
����������
�������

Citation: Cai, Z.; Wang, T.; Shen, Y.;

Xing, Y.; Yan, R.; Li, J.; Liu, C. Robust

PVC Identification by Fusing Expert

System and Deep Learning.

Biosensors 2022, 12, 185. https://

doi.org/10.3390/bios12040185

Received: 27 February 2022

Accepted: 18 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biosensors

Article

Robust PVC Identification by Fusing Expert System and
Deep Learning
Zhipeng Cai 1 , Tiantian Wang 1, Yumin Shen 1, Yantao Xing 1, Ruqiang Yan 1,2,*, Jianqing Li 2 and Chengyu Liu 1,*

1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
zhipeng@seu.edu.cn (Z.C.); 220183259@seu.edu.cn (T.W.); 220213661@seu.edu.cn (Y.S.);
230198304@seu.edu.cn (Y.X.)

2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 714009, China; liq@seu.edu.cn
* Correspondence: yanruqiang@xjtu.edu.cn (R.Y.); chengyu@seu.edu.cn (C.L.)

Abstract: Premature ventricular contraction (PVC) is one of the common ventricular arrhythmias,
which may cause stroke or sudden cardiac death. Automatic long-term electrocardiogram (ECG)
analysis algorithms could provide diagnosis suggestion and even early warning for physicians.
However, they are mutually exclusive in terms of robustness, generalization and low complexity.
In this study, a novel PVC recognition algorithm that combines deep learning-based heartbeat
template clusterer and expert system-based heartbeat classifier is proposed. A long short-term
memory-based auto-encoder (LSTM-AE) network was used to extract features from ECG heartbeats
for K-means clustering. Thus, the templates were constructed and determined based on clustering
results. Finally, the PVC heartbeats were recognized based on a combination of multiple rules,
including template matching and rhythm characteristics. Three quantitative parameters, sensitivity
(Se), positive predictive value (P+) and accuracy (ACC), were used to evaluate the performances
of the proposed method on the MIT-BIH Arrhythmia database and the St. Petersburg Institute of
Cardiological Technics database. Se on the two test databases was 87.51% and 87.92%, respectively;
P+ was 92.47% and 93.18%, respectively; and ACC was 98.63% and 97.89%, respectively. The PVC
scores on the third China Physiological Signal Challenge 2020 training set and hidden test set were
36,256 and 46,706, respectively, which could rank first in the open-source codes. The results showed
that the combination strategy of expert system and deep learning can provide new insights for robust
and generalized PVC identification from long-term single-lead ECG recordings.

Keywords: electrocardiogram; K-means clustering algorithm; premature ventricular contraction;
rule-based decision algorithm

1. Introduction

Cardiovascular diseases (CVDs) are the foremost cause of human death worldwide,
which can lead to over 31% of deaths every year. With the progressive aging of populations
worldwide, the number of patients with CVDs may continue to increase. It is estimated
that the number of deaths due to CVDs will increase from 17 million in 2016 to 24 million
in 2030 [1]. Therefore, monitoring and preventing CVDs in advance has become one of the
important tasks for many countries [2].

Arrhythmia is a common CVDs, which refers to a series of rhythm and/or waveform
irregular. As one of the most common arrhythmias, premature ventricular contraction
(PVC) is caused by premature ectopic beats in the right or left ventricle [3]. Frequent
PVC and multisource PVC detection have important clinical significance [4]. Clinicians
generally detect PVC by observing rhythmic changes and subtle morphological changes
from electrocardiogram (ECG) signal. However, this visual inspection may increase the
manual interpretation work for physicians and lead to low efficiency for long-term PVC
recognition. In order to reduce the workload of clinicians and improve PVC detection
accuracy, researchers developed computer-aided systems for automagical diagnosis [5].
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Various automatic ECG heartbeat classification algorithms have been developed
in recent decades, which can be summarized into two categories: expert system (ES)-
based and deep learning (DL)-based methods. The ES-based methods classify heartbeats
into different categories by judging multiple features with fixed thresholds. Most ES-
based algorithms utilize rule-based features derived from rhythmic intervals (RR-interval,
QT-interval, PR-interval, etc.) and morphological characteristics (P-wave, Q-wave, T-wave,
etc.). Liu et al. [6] presented a personalized ECG template construction method and detected
PVC beats based on template matching, and the sensitivity (Se) on the MIT-BIH arrhythmia
database (MIT-BIH-AR) (DS2) reached over 99%. Although this method has low compu-
tational complexity and can be applied for real-time conditions, the high performance is
not tested on other databases especially on the dynamic noisy signals. Nahar et al. [7]
proposed an algorithm for PVC detection based on morphological transformation and
cross-correlation technology, which used the morphological features to directly detect
PVC. The potential of this proposed method was examined using 32 records from the
MIT-BIH-AR database, reporting a specificity (Sp) of 96.67%, and a Se of 95.2%. Li et al. [8]
proposed a low-complexity data-adaptive approach for PVC recognition. They tested the
method on INCART database and achieved a Se of 93.4%, an accuracy (ACC) of 94%, and a
positive predictive value (P+) of 66.5%. These methods can be used for real-time appli-
cations without patient-specific consideration, as these methods have low computational
complexity and good generalization capabilities. However, they need professional re-
searchers to choose features and specific thresholds according to different tasks. Moreover,
these detailed features are susceptible to noise interference, resulting in poor anti-noise
ability of the algorithm.

