as a representative small thiolated biomolecule,
demonstrating a linear range of response in the ca. 7–100 nM with an excellent limit of
detection of ca. 5 nM. Thus, the sensing performance of the SERS platform fulfills the
requirements for the determination of biothiols in multiple biological media. Here, the
linear range for accurate quantification can be easily adjusted to the different biothiol
levels (approximately from mM to µM), according to the nature of the biofluid, via mere
dilution of the sample and/or by tuning the final content of SERS active clusters in the
media. Moreover, this simple and low-cost nanofabrication approach drastically reduces
the manufacturing cost of the SERS sensor.

2. Materials and Methods
2.1. Materials

Silver nitrate (99.8%, AgNO3), magnesium sulfate (99%, MgSO4), trisodium cit-
rate dihydrate (≥99.5%, C6H5Na3O7·2H2O), and ascorbic acid (99%, C6H8O6), were
acquired from Acros Organics. 4-aminothiophenol (≥97%, ATP), sodium nitrite (98%,
NaNO2), and hydrochloric acid (36.5–38%, HCl) were purchased from Alfa Aesar. Phenol
(99%, C6H5OH), sodium hydroxide (≥99.5%, NaOH), L-Glutathione reduced (99.72%,
C10H17N3O6S), L-Glutathione oxidized (99.72%, C20H32N6O12S2), and poly(ethylene gly-
col) methyl ether thiol (99%, CH3O(CH2CH2O)nCH2CH2SH, 800 ethylene monomers
repetitions, Mw ~ 35 kDa), were purchased from Sigma-Aldrich. Phosphate buffered saline
tablets, and L-Cysteine hydrochloride monohydrate (98.5%, C3H10ClNO3S) were pur-
chased from Thermo Fisher. All reactants were used without further purification. Milli-Q
water (18 MU cm−1) was used in all aqueous solutions. All glassware was cleaned with
aqua regia before the experiments.

2.2. Synthesis of Spherical Silver Nanoparticles (Ag NPs)

Synthesis of silver colloids was carried out as previously reported [40]. A mixture
containing AA (100 µL, 0.1 M) and C6H5Na3O7·2H2O (1.36 mL, 0.1 M) was added under
vigorous stirring to 100 mL of boiling water. After 1 min, a mixture containing AgNO3
(297.6 µL, 0.1 M) and MgSO4 (223.6 µL, 0.1 M), previously incubated for 5 min, was
also added. The mixture was left to boil under stirring for 1 h. The obtained colloids
were washed once via centrifugation (4000 rpm, 10 min) to remove the excess citrate and
redispersed in Milli-Q water to an estimated concentration of [Ag0] = 3 × 10−4 M.

2.3. Synthesis of the AzoProbe

Synthesis of the AzoProbe was performed based on the report by Kar et al. [41].
Diazonium salt is first obtained by the diazotization of 4-ATP with nitrous acid. Briefly,
0.5 g of 4-ATP (4 mmol) were dissolved in 10 mL of HCl 0.001 M. Then 0.27 g of NaNO2 were
added to the reaction. The mixture was left under gently stirring for 45 min. An ice bath
was used to reach a reaction temperature below 5 ◦C. The colour of the mixture changes
from transparent to slightly yellow. After the complete diazotization, the intermediate
is coupled with C6H5OH. A total of 0.46 g (ca. 4.8 mmol) of the latter were dissolved in
NaOH (55.7 µL, 0.5 M), cooled, and slowly added to the mixture. The reaction is left under
mild stirring for 45 min at a temperature below 5 ◦C. The final solution (AzoProbe reaction
mixture) turns from slightly yellow to gold.

2.4. Functionalization of the Ag Nanoparticles with the AzoProbe (Ag@AzoProbe) and
Polyethylene Glycol (PEG) Encapsulation (Ag@AzoProbe@PEG)

2 mL of the AgNPs colloids were added dropwise under vigorous stirring to 0.8 mL
of AzoProbe reaction mixture. The obtained mixture was left to incubate overnight with
orbital shaking and then centrifuged once (1000 rpm, 10 min). The pellet was resuspended
in 2 mL of Milli-Q water and combined with 530 µL of poly(ethylene glycol) methyl ether
thiol (PEG-SH) 10−6 M under vigorous stirring [42]. The solution was stirred overnight.
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The excess of the polymer was removed via centrifugation (1000 rpm, 10 min), and the
encapsulated aggregates Ag@AzoProbe@PEG were collected as pellets and redispersed
in 100 µL phosphate buffer saline (PBS, pH 7.4). The amount of PEG-SH was calculated
to match the one corresponding to a full monolayer coverage of the silver nanoparticles
considering a polymer footprint of 2.18 nm2 (2.65 × 10−10 mol of PEG-SH per 1 mL of Ag
colloids containing ca. 3 × 1010 NPs) [42].

