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Abstract: Fluorescence spectroscopy, color imaging and multispectral imaging (MSI) have emerged
as effective analytical methods for the non-destructive detection of quality attributes of various
white meat products such as fish, shrimp, chicken, duck and goose. Based on machine learning and
convolutional neural network, these techniques can not only be used to determine the freshness and
category of white meat through imaging and analysis, but can also be used to detect various harmful
substances in meat products to prevent stale and spoiled meat from entering the market and causing
harm to consumer health and even the ecosystem. The development of quality inspection systems
based on such techniques to measure and classify white meat quality parameters will help improve
the productivity and economic efficiency of the meat industry, as well as the health of consumers.
Herein, a comprehensive review and discussion of the literature on fluorescence spectroscopy, color
imaging and MSI is presented. The principles of these three techniques, the quality analysis models
selected and the research results of non-destructive determinations of white meat quality over the last
decade or so are analyzed and summarized. The review is conducted in this highly practical research
field in order to provide information for future research directions. The conclusions detail how these
efficient and convenient imaging and analytical techniques can be used for non-destructive quality
evaluation of white meat in the laboratory and in industry.

Keywords: white meat; multispectral imaging; fluorescence spectroscopy; convolutional neural
network; quality detection

1. Introduction

As a global issue, food safety and quality are of increasing concern to companies and
customers [1]. White meat is the nutritional term for lighter-colored meat that contains less
myoglobin than red meat, which contains a great deal. Compared with white meat, the
intake of red meat has a greater correlation with colorectal cancer (CRC), indicating that
white meat intake is more beneficial to human health [2]. White meat includes poultry (e.g.,
chicken, duck, goose and turkey), fish, reptiles (e.g., land snail), amphibians (e.g., frog),
crustaceans (e.g., shrimp and crab) and bivalves (e.g., oyster and clam), but it excludes all
mammal flesh such as beef, pork, and lamb. White meat has high nutritional value and
plays an important role in human diet. The production and sale of white meat need to
meet specific quality and safety standards. The freshness of fish is one of the important
indicators for evaluating its quality because of its high perishability [3]. Moreover, poultry
products are particularly susceptible to oxidation as this meat contains relatively high levels
of unsaturated fatty acids and low levels of natural antioxidants, such as vitamin E. In
addition, chemical residues in white meat may have an adverse effect on human health. For
example, fluoroquinolone antibiotics are effective against a wide range of Gram-negative
and positive bacteria, thus they are widely used in the medical and veterinary fields.
However, their use in animals has raised concerns, as this practice may lead to an increase
in microbial resistance [4]. Moreover, nitrofuran drugs (NFs), including furazolidone
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(FZD), nitrofurazone (NFZ), and furantazone (FTD) are broad-spectrum antimicrobials.
The potential risk of these compounds to human health is of great concern because of their
carcinogenic and mutagenic properties. It is therefore crucial to ensure the quality and
safety of white meat.

Traditional methods for meat quality and safety evaluation, such as manual inspection,
mechanical and chemical methods, are time-consuming and destructive, and cannot meet
the requirements of rapid inspection [5]. For example, methods for freshness evaluation
are based on human sensory qualities, such as appearance, taste and texture. However,
human senses exhibit a very high degree of subjectivity and can therefore be questioned in
certain situations [3]. Even if manual inspection could meet accuracy requirements, it is still
a labor-intensive and time-consuming process. Recently, the meat industry has adopted
the most advanced high-speed processing technologies, and meat processors need fast,
non-destructive, easy-to-use techniques to control the safety and quality of meat and meat
products in order to achieve economic benefits. The requirement for real-time monitoring of
food has encouraged the development of non-destructive measurement systems [6]. Optical
technology is becoming increasingly important in research and industrial applications to
measure the quality attributes of meat and meat products in real time, non-destructively
and accurately [7]. Among these, the use of neural network-based RGB imaging technology
has become very popular in recent years [8]. In addition, fluorescence spectroscopy and
multispectral imaging (MSI) also show obvious advantages and capabilities in the non-
destructive evaluation of white meat.

There have been several reviews of these new techniques of meat quality assessment.
These papers show that these spectroscopic methods have been implemented as an alterna-
tive to traditional methods, but they mainly focus on one technique for quality detection
of one specific category of meat, e.g., fish [3], shrimp [4], chicken [9], duck [10], or red
meat [11]. As far as we know, there is no literature review analyzing the application of
various imaging techniques in the non-destructive quality inspection of various white
meats. (The published reviews based on these three imaging techniques are tabulated
in Table 1). Considering the importance of white meat, there is an urgent need for a sys-
tematic presentation of the recent applications of spectroscopic methods to white meat.
Furthermore, the published reviews cover only one aspect of meat quality measurement
and lack a comprehensive review of the application of three key aspects: freshness testing,
detection of harmful substances and species identification. Therefore, it appears impor-
tant to review the application of the three techniques based on fluorescence spectroscopy,
RGB imaging and MSI in white meat quality determination. The advantages, disadvan-
tages and highlights of these techniques are analyzed and evaluated. This will provide
a future direction for white meat quality evaluation and point out research trends for
these techniques.

Table 1. Summary of reviews on fluorescence spectroscopy, RGB- and MSI techniques in
food evaluation.

Technology Product Target Attributes Reference

MSI Meat Adulteration Ropodi et al. [12]

MSI, HSI Meat Defects Feng et al. [13]

MSI Food Quality Su and Sun [14]

MSI, IRS, SERS, LIBS and HSI Food Quality Wang et al. [15]

MSI, HSI and VS Food Authenticity, quality
and safety Ropodi et al. [16]

Fluorescence spectroscopy Food Quality Karoui and Blecker [17]

Fluorescence spectroscopy Food Quality Strasburg and Ludescher [18]
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Table 1. Cont.