With the development of machine learning, numerous DL-based methods have been
developed, including auto-encoding (AE) [9], convolutional neural network (CNN) [10],
block-based neural network (BBNN) [11], long-short term memory (LSTM) [12], support
vector machine (SVM) [13], decision tree [14], cascade forward neural network (CFNN) [15],
and random forest [16], etc. The DL-based method omits the handcrafted features extrac-
tion process, as the DL network can automatically extract the high-dimensional features.
Therefore, DL-based methods can be applied in situations with big data processing ca-
pabilities, such as cloud computing platforms [17]. Yildirim et al. [1] presented a new
1D-convolutional neural network model for cardiac arrhythmia detection based on long-
duration ECG signal analysis, which achieved an ACC of 91.33% for 17 cardiac arrhythmia
classes classification in the MIT-BIH-AR database. Similarly, Pławiak et al. [18] proposed
genetic ensembles of SVM-based classifiers for the same classification task and achieved a
Se of 91.40% and an ACC of 98.99%. These two methods can be used for real-time signal
processing and cloud computing on mobile devices, as they eliminate the need for detection
and segmentation of QRS complexes. However, neither of these two methods can classify
ECG segments that contain multiple ECG abnormalities. Shadmand et al. [11] employed the
particle swarm optimization algorithm to optimize the structure and weights of BBNN and
obtained an accuracy of 97.00% for five classes of ECG classification on the MIT-BIH-AR
database. This method highly relied on large volumes of labeled data and computing
resources to obtain its satisfactory performance on different databases.

Although the reported ES- and DL-based automatic heartbeat classification algorithms
can achieve high performances on different databases, the extracted features of ES-based
method require professional knowledge and are susceptible to noise; while the DL-based
method is unexplainable and is easy to overfit on a small amount of labeled data. Therefore,
in order to ensure the accuracy of ES-based and DL-based algorithms while considering
the disadvantages of these two methods, a robust PVC identification algorithm based
on a novel expert system and deep learning combination strategy was proposed in this
paper. To evaluate its performance and generalization capacity, the method was tested
on three different databases: the MIT-BIH-AR database, the St. Petersburg Institute of
Cardiological Technics (INCART) database and the China Physiological Signal Challenge
2020 (CPSC2020) database. There are three major contributions of the proposed work.
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(1) This article proposed a novel expert system and deep learning combination strategy
for PVC recognition in single-lead ECG. (2) The developed PVC detection algorithm is
unsupervised, since the employed LSTM-AE network is used as the feature extraction
process for heartbeat clustering. (3) The designed method is less complex and lightweight
compared to most of the proposed automatic PVC detection methods.

2. Materials and Methods
2.1. MIT-BIH-AR Database

The lead II ECG signal of MIT-BIH arrhythmia (MIT-BIH-AR) database is used as the
training set in our study. The database contains 48 half-hour two channel ambulatory ECG
recordings, obtained from 47 subjects, and sampled at 360 Hz. Following the Association for
the Advancement of Medical Instrumentation (AAMI) recommendations, the experiments
are performed by excluding four records (102, 104, 107, and 217) containing paced beats,
and the remaining 44 recordings are used as training set. Similar to [19], the fusion and
supraventricular beats are treated as Non_PVC beats while unclassified (Q) and distortion
beats are ignored, so there are 6990 PVC beats and 92,851 Non_PVC beats (Table 1).

Table 1. The Detailed Information of Three Database.

Database ECG Length # PVC Beats # Non_PVC Beats # Total Beats Sampling Frequency (Hz)

Training MIT-BIH 1 30 min 6990 92,851 99,841 360

Test
INCART-12 30 min 20,008 155,652 175,660 275

CPSC2020 Training ~24 h 42,075 853,636 895,711 400

1 Four records (102, 104, 107, and 217) containing paced beats in MIT-BIH database were excluded in this study.
# means the number of each beats.

2.2. INCART Database

The performance of the proposed algorithm was evaluated on the INCART database,
which consists of 75 12-lead ECG records. Each recording was sampled at 275 Hz and 30 min
in duration. The annotations were produced by an automatic algorithm and then corrected
manually, containing over 175,000 annotations in total [15]. Among these recordings, ECGs
of lead II are adopted as our experimental data [20], and the ventricular ectopic beats (V)
are regarded as PVC beats, and the others are Non_PVC beats.

2.3. CPSC2020 Database

CPSC2020 database is a wearable ECG database constructed for challenging PVC and
supraventricular premature beat detection tasks [21], including pathological arrhythmias
and poor signal quality due to artifact and noise. The training data consists of 10 single-lead
ECG recordings collected from arrhythmia patients, each of the recording lasts for almost
24 h. The test set contains similar ECG recordings, which are not public. All data were
collected with a sampling frequency of 400 Hz. It is worth noting that we did not participate
in CPSC2020 in order to avoid doubts (we are affiliated with the organizer), but we tested
our algorithm on this database and compared it with the top five teams.

