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Abstract: Vertical flow immunoassays (VFIAs) are considered potential point-of-care testing (POCT)
devices compared to lateral flow assays due to their ability to analyze a comparatively large sample
volume and ease of multiplexing. However, VFIA devices are limited by low analytical sensitivity
when coupled with a visual colorimetric signal. Herein, we carefully analyzed key parameters that
accounted for the proper functionality of VFIA that can be modified to enhance the overall sensitivity
of VFIA. In particular, we focused on improving the stability of conjugate pads impregnated with
capture antibodies, maintaining a controlled flow rate to ensure higher analyte reactivity with capture
antibodies, and enhancing the absorption efficiency. The results showed that air-drying of conjugate
pads in the presence of 5% (w/v) lactose significantly improved the stability of antibodies during long-
term storage. Integration of dissolvable polyvinyl alcohol (PVA) membrane of optimal concentration
as a time-barrier film into the sensor delayed the flow of samples, thereby increasing the biorecogni-
tion interaction time between immunoreagents for the formation of immuno-complexes, which in
turn led to higher sensitivity of the assay. Furthermore, the employment of an absorbent pad with
higher water holding capacity significantly reduced the non-specific binding of immunocomplexes,
thereby reducing the possibility of false-negative results.

Keywords: vertical flow; immunoassay; colorimetric; lactose; polyvinyl alcohol; sensitivity

1. Introduction

In recent years, there has been an increasing demand for point-of-care (POC) multiple
diagnostic assays that allow rapid detection of analytes present in samples compared
to conventional lab-based testing. A wide range of biosensors based on lateral flow im-
munoassay (LFIA) is employed in the healthcare sector, environmental sector, and food
industries [1–3]. LFIA is based on affinity interactions such as hybridization of aptamer-
target, antibody-antigen, biotin-streptavidin, or probe DNA-target DNA hybridization
and offers advantages over conventional analytical methods in terms of low cost, on-site
response, ease of operation, portability, robustness, and fast and naked-eye detection [4].
On the other hand, the LFIA approach also has limitations, including its relatively low
sensitivity and sample volume constraints [5]. To overcome the restrictions typically as-
sociated with LFIAs, a vertical flow immunoassay (VFIA) design is deemed a potential
alternative. VFIAs are reported to provide the benefits of enhanced sensitivity, owing to the
use of larger sample volumes, increased speed, and the absence of the ‘hook-effect’ [5–7].
VFIA comprises similar materials employed in LFIA; however, the membranes are stacked,
and the sample applied vertically migrates from the upper layer to the bottom layer. Var-
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ious VFIAs have been developed so far to detect antibodies, biomarkers, and biothreat
agents [5,6,8–10].

One such VFIA was developed in our previous study to detect Escherichia coli (E. coli)
DH5α in milk samples to monitor milk quality and safety [11]. It employed a multiple-
membrane set-up comprising (from top to bottom): a sample pad, a conjugation pad (with
anti-E. coli antibodies conjugated to horseradish peroxidase), six blocking membranes with
immobilized E. coli DH5α, and an absorbent pad with the dried substrate (TMB (3,3’,5,5’-
Tetramethylbenzidine)) (Figure 1). After addition, the sample diffuses from the sample pad
to the conjugation pad, where the bacteria present in the milk sample conjugates with anti-
analyte antibodies conjugated to horseradish peroxidase (HRP). The resultant antibody-E.
coli complex then migrates to the blocking layers with the immobilized analyte (E. coli
DH5α), which selectively binds to and stops the migration of free/unbound antibodies
while allowing the antibody-E. coli complex to pass through the blocking layers to the
absorption pad, indicating positive colorimetric detection. As this approach enables the
rapid detection of bacteria in a cost-effective manner, it could be employed as a portable
POC testing (POCT) tool to identify pathogenic bacteria in milk for which an antibody
is available.
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Figure 1. Schematic description of the vertical flow immunoassay and the assessment process. As the
spiked sample is added to the sample pad, the bacteria bind to antibodies on the conjugate pad and
form antibody-bacterial complexes that eventually migrate through the pads to the bottom-placed
absorbent pad, thereby generating a positive colorimetric signal. In negative control without bacteria
(water), free antibodies get released from the conjugation pad along with sample medium and bind
to the immobilized E. coli cells on the blocking layers and thus do not proceed to the absorbent pad,
producing no signal.