Technology Product Target Attributes Reference

Visible/Infrared, Raman and
Fluorescence spectroscopy Raw and processed food Quality He and Sun [19]

Fluorescence spectroscopy Food Quality Ahmad et al. [20]

Fluorescence spectroscopy Dairy products Quality and safety Shaikh and O’Donnell [21]

Fluorescence spectroscopy Fresh and frozen-thawed
muscle foods Muscle classification Hassoun [22]

RGB-Imaging Meat Quality and safety Taheri-Garavand et al. [23]

RGB-Imaging Fish Quality Dowlati et al. [24]

RGB-Imaging Food Quality Gomes and Leta [25]

RGB-Imaging Food Quality Amani et al. [26]

MSI—-Multispectral imaging; HSI—-Hyperspectral imaging; IRS—-Infrared spectroscopy; SERS—-Surface-
Enhanced Raman Spectroscopy; LIBS—-Laser induced breakdown spectroscopy; VS—-Vibrational Spectroscopy.

2. Fluorescence Spectroscopy, RGB- and Multispectral-Imaging

Fluorescence spectroscopy has proven to be an effective analytical technique over
the last decade for monitoring the properties of various food products [27]. The number
of published papers and citations on the use of fluorescence spectroscopy to study food
quality and/or authenticity has increased exponentially over the last decade. Fluorescence
is the emission of light by a fluorophore following the absorption of ultraviolet or visible
light [28]. Fluorophores absorb energy as light at specific wavelengths and release energy
as light at higher wavelengths. The Jablonski diagram in Figure 1 illustrates the electron
energy levels of fluorophores, with the jumps between them indicated by arrows [29].
Fluorescent compounds are highly sensitive to their environment, so fluorescence can be
used to characterize the conformational changes that occur under different production
and storage conditions [21]. For specific applications, fluorescence analysis has the lowest
background levels, low detection limits and is readily available in most laboratories [30].

Biosensors 2022, 12, x FOR PEER REVIEW 3 of 21 
 

Fluorescence spectroscopy Dairy products Quality and safety Shaikh and O’Donnell [21] 

Fluorescence spectroscopy 
Fresh and frozen-thawed 

muscle foods 
Muscle classification Hassoun [22] 

RGB-Imaging Meat Quality and safety Taheri-Garavand et al. [23] 
RGB-Imaging Fish Quality Dowlati et al. [24] 
RGB-Imaging Food Quality Gomes and Leta [25] 
RGB-Imaging Food Quality Amani et al. [26] 

MSI––Multispectral imaging; HSI––Hyperspectral imaging; IRS––Infrared spectroscopy; SERS––
Surface-Enhanced Raman Spectroscopy; LIBS––Laser induced breakdown spectroscopy; VS––
Vibrational Spectroscopy. 

2. Fluorescence Spectroscopy, RGB- and Multispectral-Imaging 
Fluorescence spectroscopy has proven to be an effective analytical technique over the 

last decade for monitoring the properties of various food products [27].The number of 
published papers and citations on the use of fluorescence spectroscopy to study food qual-
ity and/or authenticity has increased exponentially over the last decade. Fluorescence is 
the emission of light by a fluorophore following the absorption of ultraviolet or visible 
light [28]. Fluorophores absorb energy as light at specific wavelengths and release energy 
as light at higher wavelengths. The Jablonski diagram in Figure 1 illustrates the electron 
energy levels of fluorophores, with the jumps between them indicated by arrows [29]. 
Fluorescent compounds are highly sensitive to their environment, so fluorescence can be 
used to characterize the conformational changes that occur under different production 
and storage conditions [21]. For specific applications, fluorescence analysis has the lowest 
background levels, low detection limits and is readily available in most laboratories [30].  

 
Figure 1. Jablonski diagram of the electron energy levels and transitions of fluorophores [29]. 

RGB imaging or color imaging has gained popularity due to its clear color rendering 
principle, simple hardware structure and mature production process. RGB images are 
captured by digital cameras, webcams, or scanners from computer vision systems. These 
systems, typically containing an illumination system, camera and image analysis software 
using a computer [31], are capable of retrieving color information from captured images 
in the form of pixel ribbons of RGB [32]. Figure 2, for example, shows an RGB vision sys-
tem for capturing color images of pure and adulterated meat samples [33]. RGB imaging 
has been shown to determine the general color and visual appearance of samples [34]. 
This imaging technology is valuable in the meat industry because it is simple, low cost 
and non-destructive. However, even though RGB imaging has many advantages, it only 
provides spatial information at a limited number of wavelengths. Conventional RGB im-
aging systems can be poor at identifying sensitive surface features in wavelengths other 
than RGB [35]. Data obtained from pure RGB imaging has been shown to be inferior to 
data obtained through spectral imaging when analyzing the quality of ground meat.  

Figure 1. Jablonski diagram of the electron energy levels and transitions of fluorophores [29].

RGB imaging or color imaging has gained popularity due to its clear color rendering
principle, simple hardware structure and mature production process. RGB images are
captured by digital cameras, webcams, or scanners from computer vision systems. These
systems, typically containing an illumination system, camera and image analysis software
using a computer [31], are capable of retrieving color information from captured images
in the form of pixel ribbons of RGB [32]. Figure 2, for example, shows an RGB vision
system for capturing color images of pure and adulterated meat samples [33]. RGB imaging
has been shown to determine the general color and visual appearance of samples [34].
This imaging technology is valuable in the meat industry because it is simple, low cost
and non-destructive. However, even though RGB imaging has many advantages, it only
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provides spatial information at a limited number of wavelengths. Conventional RGB
imaging systems can be poor at identifying sensitive surface features in wavelengths other
than RGB [35]. Data obtained from pure RGB imaging has been shown to be inferior to
data obtained through spectral imaging when analyzing the quality of ground meat.
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Figure 2. Diagram of the RGB vision system used to obtain color images of pure and contaminated
meat samples [33].