3. Method

In this study, ECG recordings were cut into 30 min ECG segments. Each 30 min ECG
segment was preprocessed to exclude the noise episodes and filter the artifacts for accurate
R-peak detection. Thereafter, the feature vectors extracted by LSTM-AE were used for
template construction based on K-means clustering, and the type of each template was
determined by rule-based method. Finally, PVC heartbeats were identified by several rules.
The flowchart of the proposed method is illustrated in Figure 1.
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Figure 1. Flowchart of proposed method.

3.1. Signal Preprocessing

ECG signal is easily polluted by a variety of noises, including body movement, ECG-
lead off, etc. The corrupted ECG data could significantly affect the PVC identification.
To remove the unacceptable ECG segments with poor signal quality, the signal quality
assessment is used based on our previous work [22]. In brief, seven signal quality indices
(SQIs) were calculated to train an SVM-based signal quality classification model, the train-
ing strategy and parameters setting were same as our previous work. After that, the baseline
drift and high-frequency noise is excluded by a Butterworth band-pass (0.1–45 Hz) filter.
Then, R-peaks are detected using an adaptive and time-efficient algorithm [23]. It was
an adaptive method integrating wavelet-based multiresolution analysis, signal mirroring,
local maximum detection, and amplitude and time interval thresholding. The R peaks were
refined three times by replacing the detected R peak with the position of its surrounding
(±25 ms) maximum absolute amplitude to address the R-peak misalignment problem.
Finally, the 30 min ECG segment is divided into ECG heartbeats with 0.5 s length win-
dow centered around the detected R-peaks (0.1 s in front and 0.4 s after) referred from
previous works [24].

3.2. Heartbeats Clustering and Templates Classification
3.2.1. Feature Vectors Extraction Based on LSTM-AE

The long short-term memory-based autoencoder (LSTM-AE) network is used to extract
the feature vectors of ECG heartbeats in this research. Figure 2 shows the structure of LSTM-
AE. LSTM is designed for processing time series based on the framework of the recurrent
neural network, consisting of three gate structures: input gate, forget gate, and output gate.
The forget gate decides what information will be thrown away from the previous cell state.
The vectors ft generated by the hidden state ht−1 from the previous LSTM cell and the
input xt of the current step t. The generation process can be represented as

ft = σ
(

W f ·[ht−1, xt] + b f

)
(1)



Biosensors 2022, 12, 185 5 of 16

where W f is the weighted matrix of the forget gate and b f is the bias. As for the input gate,
the vector it and the input candidate information C̃t is also generated by the hidden state
ht−1 and the input xt as

it = σ
(

W f ·[ht−1, xt] + bi

)
(2)

C̃t = σ(WC·[ht−1, xt] + bC) (3)

The weighted matrices of Wi, Wo and bias bi, bo represent the connection between two
components respectively. The forget gate and the input gate together determine the current
control cell status Ct:

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

The output gate also generates a vector ot to determine the hidden state ht in the
output state of the LSTM, as shown in the following equations:

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ot ∗ tan h(Ct) (6)

In Equation (5), Wo is the weighted matrix of the forget gate and bo represents the bias.
In this study, the LSTM-AE network is adopted in this study to extract feature vectors of
the heartbeat, the training parameters are feature number = 32, batch size = 128, epoch
numbers = 100, and Adam optimizer is selected as the optimizer [25].

This research embeds the LSTM network into the AE framework; thus, the process
of encoder and decoder is implemented by LSTM. The encoder converts the input xt to a
hidden representation ht (feature vectors) using a deterministic mapping function:

ht = f (W·[ht−1, xt] + b) (7)

where W is the weight between input xt and hidden representation ht and ht represents the
bias. The decoder implements reconstructing the output x̂t by ht, which can be expressed as

x̂t = f ′(W′·ht + b′) (8)

where W′ is the weight between hidden representation ht and output x̂t and b′ is the bias.
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3.2.2. K-Means Clustering Using Feature Vectors

The divided ECG heartbeats in each 30 min ECG segment are preliminarily clustered
into K groups (K ≤M, M represents the total number of heartbeats) based on the feature
vectors using K-means clustering technique. In this study, K is determined by silhouette
coefficient (SC):

SC =
∑M

i=1
b(i)−a(i)

max{a(i),b(i)}
M

(9)

where a(i) and b(i) are the intra-cluster dissimilarity and intercluster dissimilarity of ith
coded feature, respectively. The maximum SC is defined as K.

3.2.3. Template Construction and Template Classification

After K-means clustering, the distances between each coded feature sample in each
group and its centroid are calculated, and sorted in ascending order Equation (10):

sort_labelj =
argsort
1≤j≤K

(
∑Nt

i=1

∣∣xi − aj
∣∣2) (10)

where, sort_labelj is the index of the sample corresponding to the distance between the
sample in group j and the centroid aj after sorted, and Nt indicates the number of samples
in the group.

The first 30 samples after sorting are selected to construct templates, and the type
of each template is determined as PVC/Non_PVC based on the morphological rules
referring to our previous work in [26]. In brief, three features (the QRS complex height,
the QRS complex width, and the correlation coefficient of each template) and several
prior-knowledge-based rules are used to determine the type of each template.