Samples for SERS analysis were prepared by adding 10 µL of Ag@AzoProbe@PEG
suspension to 200 µL of GSH solution in PBS (pH 7.4) at different concentrations. The
sample was incubated 1 h before the measurement. An identical protocol was applied
for other low molecular weight biothiols (glutathione disulfide, GSSG; and cysteine, Cys)
and high molecular weight biothiols (bovine serum albumin, BSA). Silver nanoparticles
previously incubated with 4-aminothiophenol (4-ATP) 10−7 M were aggregated by adding
30 µL of a 0.5 M solution of MgSO4 to 1 mL of colloids to acquire an intense SERS fingerprint
of 4-ATP on AgNPs.

2.5. Instrumentation

UV-VIS spectroscopy (Thermo Scientific Evolution 201) and transmission electron
microscopy (TEM, JEOL 1011 operating at 100 kV) were used to characterize the optical
response and size of the nanoparticles. TEM samples were prepared by drying water
suspensions on carbon-Formvar-coated 200 mesh copper grids. SERS spectra were collected
in backscattering geometry with a Renishaw inVia Reflex system equipped with a 2D-CCD
detector, a Leica confocal microscope, and a 785 nm laser line. The laser was focused on the
colloidal suspension using a macrolens (power at the sample = 3 mW, 1 s accumulation).

3. Results and Discussion

Structural requirements of SERS chemosensors commonly involve the presence of
a mercapto group to firmly anchor the metallic surface [36,37,43,44]. Thus, we designed
an azobenzene derivative by combining 4-aminothiophenol (4-ATP) and phenol (PHE)
(Figure 1A). First, sodium nitrite and hydrochloric acid were combined to generate nitrous
acid in situ, which, in turn, reacts with 4-ATP to yield the corresponding diazonium
cation. Then, upon addition of phenol, the azo-coupling reaction takes place, leading to the
formation of the corresponding mercaptophenyl-azo-phenol (AzoProbe) via electrophilic
aromatic substitution [41]. Figure 1B illustrates the corresponding UV-Vis spectra at each
stage of the process, confirming the successful generation of the AzoProbe. It is to be
noted that, in our case, a slight excess of PHE reactant was employed to maximize the
4-ATP consumption. In this way, the reaction mixture can be directly combined with silver
nanoparticles without tedious post-purification steps since all chemicals, barring AzoProbe,
do not bind the metal surface and can be easily removed from the medium in subsequent
washing cycles.

The methodological approach for SERS substrate fabrications is outlined in Figure 2A.
Silver colloids (AgNPs) of ca. 55 ± 5 nm diameter (Figure 2B) were prepared via the con-
ventional chemical reduction method using sodium citrate [40]. An aliquot of AgNPs was
combined with the AzoProbe reaction mixture to a final probe concentration of ca. 0.1 mM.
Such AzoProbe content is estimated to be sufficiently high to promote the formation of a full
monolayer via direct covalent binding with the pending SH group of the chemosensor. The
sample was incubated overnight to maximize the AzoProbe surface density on Ag colloids.
Such chemical modification causes the localized surface plasmon resonance (LSRP) of silver
colloids, initially centered at 421 nm, to undergo a red-shift to ca. 438 nm and a marked
broadening (Figure 2D). Moreover, a new contribution emerges at ca. 700 nm, indicating
the formation of metastable nanoparticle aggregates (Ag@AzoProbe) in Milli-Q water.
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Figure 2. (A) Outline of the fabrication of colloidally stable silver nanoparticle clusters modified
with the AzoProbe molecular sensor and thiolated PEG. (B,C) Representative TEM images of Ag-
NPs and Ag@AzoProbe@PEG clusters, respectively (scale bars = 100 and 500 nm). In the case of
Ag@AzoProbe@PEG clusters, the sample has been highly diluted prior deposition to minimize
nanoparticle aggregation induced by the drying process. (D) Extinction spectra of silver colloids
before (Ag NPs) and after (Ag@AzoProbe) the addition of the azo-compound in Milli-Q water, and
the corresponding pegylated clusters (Ag@AzoProbe@PEG) in PBS buffer (pH 7.4).
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In order to enhance the colloidal stability of the Ag@AzoProbe in complex media, PEG-
SH (35 kDa) was successively added to the colloidal mixture to yield Ag@AzoProbe@PEG
clusters [42]. PEG-SH is a neutral, water-soluble, and biocompatible polymer that has
been extensively exploited as a surface stabilizer to protect metallic nanoparticles from
aggregation against salts [45]. After overnight incubation, the colloidal dispersion was
submitted to low-speed centrifugation to remove unbound polymer molecules. The pellet
was collected and redispersed in PBS (pH = 7.4), while the light-yellow supernatant was
discarded. In this way, the residual fraction of individual, non-clustered nanoparticles in
the supernatant was largely removed from the medium, as it can be also inferred from the
weakening of the plasmonic contribution at 421 nm in the extinction spectra (Figure 2D).
This enabled the separation of highly SERS active Ag@AzoProbe@PEG (Figure 2C) clusters
from poorly efficient enhancers. On the other hand, non-pegylated clusters redispersed in
PBS buffer underwent a slow but irreversible aggregation over time.