A multispectral image is a collection of grey-scale images. Each corresponds to a
specific wavelength or band of wavelengths in the electromagnetic spectrum [36]. MSI
is a method of capturing images from different spectral bands with the aim of obtaining
spatial and spectral information. Imagers based on MSI technology can provide wavelength
channels in the near-UV, visible, near-IR, mid-IR and far-IR [37]. Thus, MSI can provide
more information than RGB images. The acquired wavelength channels can be used directly
for real-time applications in certain fields (e.g., fruit packing plants and food processing
plants). A typical MSI system is shown in Figure 3. The system uses an adjustable focus lens
to achieve high resolution imaging of 1290 × 960 pixels and has six bands, each covering a
relatively wide range of wavelengths, which is strong for fast imaging [38].
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3. Quality Evaluation of White Meat

The application of fluorescence spectroscopy, RGB imaging and MSI for white meat
quality inspection has been thoroughly and extensively researched as shown in Table 2.
The following is a review of the latest applications of these techniques in non-destructive
inspection. For MSI techniques, correlation coefficient (R) or coefficient of determination
(R2) is an important statistical metric for assessing model fit, while root mean square error
(RMSE) is considered an indicator of the sample standard deviation between measured and
actual values, indicating that a well-performing model should obtain a high R or R2 value
and a low RMSE value. There are many different judgements due to the variability and
multiplicity of the techniques.

Table 2. Applications of fluorescence spectroscopy, RGB imaging and MSI for quality evaluation of
various white meat products.

White Meat Module Quality Parameters Accuracy Reference

Fish MSI TVB-N,
PPC

R2
p = 0.862

for TVB-N,
R2

p = 0.921
for PPC

Khoshnoudi-Nia and
Moosavi-Nasab [39],
Khoshnoudi-Nia and
Moosavi-Nasab [40]

Fish MSI TVC R2 = 0.62 Govari, et al. [41]

Fish MSI TVC R2 = 0.683 Fengou, et al. [42]

Fish MSI Astaxanthin
concentration R2 = 0.86 Dissing, et al. [43]

Fish MSI
TVB-N,
TBARS,

K

R2
p = 0.922

for TVB-N,
R2

p = 0.867
for TBARS,

R2
p = 0.936 for K

Cheng, et al. [44]

Fish MSI A ‘standard
freshness index’ of K R2 = 0.94, Omwange, et al. [45]

Fish Fluorescence
spectroscopy

A ‘standard
freshness index’ of K R2 = 0.92 Omwange, et al. [46]

Fish Fluorescence
spectroscopy

A ‘standard
freshness index’ of K R2 = 0.95 Liao, et al. [47]

Fish Fluorescence
spectroscopy

AEC;
NADH

R2 = 0.90
for AEC,
R2 = 0.85

for NADH

Rahman, et al. [48]

Fish Fluorescence
spectroscopy NADH 90.5% Hassoun and

Karoui [49]

Fish RGB imaging Classification
performance 99.5% Park, et al. [50]

Fish RGB imaging Astaxanthin
concentration R2 = 0.66 Dissing et al. [43]

Fish RGB imaging Freshness of tuna
meat cuts 86.67% Lugatiman, et al. [51]

Fish RGB imaging The main color of
the sample 75% Mateo, et al. [52]

Fish RGB imaging Texture features 86.3% Gu, et al. [53]
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Table 2. Cont.

White Meat Module Quality Parameters Accuracy Reference

Fish RGB imaging Color of
Salmon Fillets R = 0.95 Quevedo, et al. [54]

Fish RGB imaging
Gill and eye color

changes in the
sparus aurata

R2 = 0.994 Dowlati, et al. [55]

Fish RGB imaging Body color of carp 94.97% Taheri-Garavand,
et al. [56]

Fish RGB imaging Freshness 98.2% Rocculi, et al. [57]

Shrimp Fluorescence
spectroscopy 4-hexylresorcinol 81.6% Jonker and

Dekker [58]

Shrimp Fluorescence
spectroscopy K, pH R2 = 0.80 Rahman, et al. [59]

Shrimp RGB imaging pH 100% Witjaksono, et al. [60]

Shrimp RGB imaging

Identification accu-
racy of the proposed

ShrimpNet
for shrimp

95.48% Hu, et al. [61]

Shrimp RGB imaging Shrimp dehydra-
tion levels R = 0.86 Mohebbi, et al. [62]

Shrimp RGB imaging

Color changes in the
head, legs and tail of
pacific white shrimp

(litopenaeus
vannamei)

90%
Ghasemi-

Varnamkhasti,
et al. [63]

Chicken Fluorescence
spectroscopy

Hydroxyproline
concentration R2 = 0.82

Monago-Maraña,
et al. [64]

Chicken MSI Skin tumors 86% Chao, et al. [65]

Chicken MSI TVC 90.4% Spyrelli, et al. [66]

Chicken MSI pork-chicken
adulteration

90.00% for fresh
samples, 86.67%

for frozen-
thawed samples

Fengou, et al. [67]

Chicken MSI Sepsis in chickens

98.6% for septic
chickens,
96.3% for

healthy chickens

Yang, et al. [68]

Chicken MSI Contamination
detection 96% Park, et al. [69]

Chicken MSI
Chicken heart

disease
characterization

100% Chao, et al. [70]

Chicken
MSI;

Fluorescence
spectroscopy

Contamination
detection 92.5% Seo, et al. [71]

Chicken Fluorescence
spectroscopy Lipid oxidation R = 0.73 Gatellier, et al. [72]

Chicken Fluorescence
spectroscopy

P. aeruginosa
concentration 96% Abdel-Salam,

et al. [73]
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Table 2. Cont.