3.3. Heartbeat Classification

To quantify the similarity between each heartbeat waveform (HW) and the determined
template waveform (TW), three characteristics are adopted in this study: cross-correlation
coefficient (Covr), area difference (ArDiff ) and energy difference (EnDiff ). The Covr is
defined as

Covr(HW, TW) =
∑N

i=1
(

HWi − HW
)(

TWi − TW
)√

∑N
i=1
(

HWi − HW
)2

∑N
i=1
(
TWi − TW

)2
(11)

where HW and TW are the mean values of HW and TW, respectively, N is the sample points
of HW and TW. ArDiff indicates the area difference between HW and TW, the definition of
ArDiff is

ArDi f f (HW, TW) =

∣∣∣∑N
i=1|HWi| −∑N

I=1|TWi|
∣∣∣

∑N
I=1|TWi|

× 100% (12)

EnDiff is used to assess the energy difference between HW and TW, and is defined as

EnDi f f (HW, TW) =
∑N

i=1(HWi − TWi)
2

∑N
i=1(TWi)

2 (13)

The details of the proposed heartbeat classification are described as follows:
Step1: Evaluate the similarity between template and each intracluster heartbeats to

determine the heartbeat type. If the current heartbeat and its related intracluster template
meets the following conditions (14), the current heartbeat type and its template type are
considered the same; else the current heartbeat is considered as “Unknown”.

Covr ≥ 0.9 or (Covr ≥ 0.8 and ArDi f f < 10 and EnDi f f < 1) (14)
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Step2: Evaluate the similarity between “Unknown” heartbeat with all determined
templates. The template matching result between “Unknown” heartbeat and all determined
templates, as well as the rhythmic rules defined in [26] are considered simultaneously to
identify the type of “Unknown” heartbeat.

For the long-term ECG signal in CPSC2020, the 24 h signal is divided into several
30 min segments, and the first 30 min segment is processed as described above. For other
segments, a rule-based method is used to determine whether there is a need to update
the template. If necessary, the previous described steps are performed to update the
template; otherwise, the templates of the previous 30 min segment are used for the current
30 min segment.

3.4. Evaluation Method

Three common metrics including Se, P+ and ACC are used to evaluate the performance
of the proposed method [27].

ACC =
TP + TN

TP + FP + TN + FN
× 100% (15)

Se =
TP

TP + FN
× 100% (16)

P+ =
TP

TP + FP
× 100% (17)

where TP represents the number of PVC beats correctly identified; TN indicates the number
of Non_PVC beats correctly identified; FP represents the number of Non_PVC beats
incorrectly identified as PVC beats; FN indicates the number of PVC beats incorrectly
identified as Non_PVC beats. Almost all experiments are carried out on Intel®Core™i5-
8250U 1.60 GHz CPU and 8 GB RAM. The operating system is Windows10, the platform is
Spyder3, and the deep learning tool Keras based on the Python programming language is
used. However, the comparison of running time with the top five PVC scores of CPSC 2020
are carried out on Intel® Xeon® Silver 4215R 3.20 GHz CPU and 129 GB RAM with the help
of the competition organizing committee. The operating system is CentOS Linux release
8.4.2105, the platform is Anaconda.

We adopt the scoring rules of the CPSC 2020 competition (PVC score) to evaluate the
performance of the algorithm on the CPSC 2020 database, so that our algorithm can be
compared with the participating teams of the cpsc2020 competition. The scoring rules are
as follows.

• For a false positive (FP) detection, deduct 1 point.
• For a false negative (FN) detection, deduct 5 points, since from a clinical perspective,

missed diagnosis is more serious than misdiagnosis, thus we penalize FN detection.
The final score for PVC is the sum of all deducted points.

4. Results
4.1. Effectiveness of Feature Vectors Extracted by LSTM-AE

LSTM-AE model combines the LSTM network with the AE, which means the encoding
and decoding process is performed by LSTM. Through LSTM, encoder extracts feature
from the input ECG signal, while decoder implements the conversion from feature maps to
the output. The parameters of the encoding and decoding operations are computed using
unsupervised greedy training. In this paper, the input ECG signal of the LSTM-AE model
is the raw ECG without filtering, while the loss function used to optimize the LSTM-AE
model is calculated between the bandpass-filtered ECG signal and the reconstructed ECG
signal. In order to determine the detailed hyperparameter (batch size and feature numbers)
of the LSTM-AE model, we tested the PVC detection performance on different parameter
settings. Table 2 illustrates the classification accuracy in MIT-BIH-AR database under
different hyperparameter settings (take record 100 as an example), it can be seen that the
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model can provide better classification performance when batch size and feature numbers
are set to 128 and 32, respectively. Therefore, the batch size and feature numbers are set to
128 and 32 in our paper, respectively.

Table 2. The example of classification accuracy in MIT-BIH-AR database under different hyperpa-
rameter setting (record 100).