However, despite the advantages of this VFIA set-up, a few restraints that limit its
potential as POCT includes instability of capture antibodies and inefficient release of
antibodies from the conjugate pad. Furthermore, the fast flow rate of the sample through
the stacked membranes provides less reaction time for the analyte to bind (E. coli DH5α)
to capture the antibody, thereby increasing the odds of false-negative results. Hence, the
present study attempts to optimize critical parameters to improve the overall sensitivity
of VFIA. The parameters examined included the composition of antibody coating buffer,
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the temperature of drying the conjugate pad, the inclusion of a time-barrier layer to delay
sample flow rate, and the use of an absorption pad with better fluid holding capacity.
Herein, we demonstrated that through judicious optimization of parameters, the overall
sensitivity and reproducibility of the VFIA can be increased manifold. The modifications
made in the VFIA design in this study are non-specific and, hence, could be applied to any
vertical flow immunoassay system to obtain a high signal intensity.

2. Materials and Methods
2.1. Reagents and Membranes

Luria broth (LB) (L3022), tween-20 (cat. No. P7949), boric acid (B6768), polyvinyl alcohol
(PVA-30–70 K, 87–90% hydrolyzed (cat. No. 8136)), and (3-Glycidyloxypropyl)trimethoxysilane
(GPTMS, cat. No. 440167) were purchased from Sigma Aldrich (St. Louis, MO, USA). Glacial
acetic acid (cat. No. 64-19-7) was purchased from Gadot (Netanya, Israel). Methanol (MeOH,
cat. No. 67-56-1) was purchased from Bio-Lab (Jerusalem, Israel). Hydrogen peroxide (H2O2
(30% (w/w)), cat. No. 7722-84-1) was purchased from Carlo Erba (5347 JW, OSS, Nether-
lands). Phosphate buffered saline (PBS) tablets (cat. No. P4417) and sodium periodate
(cat. No. 7790-28-5) were procured from Fisher chemicals (Chicago, IL, USA). PBS (0.05%
v/v)–tween solution (PBST) was prepared by adding 0.5 mL Tween-20 solution to 1 L PBS
(0.01 M NaH2PO4, 0.0027 M KCl and 0.137 M NaCl, pH 7.4). Borate buffer (1 M, pH 7.4) was
prepared by dissolving 0.1 M of boric acid with 0.075 M of NaOH. Hydrochloric acid (HCl,
(37% (w/w)), cat. No. 7647-01-0) was purchased from Chem-Lab NV (Belgium). Sucrose
(cat. No. 6138-23-4), β-lactose (cat. No. 5965-66-2) and trehalose (cat. No. 6138-23-4), skim
milk powder (cat. No. 70166) and 3,3′,5,5-tetramethylbenzidine (TMB) (cat. No. T0440) were
purchased from Merck (Darmstadt, Germany). Skim milk solution (5% w/v) was prepared by
adding 5 g skim milk powder to 100 mL PBST. Milli-Q ultrafiltered H2O (Milli-Q, Millipore
Co., Bedford, MA, USA) was used to prepare all solutions. The pads include sample (cat. No.
GFB-R4), absorbent (cat. No. AP-080, AP-0110, and AP-0120), and conjugate-release (cat. No.
PT-R5) pads, purchased from Advanced Microdevices Pvt. Ltd. (Ambala, India). Anti-E. coli
DH5α antibody conjugated with HRP (bs-2033R-HRP) was purchased from Bioss antibody
(Woburn, MA, USA).

2.2. Bacterial Growth

E. coli (DH5α) strain was obtained from Robert Marks (Ben-Gurion University, Beer-
Sheva, Israel). For each experiment, bacteria were cultured in 10 mL fresh LB and incubated
overnight at 37 ◦C in a rotary thermoshaker MaxQ 4450 (Thermo scientific (401 Mill
Creek Rd, Marietta, OH 45750, USA)) at 120 rpm. The culture was then diluted with LB
and regrown at 26 ◦C to the early log phase of 107 cells/mL (optical density at 600 nm
(OD600) = 0.2) as determined by an ultrospec 2100 Pro spectrophotometer (Amersham,
Cambridge, UK). Subsequently, 10 mL culture was pelleted by centrifuging at 7840× g for
5 min and washed with double distilled water. This step was repeated three times. The
bacteria were then diluted (1:2000) in PBS to the final test concentrations (5 × 103 cells/mL).