White Meat Module Quality Parameters Accuracy Reference

Chicken Fluorescence
spectroscopy

chicken meat
tenderness R = 0.870 Yu, et al. [74]

Chicken Fluorescence
spectroscopy

Contamination
detection 96.6% Cho, et al. [75]

Chicken Fluorescence
spectroscopy

Measurement of
lipid oxidation 98% Wold and Kvaal [76]

Chicken RGB imaging Avian flu
infected chickens 97.43% Cuan, et al. [77]

Chicken RGB im-aging Color 94% Yumono, et al. [78]

Chicken RGB im-aging Freshness R = 0.987 Taheri-Garavand,
et al. [79]

Duck Fluorescence
spectroscopy

Gentamicin
Residual in
Duck Meat

R = 0.996 Wang, et al. [80]

Duck Fluorescence
spectroscopy

Doxycycline content
in duck meat R = 0.998 Wang, et al. [81]

Duck Fluorescence
spectroscopy

Carbaryl residue in
duck meat R = 0.976 Xiao et al. [10]

Duck Fluorescence
spectroscopy Tetracycline content R = 0.952 Zhao, et al. [82]

Duck Fluorescence
spectroscopy Triazophos content R2

p = 0.974, Zhao, et al. [83]

Duck Fluorescence
spectroscopy Neomycin residue R = 0.999 Jiang, et al. [84]

Duck Fluorescence
spectroscopy Carbofuran residue R2

p = 0.999 XIAO, et al. [85]

TVB-N—-total volatile basic nitrogen; PPC—Psycho-trophic Plate Count; TVC—total viable count; LDA—Linear
Discriminant Analysis; MD—Mahalanobis distance; PCA—Principal component analysis; m—mean; TBARS—
Thio-barbituric acid reactive substances; AEC—adenylate energy charge; NAD and NADH—nicotinamide adenine
dinucleotide; CFU—colony-forming units; TBARS—thio-barbituric acid reactive substances.

3.1. Fish

Fish is a very popular food in people’s daily diet. It is rich in amino acids, vita-
mins, and minerals (such as phosphorus, calcium, and iron). The quality of fish is mainly
affected by storage conditions and the number of days after harvest. Mislabeling and
substitutes for fish in the commercial market have been widely reported worldwide, re-
vealing the consequences associated with economic losses, health concerns and even ocean
depletion. Moreover, fish in aquaculture are susceptible to disease. Antimicrobial com-
pounds can inhibit the growth of microorganisms in aquaculture production to prevent
diseases, but their residues may accumulate in fish, posing potential health risks to con-
sumers [86]. Thus, it is important to assess the freshness of, and harmful substances in, fish,
and to accurately identify fish species. Traditional methods include sensory evaluation,
chemical testing, physical characterization, and microbiological testing, which are slow
and destructive. Therefore, it is necessary to use non-destructive methods to improve
detection efficiency.

Fluorescence spectroscopy plays a huge role in assessing the freshness of fish. The
K value is a standard index for evaluating fish freshness. Liao, et al. [87] measured a
series of K values of red snapper back meat and the corresponding fluorescence spectra
of representative back scales over time. They plotted the uric acid fluorescence signal
against a standard fish freshness indicator, the “K value”. This indicator was calculated
using paper electrophoresis based on the concentration of adenosine triphosphate and its
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breakdown products. Results showed that the fluorescence intensity ratio of the emission
peak at 420 nm to the peak at 310 nm increased linearly during storage (R2 = 0.95),
which can be used as a non-destructive indicator of fish freshness. Besides red snapper,
the fluorescence properties of Japanese dace (Tribolodon hakonensis) has also been
investigated. Omwange et al. [46] developed a K value “standard freshness index”
prediction model by extracting color components from the fluorescent images of the
pupil and iris, and achieved good results with an RMSECV of 3.5% and R2 of 0.92. When
studying mackerel (Trachurus japonicus), Rahman et al. [48] used three-dimensional
fluorescence fingerprints (3D-FFs) to characterize the fluorophores in the fish. After
obtaining 3D-FFs of frozen fish fillets, changes in freshness were tracked by measuring
AEC values and nicotinamide adenine dinucleotide (NAD and NADH) content. Using
eight and five excitation wavelengths, R2 was 0.90 and 0.85, respectively. It is thus clear
that this method can be used as an effective technique for online monitoring of frozen fish
quality. Later, Lai, et al. [88] developed more sensitive nano-thick fluorescent films for
rapid evaluation of biogenic amines. Based on an optimized nanomembrane sensor, the
detection limit for trimethylamine (TMA) was 0.89 ppm, thus enabling non-destructive
evaluation of fish freshness. Overall, fluorescence spectroscopy has great potential for
non-destructive assessment of fish freshness.

MSI is another effective technology for fish quality evaluation. In the study of
Khoshnoudi-Nia and Moosavi-Nasab [39], MSI (430–1010 nm) combined with linear and
non-linear regression methods has been used to evaluate fish spoilage. Indicators in-
clude Total-Volatile Basic Nitrogen (TVB-N) and Psychotropic Plate Count (PPC) and
sensory score of the fillets. Based on nine optimal bands selected by the genetic algo-
rithm, the non-linear models showed higher performance. Nevertheless, deep learning
methods combined with other new variable selection methods should be investigated in
the future. In another study, Herath, et al. [89] developed a deep neural network-based
classifier using nine spectral bands for quality detection of yellowfin tuna, yielding an
accuracy of 90%. The changes in docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA) in grass carp and salmon fillets were successfully determined based on acid
pulp networks (PN) and genetic algorithms. Later, Dissing et al. [43] proposed a method
for rapid estimation of astaxanthin concentrations in rainbow trout fillets. They used
fast MSI equipment to image rainbow trout fillets and perform quantitative analysis.
A partial least squares regression (PLSR) model was calibrated to predict the astaxan-
thin concentration from the images and showed good results with the RMSEP of 0.27.
In addition, MSI based on the back-propagational artificial neural network (BP-ANN)
model showed good results for predicting circular TVB-N values [90]. Nevertheless,
more work should be done on the development of generic models in a wider range of
fish species.