Figure 3 compares the SERS spectrum of Ag@AzoProbe@PEG clusters with that of
silver colloids modified with the AzoProbe precursor 4-aminothiophenol (Ag@4-ATP).
Differently from 4-ATP, PHE does not show any affinity for the Ag surface and thus, the
normal Raman spectrum of the solid phenol was acquired instead. Neighboring 4-ATP
molecules, however, undergo photocatalyzed diazotization onto silver nanostructures to
yield the corresponding 4,4′-dimercaptoazobenzene (DMAB) product [29,46]. To avoid
dimerization, 4-ATP was then added at a low concentration (10−7 M) to the AgNPs sus-
pension [29]. The so-functionalized nanoparticles were then aggregated using a MgSO4
solution as the aggregating agent to yield a detectable SERS spectrum of the non-dimerized
molecule (Figure 3, Ag@4-ATP). The most intense 4-ATP bands are centered at 368, 1008,
1079, 1494, and 1599 cm−1, which have been ascribed to out-of-plane C-C-C modes (368 and
1008 cm−1), ring breathing and C-S stretching (1079 cm−1), N-H bending (1494), and C=C
stretching (1599 cm−1) [47]. On the other hand, the SERS spectrum of the synthesized
AzoProbe (Figure 3, Ag@AzoProbe@PEG) displays new intense features which are infor-
mative of the formation of the -N=N- bond between the 4-ATP and PHE precursors. Most
notably, we highlight the bands at 1143, 1191, 1310, 1382, 1433, and 1578 cm−1, which
can be mainly assigned to a combination of N-C stretching and C-H bending (1143, 1191,
and 1433 cm−1), N-C and C-H bending (1310 cm−1), and C-C and N-N stretching (1382
and 1578 cm−1) [47]. Furthermore, the intense band at 1412 cm−1 and the weak feature
at 1474 cm−1 have been previously assigned to the trans and cis forms of the analogous
structural 4-phenylazophenol, respectively [48].

As a representative small thiolated biomolecule, we selected the clinically relevant
GSH, which is also the most abundant intracellular nonprotein thiol [49]. The SERS
response of the Ag@AzoProbe@PEG material to the presence of GSH was monitored in
samples obtained by diluting 10 µL of highly SERS-active clusters into 200 µL of GSH
solution in PBS buffer (pH = 7.4). Figure 4A shows the SERS spectra of Ag@AzoProbe@PEG
before and after the addition to a 100 nM solution of GSH (spectra were collected after 1 h
incubation at room temperature). The substrate exposure to glutathione leads to a major
reshaping of the molecular probe spectrum, demonstrating the ability of GSH to diffuse
across the external PEG shell and onto the AzoProbe functionalized metallic surface. Most
notably, spectral reshaping involves those bands associated with vibrations of the azo bond
that links the two aromatic moieties (see 1110–1520 cm−1 spectral range). As it has been
reported, in response to GSH, azo dyes undergo reductive cleavage to yield the respective
amines [50]. In our scenario, this implies the release of the 4-aminophenol moiety from
the silver surface while the residual 4-ATP fragment remains anchored via the strong Ag-S
bond (Figure 4B). However, in this case, dense patches of closely spaced 4-ATP molecules
are left behind on Ag surfaces, including at the interparticle gaps, which then triggers
their surface catalyzed dimerization upon laser illumination (Figure 4B). Indeed, the SERS
spectrum of the GSH-treated clusters matches that of the self-diazotization product DMAB
on silver colloids [29,46].
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The evolution of the SERS profile in the spectral range of interest (1110–1520 cm−1)
as a function of a decreasing GSH concentration (from 100 nM to 3 nM) is illustrated in
Figure 4C. To correlate the spectral reshaping with the analyte content, we calculated the
SERS intensity ratio between the 1433 and 1382 cm−1 bands (I1433/I1382), which has been
selected as the spectral marker due to its extensive variation in the presence of GSH. The
resulting intensity ratios are plotted against GSH concentration in Figure 4D, showing a
good linear relation in the 7–100 nM range (r2 = 0.978) and an estimated limit of detection
of ca. 5 nM.