Batch
64 128 256

Feature Numbers

16 99.62% 99.65% 98.61%
32 99.68% 99.78% 98.59%
64 99.33% 99.60% 99.65%

Figure 3 shows the ranked feature vectors of PVC and Non_PVC in record 228 from
the MIT-BIH-AR database, sorted according to their t-test p-value. It can be seen that the
feature values of Non_PVC fluctuate slightly around 1, while the feature vectors of PVC
vary greatly from 0 to 10. In addition, it is obvious that more than half the feature vectors
between PVC and Non_PVC are different, which indicates that the feature vectors can
substitute original ECG data for heartbeat clustering.
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4.2. Results of K-Means Clustering

The example of K-means clustering result of record 210 in MIT-BIH-AR database is
shown in Figure 4. It can be seen that the heartbeats are clustered into only two groups
(K = 2), including 164 heartbeats and 2475 heartbeats (Figure 4a,b), respectively. The heart-
beats in each group show high similarity, and the templates (Figure 4e,f) constructed from
the 30 heartbeats closest to the centroid of each group show great difference (Figure 4c,d).
This demonstrates that the K-means clustering based on the feature vectors can better
divide the heartbeats into different groups.
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4.3. Results on MIT-BIH-AR Database

Figure 5a shows the confusion matrix of the results on MIT-BIH-AR database, and the
detailed results for this database are illustrated in the appendix (Table A1). The overall ACC
is 98.63%, which is comparable to the state of art algorithms. The Se for Non_PVC and PVC
beats is 99.46% and 87.51%, respectively; and the P+ is 99.06% and 92.47%, respectively.

Biosensors 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 
Figure 4. The results of clustering from record 210. (a,b) are all heartbeats superposition of each 
cluster; (c,d) are the 10 heartbeats extracted from each cluster to build templates; (e,f) are templates 
of the cluster. 

4.3. Results on MIT-BIH-AR Database 
Figure 5a shows the confusion matrix of the results on MIT-BIH-AR database, and 

the detailed results for this database are illustrated in the appendix (Table A1). The overall 
ACC is 98.63%, which is comparable to the state of art algorithms. The Se for Non_PVC 
and PVC beats is 99.46% and 87.51%, respectively; and the P+ is 99.06% and 92.47%, re-
spectively.  

 
Figure 5. Results of the proposed method on the MIT-BIH-AR database and INCART database, re-
spectively. (a) The evaluation indices of the proposed method on MIT-BIH-AR database; (b) the 
evaluation indices of the proposed method on INCART database.  

Re
fe

re
nc

e 
cl

as
sif

ic
at

io
n

17591 1288 93.18%

2417 154364 98.46%

87.92% 99.17% 97.89%

PVC

PVC

Non_PVC

Non_PVC

Se

P+

Outputs of the proposed method

(a) (b)

Figure 5. Results of the proposed method on the MIT-BIH-AR database and INCART database, respectively.
(a) The evaluation indices of the proposed method on MIT-BIH-AR database; (b) the evaluation
indices of the proposed method on INCART database.
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4.4. Results on INCART Database

The confusion matrix for the INCART database is shown in Figure 5b and the results
for each recording are shown in the appendix (Table A2). For this database, we obtained
a 97.89% overall ACC; Se 99.17% and P+ 98.46 % for non-PVC beats, and Se 87.92% and
P+ 93.18% for PVC beats. In order to evaluate the multilead robustness of our method,
the algorithm was independently verified in all 12-lead signals of the INCART database
(Figure A1). The results on 12-lead INCART database indicated the proposed method had
a good generalization ability between leads.

4.5. Results on CPSC2020 Dataset

Table 3 shows the results of the proposed method on CPSC 2020 dataset. According to
the scoring standards of the competition, the PVC score reached 46,706 and 36,256 on the
hidden dataset and training dataset, respectively. The result of our method is compared
with the final scores of the top five teams on the hidden test set, we got first rank among
the open-source codes. In addition, the computational complexity on the hidden test
set is analyzed with the help of the competition organizing committee. Compared with
the top five teams, the running time of our method is much shorter. It indicates that the
proposed method has the potential to be applied in long-term dynamic ECG monitoring
for PVC recognition.

Table 3. Detailed information on three databases.

Code No. CPSC1077 1 CPSC1091 CPSC1093 CPSC1082 CPSC1089 This Work

Method DenseNet + Rules DL-based 2 +Rules
Bidirectional

LSTM WT + DL-based 3 CNN LSTM-AE +
K-Means + Rules

PVC Score of Test 41,479 55,706 95,900 97,913 142,228 46,706
PVC Score of

Training - 16,467 6370 4482 11,086 36,256

Running Time (s) 1600.35 ± 311.32 695.55 ± 185.45 12,810.90± 726.48 18,260.57± 2100.84 368.29 ± 33.27 215.93 ± 59.32

1 This team did not publish their code, so we could not obtain the evaluation score of their algorithm on the
training set. The other codes are available in http://2020.icbeb.org/CSPC2020 (accessed on 17 March 2022).
2 This DL-based method refers to a deep learning architecture containing multi-dilated convolutional blocks
and a squeeze-and-excitation network. 3 This DL-based method refers to the combination of one-dimensional
convolutional layers and gated recurrent unit layers.