RGB imaging or MSI combined with convolutional neural network (CNN) can be ef-
fectively used for fish quality detection. For example, Park et al. [50] proposed an algorithm
to classify fish by using CNN to train RGB images. The AlexNet-based network achieved
good performance, with the shortest model training and execution time. Moreover, [3]
demonstrated that the CNN model based on multispectral images showed acceptable per-
formance in estimating the freshness of fish. A portable system was also built, as shown in
Figure 4. Two CNN models established by fusing appearance and movement information
successfully achieved automatic identification of the fish, with a best F score and mAP of
83.16% and 73.69%, respectively [91]. In addition, Yu, et al. [92] proposed a mask-based
fish image segmentation and fish morphological feature metric scheme to pre-process
and label fish images and feed them into a mask region convolutional neural network
(Mask R-CNN) for training. Finally, the morphological features of fish were indexed, and
the results showed that the method was able to segment fish in both pure and complex
backgrounds with significant performance.
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MSI has more comprehensive applications than RGB imaging and fluorescence spec-
troscopy in fish quality detection. Deep learning not only serves the operation of detection
systems, but also allows for more efficient analysis and extraction of information. CNN,
when used as a tool for analyzing images, focuses more on species identification. When
combined with MSI, the results obtained are more comprehensive and convenient.

3.2. Crustaceans

The protein content of shrimp is as high as 20%, and its protein is at least several
times higher than that of fish, eggs and milk. Freshness is considered to be a key factor
for consumers in choosing shrimp, as it has an important relationship with taste and shelf
life [59]. In addition, chemical residues such as fluoroquinolone antibiotics, uranium,
nitrofuran metabolites, and protein arsenic were found in shrimp meat, posing a threat to
human health. Therefore, it is essential to evaluate the quality of shrimp.

Fluorescence spectroscopy has been effectively used to assess the quality of shrimp.
Rahman et al. [59] used multidimensional fluorescence spectroscopy to observe changes
in the freshness of frozen shrimp after death. The temporal and spatial distributions of
K (%) and pH in frozen shrimps were detected with prediction accuracies (R2) of 0.80
and 0.53, respectively. Fluorescence spectrometry combined with protein extraction was
effectively used to analyze the protein arsenic in prawns [93]. The harmful substances in
shrimp meat have also been measured. Schneider et al. [4] developed an efficient method
for the multi-residue analysis of fluoroquinolones in shrimps, which allows simultaneous
fluorescence quantification and multi-stage mass spectrometry confirmation. An improved
programmable fluorescence detection method was then developed for determining 10
quinolones (QNs) in shrimp samples [94]. The results showed that recoveries of the 10 QNs
in shrimp tissues ranged from 75.2–104.6%, with RSD values of 0.8–11.2%.

After capturing images of shrimps with RGB cameras, shrimp species recognition
is usually performed using CNN. For example, Hu et al. [61] proposed a CNN-based
shrimp species recognition architecture (called ShrimpNet). In ShrimpNet, two layers of
CNN and two layers of fully-connected (FC) were used to obtain better shrimp recognition
performance. The experimental results showed that the shrimp recognition accuracy
based on the method was 95.48% in the data set of shrimp collected from six different
categories, indicating that ShrimpNet has good shrimp recognition performance and
practical application value. In addition, Nguyen [95] proposed a method to automatically
calculate shrimp body length using an underwater camera. The CNN method obtained
87.3% mAP values with only 7% MSE values.
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In summary, fluorescence spectroscopy is more commonly used than CNN-based RGB
imaging techniques in the non-destructive inspection of shrimp meat quality in terms of
harmful substance identification. The fluorescence detection technique mainly focuses on
freshness of the shrimp meat, while CNN-based techniques are more often used for shrimp
species identification and size detection for grading of shrimp meat.

3.3. Poultry

Poultry refers to domestic fowls, including chickens, turkeys, geese and ducks,
which are mainly raised for the production of meat used as foods. Poultry is the most
widely eaten meat in the world except for pork, and it provides nutritious food with
high-quality protein but low fat ratio. The poultry meat should be handled properly
to reduce the risk of food poisoning, but there are various potential risks (e.g., avian
influenza in chickens) to the quality of meat during the rearing of poultry and the manu-
facture of poultry foods. In the case of chicken, for example, there are problems with
sick chickens and influenza. In addition, some harmful substances in poultry meat,
such as antibiotics and pesticides, can have a negative impact on human health. There-
fore, it is necessary to ensure the quality of poultry. Fluorescence spectroscopy focuses
on the detection of harmful substances in poultry meat. For the detection of chicken
meat, Bai, et al. [96] have established the first fluorescent detection strip for chloram-
phenicol (CAP) residues in chicken muscle. The fluorescence intensity is detected by a
charge-coupled device scanner and converted to a digital value. The performance of the
test strip test was compared with that of a commercially available enzyme-linked im-
munosorbent assay (ELISA) kit and the R was 0.99, indicating the successful application
of the fluorescent immunochromatographic strip for the detection of CAP residues in
chicken samples.