It is worth stressing that all SERS experiments were performed by focusing a 785 nm
laser onto the colloidal samples using a macrolens. In this manner, we obtain statistically
averaged SERS spectra from a relatively high number of clusters in continuous Brownian
motions within the scattering volume. At the same time, the Ag@AzoProbe@PEG clusters
concentration in the sample was maintained sufficiently high to yield intense SERS spectra
with well-defined features adopting an integration time of just 10 s. The intrinsically high
sensitivity of the proposed method allows obtaining detection limits that far exceed those
required to detect biothiols at biologically relevant concentrations in bodily fluids. Thus,
we were able to adopt an experimental set-up that favors rapidity, simplicity, and spectral
reproducibility, as required for quantitative applications [51], although at the expense of
the absolute detection sensitivity.

Identical spectral changes as those observed in Figure 4 for GSH (100 nM) have also
been recorded for other small biothiols such as oxidized glutathione (GSSG) and cys-
teine (Cys) at the same concentration (Figure 5). A similar outcome emerged when the
nanoprobes were exposed to a mixture of GSH and Cys at a 2:1 molar ratio (total biothiol
content = 100 nM). Notably, when the Cys content is decreased to 8 nM, the intensity ratio
I1433/I1382 value (ca. 0.95) approaches that of GSH (ca. 1.0) at an analogous concentration.
As also previously reported [21], thiolated PEG coating of nanoparticles allows for small
biothiols to approach the metallic surface while blocking large macromolecules. In order to
verify such quality of Ag@AzoProbe@PEG clusters, we exposed the nanostructures to a
40 mg/mL solution of bovine serum albumin (BSA), which was selected as a representative
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example of biomacromolecule equipped with thiol groups. No changes in the AzoProbe
spectrum (Figure 5) were detected, which confirms the impossibility of large proteins
to diffuse at the interparticle gaps within the clusters. Indeed, as it has been extensively
demonstrated in the literature, the SERS signal from aggregates composed of closely-spaced
nanoparticles is dominated by the contribution of the fraction of molecules that are en-
trapped at the interparticle gaps [52,53]. We also tested the response of the sensing platform
in the presence of 1 mM glucose, which was chosen as a representative non-thiolated and
ubiquitous reducing chemical in biofluids. No alterations of the AzoProbe SERS spectrum
were detected (Figure 5). On the other hand, small molecules such as ascorbic acid and
hydroxyl radicals, that showed heterogeneous reactivity with azo groups [54,55], coexist
with low molecular weight thiols in biofluids at concentrations well below the overall
biothiol content, a condition that provides the basis for discrimination.
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Figure 5. SERS spectra of Ag@AzoProbe@PEG clusters in PBS buffer (pH 7.4) containing glucose
(1 mM), BSA (40 mg/mL), GSH 100 nM, glutathione disulfide (GSSG) 100 nM, cysteine (Cys) 8 and
100 nM, and a mixture of GSH+Cys (6.7 × 10−8 M and 3.3 × 10−8 M, respectively).

In summary, we have reported a novel approach for engineering a highly efficient,
low-cost platform for the dynamic SERS sensing of biothiols. An azobenzene derivative
equipped with a mercapto group has been designed to firmly bind silver colloids via
Ag-S bond while generating metastable and highly SERS active clusters in suspension.
Subsequent encapsulation of the so-formed clusters with PEG-SH granted the required
colloidal stability to be used in complex media such as biofluids. When exposed to GSH,
the SERS spectrum of the AzoProbe displays major spectral changes, which were ascribed
to the breakage of the diazo bond, causing the release of the 4-aminophenol moiety from the
surface. The residual surface-bound 4-aminothiophenol fragment is then free to undergo
metal-catalyzed dimerization with other neighboring molecules. The extent of such spectral
alterations was quantitatively correlated with the GSH content in the ca. 7–100 nM range
with an excellent limit of detection of ca. 5 nM. It is worth stressing that the linear range
for accurate quantification can be simply tuned to different biothiol concentration ranges
by merely varying the absolute content of SERS active clusters or via sample dilution.
An identical response was observed for other low molecular weight thiols (i.e., oxidized
glutathione and cysteine), while larger macromolecules with free thiol groups such as BSA
do not produce distinguishable spectral alterations, indicating the suitability of the SERS
sensing platform for the selective quantification of small biothiols.
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