5. Discussion

A PVC recognition algorithm based on integrating deep learning and rules was
proposed in this study. Many ES-based or DL-based automatic ECG heartbeat classification
algorithms have achieved high recognition results. However, they are complementary in
terms of robustness and generalization.

The contribution of this paper is the combination of the DL-assisted template con-
struction and ES-based heartbeat classification, which not only guarantees the accuracy but
also improves the interpretability, robustness and generalization ability of the algorithm.
A wavelet-based statistical process control (SPC) method was proposed for PVC recognition
on MIT-BIH-AR database [28], the overall ACC was 97.90%, and the Se and P+ for PVC
were 87.20% and 84.60%, respectively. This method could improve PVC sensitivity by man-
ually adjusting parameter thresholds according to different situations, while our method
could achieve high PVC sensitivity without any manual process. A real-time premature
beat (PB) detection method for single-lead ECG was proposed based on several simple
rules [26], which was reported to have low computational complexity and could be used for
real-time PB detection for portable ambulatory ECG monitoring. However, their accuracy
on the total data (85.56%) was still non-neglected for accurate clinical diagnosis. Malek
et al. [29] developed an improved template matching technique for identifying normal and
PVC beats in ECG signals, which was evaluated on the INCART, QT, MIT-BIH Supraven-
tricular Arrhythmia, and Fantasia databases, and the accuracy was 97.91%, 99.34%, 99.89%,
and 98.44%, respectively. One of the strengths of this method was the application of an
adaptable threshold without the need for expert intervention, however, the features they

http://2020.icbeb.org/CSPC2020
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adopted were more complex than ours. Talbi et al. [30] studied the effectiveness of the
fractional linear prediction (FLP) technique on the ECG signal modeling, and developed
a PVC recognition method based on the three coefficients of FLP and KNN, and the best
accuracy of 96% was achieved on MIT-BIH-AR database. Most of the existing ES-based
methods are efficient and requires less expert intervention, but the robustness still needs to
be improved for daily life application.

From Table 4, we compared the PVC recognition between the proposed method
with existing methods on MIT-BIH-AR database and INCART database. The satisfactory
performance of the proposed method on these two clinical databases demonstrated that
our method not only guarantees the accuracy and robustness advantages of DL-based
method, but also improved the generalization capacity and interpretability advantages of
ES-based methods.

Table 4. Comparison of PVC recognition between the proposed method and existing methods on
MIT-BIH-AR database and INCART database.

Author Class and Focus Method Database # Total
Beats

# PVC
Beats Se (%) P+ (%) ACC (%)

Talbi et al., 2016 [30] PVC, Non_PVC KNN + FLP

MIT-BIH-
AR

95,743 7147 80.88 - 94.63
Wang et al., 2017 [31] PVC, Non_PVC Statistics +SVM 110,906 - 75.00 - 93.13
Jung et al., 2017 [28] PVC, Non_PVC Wavelet-based SPC - - 87.20 84.60 97.90

Mazidi et al., 2019 [32] PVC, Non_PVC SVM 82,163 7111 99.91 - 99.78
Li et al., 2019 [33] PVC, Non_PVC Wavelet Transform 100,372 6990 82.55 82.39 97.56

Cai et al., 2020 [26] Normal, PAC, PVC +CNN 98,426 6734 76.54 90.47 85.56
Kalidas et al., 2020 [19] PVC, Non_PVC Rules 93,432 6898 96.58 97.20 -

Wang et al., 2021 [34] PVC, Non_PVC SSAE + Random
Forests 24,922 2187 95.47 98.75 98.25

This study. 2021 PVC, Non_PVC OTSU + CNN 99,841 6990 87.51 92.47 98.63

Li et al., 2013 [8] PVC, Non_PVC LSTM-AE +
K-Means+

INCART

175,892 20,011 93.40 66.50 94.00

Oster et al., 2015 [35] PVC, Non_PVC Rules 175,871 20,011 95.40 99.30 -

Rahhal et al., 2018 [36] Normal, PVC and
Others

Template-
matching - - 85.20 80.90 92.00

Kalidas et al., 2020 [19] PVC, Non_PVC SKF with X-factor
Mode 175,674 19,990 88.08 94.70 -

This study. 2021 PVC, Non_PVC SDAEs + DNN 175,660 20,008 87.92 93.18 97.89

# means the number of each beat.

With the popularity of machine learning, many researchers have implemented ma-
chine learning algorithms in arrhythmia recognition and achieved high performance.
Mazidi et al. [32] designed a linear kernel-based SVM classifier with morphology, time
domain, time-frequency domain and nonlinear features for PVC recognition, the method
achieved a higher overall ACC and Se (99.78% and 99.91%, respectively) than our method.
Wang et al. [34] proposed a PVC detection scheme based on image processing and CNN
for scanned clinical ECG reports, and their Se and ACC could reach 95.47% and 98.25%,
respectively. However, our method was unsupervised while the training set used in their
method was overlapped in their test set. Oh et al. [12] proposed an automated system
using a combination of CNN and LSTM for variable-length ECG classification (five class),
they obtained the high classification accuracy of 98.10% without noise elimination on the
MIT-BIH-AR database. The system could analyze ECG signals of different lengths with
only a single type of arrhythmia, but it was computationally intensive. Yang et al. [27]
applied stacked sparse autoencoders (SSAEs) and a Softmax regression (SF) for six types
of ECG classification and achieved average 99.22% Se and 99.37% P+ on MIT-BIH-AR
database. The features extracted by SSAE had no individual independent differences in
feature selection and extraction accuracy, and almost no useful heartbeat information was
lost. However, the method was semisupervised and required trained cardiologists to first
classify each beat cluster into normal or ventricular. Therefore, it was inappropriate for
analyzing long-term signals.