When testing goose meat, Xianglai, et al. [97] developed a method for the deter-
mination of arsenic and mercury by fluorescence spectrometry. Under the optimized
operating conditions, the detection limits were 0.0048 µg/L (As) and 0.0072 µg/L (Hg),
respectively. The precision was 1.91% (As) and 1.63% (Hg), respectively, indicating that
the method is rapid, sensitive and accurate in the determination of hazardous substances
in goose meat. In addition, a regression prediction model using the genetic algorithm
combined with support vector regression (SVR) was developed for the rapid detection of
carbaryl residues in duck meat using fluorescence spectrometry [10]. The results showed
that the characteristic wavelengths selected by the genetic algorithm could obtain good
prediction results, and the R and RMSEP of the predicted sample set were 0.976 and
12.232, respectively, which proved that this method could quickly detect the residues of
harmful substances in duck meat. Later, for the rapid detection of antibiotic residues
in duck meat, Chen, et al. [98] evaluated the potential of simultaneous fluorescence
spectroscopy (SFS) combined with chemical methods for the rapid detection of sulfa-
dimethoxine (SM2) and ofloxacin (OFL) residues in duck meat. A quantitative model
was developed using a peak height algorithm and good results were obtained as shown
in Figure 5. The method is able to meet the need for rapid detection of SM2 and OFL
residues in duck meat and provides technical support for the rapid detection of antibiotic
residues. Moreover, Wang, Xu, Liu, Zhao and Hong [80] developed a predictive model
for the rapid detection of gentamicin residues in duck meat by fluorescence analysis
based on the strong fluorescence properties of gentamicin and o-phthal-aldehyde deriva-
tives (OPA) in the presence of emulsifier OP-10 and mercapto-ethanol. The fluorescence
intensity showed a good linear relationship with the concentration of standard samples
in the dynamic range 0.5~6.5 µg/mL with a linear R of 0.996. The R of the regres-
sion equation for the duck extract samples was 0.997, indicating the good performance
and accuracy of the fluorescence assay in the determination of gentamicin residues in
duck meat.
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It is worth mentioning that the application of non-destructive quality detection based
on CNN in poultry meat quality inspection is very singular and specific. Although this
technique is associated less with RGB imaging, there is still a need for summary and
analysis. Cuan et al. [77] proposed a new sound recognition method, the chicken sound
convolutional neural network (CSCNN), for the detection of avian influenza chickens. In
the experiment, the recognition accuracy of the spectrogram CSCNN-s was 93.01%, 95.05%
and 97.43%, and the recognition accuracy of the feature map CSCNN-f was 89.79%, 93.56%
and 95.84% on days 2, 4 and 6 after H9N2 virus injection, respectively. This indicates
that the method can quickly and effectively detect chickens infected with avian influenza
through chicken calls, thus preventing sick chickens from being used in chicken meat
production and protecting the health of consumers. The CNN technique has played a great
role in the identification of other white meat species such as fish and shrimp. However, its
application in the identification and tracking of harmful substances and freshness detection
is rare. In fact, as an emerging technology, the overall number of applications of CNN
for non-destructive testing of white meat is still small. It is more often used as an aid for
acquiring images and analyzing data to aid the operation of MSI systems.

MSI is frequently used for the quality inspection of chicken. A simple image dis-
crimination method for identifying chickens with systemic diseases was developed and
validated across systems using two different MSI systems [9]. The first system acquired
images of a batch of 164 healthy chickens and 176 systematically diseased chickens at
three wavelengths of 460 nm, 540 nm and 700 nm. The verification accuracy of the healthy
chickens and systematically diseased chickens was 95.7% and 97.7%, respectively. The
second system acquired images of the second batch of 332 healthy chickens and 318 sys-
tematically diseased chickens at four wavelengths of 488 nm, 540 nm, 580 nm and 610 nm,
and the accuracy rates were 99.7% and 93.5%, respectively. The results showed that this
method can be used for automated online applications for chicken detection. In addition to
this, MSI techniques are also used to detect chicken skin tumors. Spectral images of eight
tumor-bearing chickens were taken in the 420–850 nm spectral range and multispectral
image analysis was performed to generate graded images, which were then classified by
the veterinarian as regions of interest (ROIs), as tumors or normal [65]. The image features
(coefficient of variation, skewness and kurtosis) of each ROI were extracted as input to the
fuzzy classifier. Using these three features, the successful detection rates were 91% and 86%
for normal and tumor tissue, respectively, indicating that this method is very effective in
detecting chicken skin tumors.

Notably, Seo et al. [71] used multispectral fluorescence imaging (MFI) for the first
time for online detection of poultry carcass fecal residues. As shown in Figure 6, this is a
schematic and photograph of MFI. Fluorescence images were obtained by scanning four
fecal spots on the skin surface of each chicken in the 410–690 nm range. The resolution
between successive bands was approximately 11 nm, for a total of 27 bands. Principal
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component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were
then performed using the spectral data from the selected areas. The results showed that
both PCA and PLS-DA could distinguish areas of high and low fecal contamination from
normal skin with an accuracy of 78%. However, there is a need for further research in order
to develop a robust fluorescence-based detection system for various types and levels of
diluted fecal contaminants.
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In summary, in the current research results, fluorescence spectroscopy is more widely
used for non-destructive quality inspection of poultry meat than MSI and RGB imaging
techniques. While MSI focuses more on the non-destructive inspection of chicken meat,
fluorescence imaging and inspection involves chicken, duck and goose meat. In addition,
CNN, as a special analytical method, perform more specifically in the detection of chicken
meat quality in combination with chicken calls.

3.4. Bivalves

Bivalvia, also known as Petromorpha Axolopoda, is the most diverse and economi-
cally valuable of the mollusk phyla, of which oysters and scallops are the types eaten
regularly. For example, oysters are not only tasty and nutritious, but also have unique
health and medicinal properties, making them a rare seafood product with high nutri-
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tional value. In addition, oysters have the highest zinc content of any human food. As
for scallops, they are similar to fish and shrimps, and are an important aquatic food that
combines food, medicine and tonicity. However, in the last few decades, industrial and
urban activities have led to an increase in metal pollution, which has had a negative
impact on the marine environment. Various studies have shown that marine products
from industrialized coastal areas contain levels of heavy metal copper ions in excess
of the standard [99]. This is the case with the meat of oysters. In addition, oysters
are usually eaten fresh. They accumulate arsenic in their structure and all the arsenic
species present are introduced into the human organism [100]. Aquaculture plants often
dehydrate scallops to meet consumer demand. This extends its shelf life and improves
the quality of the scallops. The distribution of moisture content in dried scallops is
heterogeneous within individual scallops and within the same scallop, as it is influenced
by the scallop and the dehydration conditions. This variability may reduce the quality
of dehydrated scallops, which requires measuring of the moisture content of the dried
scallops [101]. After the examples given above, it is clear that non-destructive quality
determination of bivalve white meat is necessary.