Although we did not participate in CPSC2020 as we were affiliated with the organizer
of the challenge, the performance of the proposed method on long-term wearable ECG
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database (CPSC2020) was also compared with the published top five teams for PVC
recognition in CPSC2020 (Table 3). The method proposed by the published champion
team employed DenseNet model to classify the heartbeats into three categories (normal,
premature ventricular contraction and supraventricular premature beat) and refined the
results by a postprocessing procedure with several clinical rules. The algorithms of other
teams were almost all DL-based methods, and they could achieve excellent performance on
the training set, but they could not maintain such good results on the test set. The reason
might be that these teams overoptimized the accuracy of their algorithm on the training
set, leading to overfitting, which affected the algorithm results on hidden test set. Both our
method and the published champion team’s results outperformed DL-based methods,
indicating that the fusion of these two (ES-based and DL-based) methods had the potential
to reform the existing methods based only on ES or DL.

To evaluate the computational complexity of our method, we computed and compared
the operating time of our method and the CPSC2020 top five teams on the hidden test
set. In addition, we also compared the running time with some published works in
parallel. Three morphological features and seven statistical features were directly extracted,
normalized and fed into CFNN classifier for PVC recognition, which could process 20-s
segment within 2.1 s on a Samsung Galaxy J1 motherboard (a quad-core Cortex-A7 CPU
clocked at up to 1.2 GHz with 1 GB RAM, OS Android 6.0) [15]. Khalaf et al. [37] proposed
an SVM-based method on MATLAB R2010a on Intel® Core™ i5 3.2 GHz processor and 8 GB
RAM, and it consumed 54.8 ms for each beat classification. Arrais Junior et al. [38] reported
an adaptive threshold and redundant discrete wavelet transform fusion method, which can
process 30 min signals using only 61.2 s on the Matlab 2014a platform. These results showed
that (1) the superposition of deep learning and time-frequency conversion processes will
increase the complexity of the algorithm; (2) complex deep learning frameworks are indeed
more time-consuming than simple CNN; (3) the DL-based feature extraction + ES-based
postprocessing analysis generally take less time. The comparison results further verified
the advantage of the fusion of these two (ES-based and DL-based) methods.

The employed DL-based method (LSTM-AE module) was used to extract features
from ECG heartbeats for K-means clustering, and the PVC identification was based on a
combination of multiple rules, including template matching and rhythm characteristics.
The features used for classification are extracted according to the R-peak-relevant clinical
experience: the Covr, ArDiff and EnDiff are used to map the morphological and frequency
domain difference between PVC and Non_PVC, and the rhythmic rules are used to map
the variation of RR intervals between PVC and Non_PVC. All these features are extracted
only based on R peaks instead of those complex features detected from precise fiducial
points (Q wave, S wave, etc.) and professional knowledge, which can not only retain
the interpretability of the proposed algorithm, but also improve the antinoise ability of
the algorithm.

Although the proposed method is an important contribution to unsupervised PVC
identification, there are three main limitations. (1) The performance is affected by the
misalignment of QRS complex, more accurate QRS detection algorithm should be designed
to detect the peak of each QRS complex for precise ECG classification. (2) This method is
trained and tested only on the Windows platform, so further work is needed to embed the
algorithm to the mobile terminal for daily life monitoring application. (3) Only one-channel
information is considered in this paper, multichannel information should be considered
from multilead ECG monitoring systems for accuracy improvement of PVC recognition,
or even other kinds of heartbeat classification.

6. Conclusions

In summary, an unsupervised adaptive PVC recognition algorithm is proposed for
single-lead ECG based on a novel expert system and deep learning combination strategy.
The personalized heartbeat templates are firstly clustered by K-means using LSTM-AE
extracted features and determined by rule-based methods. Then, each heartbeat is classified
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into PVC or Non_PVC by a series of rules. The performance of the proposed algorithm is
tested on the clinical databases (MIT-BIH database and INCART database) and long-term
wearable databases (CPSC2020 training set and hidden test set). The comparison with the
existing PVC algorithms shows that the proposed method embraces the advantages of deep
learning and rules, and achieves high accuracy, robustness, and interpretability.
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Figure A1. Evaluation indices of the proposed method in 12-lead INCART database.

Table A1. PVC recognition results on the MIT-BIH-AR database.