As for the non-destructive testing of bivalve white meat by fluorescence detection, a
method was developed for the determination of arsenic forms in oyster tissues [100]. Ar-
senic was measured in oysters using atomic fluorescence detection. As a result, three types
of arsenic were detected in oyster tissues: arseno-betaine (AsBet) (87%), probable arsenic
arsine (AsS) (4.9%) and dimethyl-arsinate (DMA) (4.7%). The method has not yet had a
specific application in quality detection, but has demonstrated its ability in the detection
of arsenic, a hazardous substance, and is expected to be used for non-destructive testing
of white meat in oysters. Jiang et al. [99] performed a highly sensitive detection of copper
ions in oysters, based on the fluorescence properties of cadmium Sinide quantum dots
(Figure 7). In addition, 16 laboratories participated in a collaborative study to evaluate the
performance parameters of a liquid chromatographic method for the analysis of paralytic
shellfish toxins (PST) in blue mussels (Mytilus edulis), soft-shell clams (Mya arenaria), sea
scallops (Placopectin magellanicus) and American oysters (Crassostrea virginicus) [102]. The
method is based on reversed-phase liquid chromatography with post-column oxidation
and fluorescence detection (excitation at 330 nm and emission at 390 nm). As a result
of the experiments, the recoveries of individual toxins ranged from 104% to 127% and
the total toxin recovery averaged 116%. Horwitz ratio (HorRat) values for individual
toxins in the materials included in the study were typically in the desirable range of 0.3
to 2.0. For estimates of total toxicity in the test material, the relative standard deviation of
reproducibility ranged from 4.6 to 20%.
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When measuring the moisture content of dried scallops, MSI based on optimal wave-
lengths can be used instead of hyperspectral imaging to determine the moisture content in
seafood. Huang et al. [101] used PLSR and least squares support vector machine (LSSVM)
to develop a quantitative model describing the relationship between the complete spectral
image and the reference moisture content value. The best wavelength combination was
selected and a multispectral based image model was developed using PLSR and LSSVM
modelling. Finally, the most appropriate model and visual map of the moisture content
were selected. The best results, with a Rp, RMSEP and residual RPD of 0.9673, 3.5584% and
3.7150 respectively, were achieved using the best wavelength-based PLSR model. These
results highlight the potential of MSI for non-destructive prediction of moisture content in
scallops [101].

4. Discussion

MSI has significant advantages in a number of areas when compared to other imaging
techniques, such as RGB imaging and hyperspectral imaging. Compared to pure RGB
imaging, MSI is the analytical tool of choice for identifying the quality of food and meat [89].
MSI has the capability to collect physical, geometric and chemical information about
objects in ranges beyond the visible region. The images are produced by sensors that
measure reflected energy within several spectral bands of the electromagnetic spectrum,
and multispectral sensors typically measure three to ten different bands in each pixel of
the image they produce for real-time applications. MSI is more widely used than RGB
imaging for quality evaluation of chicken meat. In all statistical data, MSI systems have
a detection accuracy of over 86%. Examples of RGB imaging systems are scarce. MSI is
best suited for spectrally and spatially informative samples, and biological samples are
rich in quality. As such, MSI has proven useful in a range of bioimaging applications [103].
Although hyperspectral images can provide more detail about the spectral characteristics
of the object being imaged than multispectral images, the acquisition time, complexity
and cost of the system are typically quite high [104–109]. Therefore, MSI using selected
characteristic wavelengths is an alternative and more promising approach for the meat
industry [110]. The benefits of MSI techniques are also described in more detail in the
following section. Non-destructive detection of white meat can be achieved based on the
fluorescence properties of specific organisms. Fluorescence spectroscopy is widely used
in non-destructive quality detection of duck meat. In the data counted, the R correlation
coefficients were all above 0.95. Furthermore, fluorescence spectroscopy systems are used
in similar numbers compared to MSI systems with higher accuracy and correlation. Given
the wide range of white meat products and the unique characteristics of some white
meats, it is not possible to generalize when analyzing quality parameters. For example,
freshness in chicken is usually related to the degree of lipid oxidation, while goose meat is
usually judged in relation to elasticity. Fish, on the other hand, have more complex criteria
depending on their type (some fish have fluorescent properties).

CNN is often used as an algorithmic tool for analyzing data after sample images
have been acquired with RGB cameras. As a deep learning method commonly used in
computer vision, CNN is a class of feedforward neural networks that contains convolutional
computation and has a deep structure. CNN is capable of representation learning and
can perform shift-invariant classification on input information according to a hierarchical
structure. Normally, CNN is more often used as a tool for analyzing images. As a technique
for machine learning algorithms, it can be used for non-destructive detection of white meat.
In image classification, the extraction of features from images plays a crucial role. The
motivation behind CNNs is based on the extraction of attributes from automatic functions.
In fact, CNNs can be thought of as automatic feature extractors. In addition to this, various
CNN-based analysis techniques have emerged following the acquisition of images of
various types of white meat with RGB cameras. Mask R-CNN is an algorithm that allows
simultaneous target detection, target classification and instance segmentation in a neural
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network and is an upgraded version of Faster R-CNN [111]. Compared to Faster R-CNN,
Mask R-CNN offers performance improvements in terms of time cost and accuracy.

Neural network techniques are commonly used when analyzing multispectral images.
Herath et al. [89] developed a deep neural network based fish class classifier for yellowfin
tuna, and training data on the neural network achieved 90% accuracy on test data. CNN
can also be used as a tool to analyze multispectral images as a means of estimating fish
freshness. It is feasible to use state-of-the-art CNNs to automatically extract appropriate
spatial-spectral features [3]. Hirama, et al. [112] also proposed a method to identify fish
using an echogenic vocalizer connected to a set net. The proposed method uses the data
obtained by CNN from echo vocalizers connected to the set net to identify fish. In the
CNN-based deep learning architecture, the input is a sonar image and the output is a fish
species. Using this method, five fish species were identified with 95% accuracy. In addition,
a genetic algorithm was also applied to the creation of an MSI system. After imaging, the
elimination of redundant bands in the spectral set is a necessary step to create simple, low
cost and fast predictive models that can be used for online monitoring of food safety and
quality. GAs were effectively used to select the richest wavelength variables associated
with fish quality from the full spectral range [39]. In addition, the choice of an appropriate
wavelength selection method can be of great help in the development of calibration models.

In summary, fluorescence spectroscopy, RGB imaging and MSI all have advantages
and disadvantages for different species of white meat. RGB imaging is more universal
when fish is the object of detection, with an accuracy of over 75.00% in all cases. While
fluorescence imaging is less common, it has higher accuracy and correlation coefficient
values. MSI is not widely used for the detection of shrimp meat, while RGB imaging
has a detection accuracy of over 90.00%. Fluorescence spectroscopy was slightly less
accurate. Otherwise, the situation is even richer when the subject of testing is poultry meat.
When using MSI for non-destructive testing of chicken, the number of cases detected is
high but the detection accuracy is lower than the other two imaging techniques, whereas
fluorescence imaging and RGB imaging showed better potential: the accuracy ranged from
94.00% to 97.43%. For duck, there is no doubt that fluorescence spectroscopy is the most
powerful tool.

5. Challenges to Fluorescence Spectroscopy, RGB Imaging and MSI and Future Trends

By providing spectral information related to the quality characteristics of white meat,
MSI techniques have proven to be an effective method for rapid non-destructive classi-
fication and detection of freshness and harmful substances in white meat. Fluorescence
detection has also proven to be an effective method for tracking the level of hazardous
substances in white meat by utilizing the fluorescence properties of some meats. RGB
imaging is also very widely feasible for non-destructive testing of white meat. Based on
these chemical-free assessment methods, the speed of non-destructive testing of white meat
is greatly increased and the errors caused by subjective judgement are greatly reduced,
effectively safeguarding the health of consumers. This chemical-free technique presents
superior results to traditional manual testing.

Although there is now a wealth of scientific research demonstrating the enormous
capabilities and potential of these technologies for food detection, they undeniably still have
various drawbacks. RGB imaging, although low cost and convenient, can only provide
spatial information in a limited number of wavelengths. When using MSI for quality
assessment of white meat, although efficient and complete detection is guaranteed, there is
no doubt that a complete MSI system can be expensive. The main obstacle to industrial
applications is budgetary constraint. In order to meet the need for cost-effectiveness, the
development of an inexpensive and specific imaging system will be particularly crucial in
the future. Fluorescence detection, as a long-established detection technique, does have
a large number of applications in white meat quality detection. The great potential of
fluorescence spectroscopy combined with multivariate statistical analysis for food quality
assessment has also been demonstrated [17]. After analyzing and collating a large body
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of literature, we found that fluorescence spectroscopy has been used mainly for tracking
harmful substances in white meat foods and, to a lesser extent, for freshness testing of
meat. It is rarely used to identify the type of meat. In today’s seafood market, there are
countless cases of mislabeling due to misidentification of fish species. The consequences
associated with economic losses, health problems and even depletion of the oceans have
become apparent. Therefore, there is still a need for laboratories to expand the use of
fluorescent detection.

It is clear that these techniques, though, have an extremely high research potential for
non-destructive quality evaluation of white meat. However, there is still much room for
improvement and innovation when applied to industrial production and inspection. Firstly,
the costs of these imaging and analytical techniques need to be controlled and reduced
due to the large number of applications in the food industry. Secondly, there is a need for
greater interaction and cooperation between these three techniques. Sometimes one of the
three techniques will have a greater advantage when testing the quality of the same meat
product. In addition, all three techniques can be used as complementary and analytical
tools. This suggests that laboratories may move closer to technological interaction in the
future. Finally, practical predictive models for quality parameters are also important. Even
if a high degree of applicability of the technique can be guaranteed, it is also necessary
to ensure that the choice of model is very sound. The two complement each other in
order to effectively improve the accuracy of food quality assessment. In conclusion, based
on machine learning, fluorescence spectroscopy, RGB imaging and MSI techniques are
expected to be powerful tools for fast and efficient non-destructive quality detection of
white meat and may lead to better intelligence, innovation and further applications in other
food industries and fields.

6. Conclusions

In this review, the latest applications of fluorescence spectroscopy, RGB imaging and
MSI are highlighted as promising techniques for non-destructive quality inspection of vari-
ous white meat foods. MSI is a method of capturing images from different spectral bands,
sufficient to gather physical, geometric and chemical information about objects in ranges
beyond the visible region, and has proven to be the analytical tool of choice for identifying
the quality of food and meat. There are more diverse methods for non-destructive quality
determination of white meat using fluorescence spectroscopy. Fluorescence can be used to
characterize the conformational changes that occur under different production and storage
conditions and is therefore a promising process analysis tool for characterizing white meat
foods. Certain organs or secretions of some fish have fluorescent properties that can also
be used as indicators of fish quality. CNN techniques are able to represent learning and
classification of input information based on a hierarchy of shift variants and can also be
used as a tool to analyze multispectral images and RGB imaging for detecting the freshness
of white meat. As a technique that does not require extensive pre-processing, it excels
in the non-destructive detection of white meat and species identification. Based on the
rapidly evolving excellence objectives of the modern meat industry, these three techniques
have been added to the knowledge base for monitoring product quality parameters of
white meat. Given the recent excellent advances and innovations in computer vision and
data analysis modelling, it is expected that these techniques will not only be more inten-
sively studied and widely used in the laboratory, but will also become extremely powerful
tools for non-destructive quality assessment of white meat and other food products on an
industrial scale.
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