Record Se (%) P+ (%) ACC (%) Record Se (%) P+ (%) ACC (%)

100 100.00 100.00 100.00 202 94.74 81.82 99.77
101 - - 100.00 1 203 73.76 91.06 95.00
103 - - 100.00 1 205 92.96 100.00 99.81
105 90.24 68.52 99.18 207 65.07 61.54 91.50
106 79.81 100.00 94.82 208 92.42 100.00 97.08
108 88.24 65.22 99.43 209 100.00 100.00 100.00
109 76.32 100.00 99.64 210 75.77 96.71 98.03
111 100.00 4.35 98.96 212 - - 100.00 1

https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/incartdb/1.0.0/
http://2020.icbeb.org/CSPC2020/
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Table A1. Cont.

Record Se (%) P+ (%) ACC (%) Record Se (%) P+ (%) ACC (%)

112 - - 100.00 1 213 98.18 99.08 99.79
113 - - 100.00 1 214 60.78 100.00 95.57
114 95.35 100.00 99.89 215 91.46 100.00 99.58
115 - - 100.00 1 219 79.69 100.00 99.40
116 91.67 100.00 99.62 220 - - 100.00 1

117 - - 100.00a 221 97.22 100.00 99.55
118 93.75 40.54 98.99 222 - 0.00 88.99 2

119 99.55 100.00 99.90 223 63.21 100.00 93.28
121 100.00 100.00 100.00 228 98.62 100.00 99.76
122 - - 100.00a 230 100.00 100.00 100.00
123 100.00 100.00 100.00 231 100.00 100.00 100.00
124 78.72 100.00 99.38 232 0.00 - 99.89 2

200 94.97 99.74 98.34 233 94.10 99.74 98.34
201 99.49 89.95 98.83 234 100.00 100.00 100.00

1 This single record excludes PVC beats, and there is no false detection of PVC beats. Therefore, the TP, FN, and FP
of this record are all 0. 2 This single record excludes PVC beats but false detects Non_PVC beats as PVC beats.
Therefore, TP and FN of this record are 0, but TP is not 0.

Table A2. PVC recognition results on the INCART database.

ID Se (%) P+ (%) ACC (%) ID Se (%) P+ (%) ACC (%) ID Se (%) P+ (%) ACC (%)

I01 100.00 86.00 97.97 I26 25.00 50.00 99.73 I51 97.63 100.00 99.32
I02 87.34 94.34 98.47 I27 100.00 100.00 100.00 I52 100.00 100.00 100.00
I03 92.00 100.00 99.59 I28 75.00 33.33 99.59 I53 96.94 100.00 98.50
I04 22.31 93.10 96.01 I29 68.33 99.63 90.45 I54 68.18 93.75 99.66
I05 83.40 99.52 97.62 I30 80.13 99.83 93.86 I55 94.12 100.00 99.95
I06 100.00 81.82 99.92 I31 70.99 99.28 87.44 I56 100.00 100.00 100.00
I07 100.00 5.88 99.41 I32 84.21 97.96 99.38 I57 100.00 48.84 99.23
I08 86.61 99.02 97.65 I33 100.00 16.67 99.73 I58 100.00 100.00 100.00
I09 73.17 83.33 99.43 I34 - 0.00 99.03 I59 64.20 96.30 98.56
I10 83.13 100.00 99.62 I35 77.46 100.00 97.18 I60 - 0.00 98.87 2

I11 100.00 50.00 99.81 I36 86.89 100.00 98.49 I61 - - 100.00 1

I12 33.33 14.29 99.43 I37 99.56 100.00 99.92 I62 32.45 100.00 76.21
I13 100.00 100.00 100.00 I38 86.61 100.00 97.29 I63 58.70 100.00 97.13
I14 100.00 100.00 100.00 I39 94.25 100.00 98.99 I64 69.57 100.00 99.63
I15 33.33 50.00 99.89 I40 92.39 92.39 99.47 I65 93.46 100.00 99.06
I16 100.00 50.00 99.87 I41 100.00 33.33 99.88 I66 97.50 100.00 99.79
I17 92.59 100.00 99.88 I42 99.29 99.87 99.58 I67 97.93 100.00 99.63
I18 91.80 99.70 98.98 I43 97.86 99.91 98.87 I68 95.65 99.35 99.70
I19 84.59 100.00 93.65 I44 100.00 100.00 100.00 I69 99.40 98.81 99.86
I20 75.45 100.00 98.98 I45 100.00 100.00 100.00 I70 - 0.00 92.50 2

I21 87.50 77.78 99.86 I46 98.34 99.76 99.70 I71 - 0.00 86.22 2

I22 69.73 99.23 98.18 I47 98.92 96.84 99.80 I72 91.19 33.85 68.17
I23 61.54 100.00 99.77 I48 98.72 100.00 99.87 I73 94.29 100.00 99.80
I24 16.67 50.00 99.77 I49 100.00 96.43 99.95 I74 98.18 100.00 99.79
I25 60.00 37.50 99.59 I50 50.00 50.00 99.87 I75 99.02 100.00 99.71

1 This single record excludes PVC beats, and there is no false detection of PVC beats. Therefore, the TP, FN, and FP
of this record are all 0. 2 This single record excludes PVC beats but false detects Non_PVC beats as PVC beats.
Therefore, TP and FN of this record are 0, but TP is not 0.
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