2.3. Preparation of Activated Membranes

The polyester membrane was immobilized with E. coli using the silanization method [12].
The polyester membrane pads were first to cut into 1 cm ×1 cm strips using a paper cutter.
To clean the fibers from microscopic particles, the pads were dipped in MeOH: 37% HCl
solution (1:1) for 20 min, after which they were thoroughly washed with double distilled
water (ddH2O). The cleaned membrane pads were activated in piranha solution (H2O2: HCl,
7:3 v/v) for 10 min at 90 ◦C. Piranha solution improves the exposure of hydroxyl groups (OH)
on the silica surface so that silane can attach to them by a covalent bond. After activation,
the membrane pads were washed thoroughly in ddH2O and dried in an oven (120 ◦C) for
60 min. The activated and dried membranes were then immersed in GPTMS (98%, v/v) in
glass tubes at 60 ◦C for 60 min. After that, the silanized membrane surfaces were exposed
to 11.6 mM HCl for 60 min to encourage the formation of vicinal diols. After washing with
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ddH2O, the membrane pads were dipped in 100 mM sodium periodate (NAIO4) dissolved in
10% (v/v) acetic acid at room temperature (RT) in the dark for 60 min. This step is based on
the Malaprade reaction that oxidizes the vicinal diols to terminal aldehyde groups. The pads
were again rinsed with ddH2O and employed to immobilize E. coli (DH5α), as mentioned in
Section 2.4.

2.4. Preparation of Blocking Layers

Blocking layers were prepared by incubating the activated membranes with E. coli
DH5α solution (5 × 103 cells/mL) overnight at 4 ◦C on an orbital shaker (120 rpm). These
membranes were then washed three times with PBST to remove unbound bacteria and
incubated with blocking solution (5% (w/v) skim milk and 0.05% (v/v) Tween 20 in PBS)
for 1 h. Finally, the membranes were washed three times with PBST and dried at 30 ◦C. The
blocking layers were then prepared by punching 6 mm diameter circles from the blocked
membrane strips.

2.5. Preparation of PVA Films

The PVA films of varying concentrations (5%, 7%, 10%, 15% (w/v)) were made using
the drop-casting method. The PVA was first weighed and then added into deionized water
according to the required concentration. Once added, the solution was placed on a hot
plate (80 ◦C) and stirred at 250 rpm for 1 h to obtain a homogenous solution. Then, 10 mL
of the homogenous PVA solution was placed in a disposable plastic Petri dish (Miniplast,
Israel), and the pates were kept in the oven at 37 ◦C for 22 h.

2.6. 3D-Printing of the Customized Holder

The customized 3D-printed holder was modeled using Autodesk Fusion 360 software
and printed using MakerBot 3D Printer Method X (Stratasys, Rehovot, Israel) with poly-
lactic acid (PLA) and polyvinyl-alcohol (PVA) as supporting material. Once printed, the
prototype was washed using EcoworksTM Cleaning Agent (Eden Prairie, MN, USA) to
remove the excess support material. All aqueous solutions were prepared using Milli-Q
ultrafiltered (UF) deionized water.

2.7. Assembly of the Vertical Immunoassay System

The system was assembled by stacking all prepared membranes, one on top of the
other, in the order (from top to bottom): sample pad, conjugation pad, six blocking layers,
and absorbent pad (Figure 1). To provide optimal time for the occurrence of immunore-
actions and allow a one-directional flow of sample, the entire setup was placed in a 3-D
printed plastic holder (Figure S1).

2.8. Instrumentation

The presence of HRP-conjugated immunocomplex in the absorbent pad was detected
using the sensitive chemiluminescence reaction. After adding the sample, all the layers of
VFIA set-up were placed in a 96-well plate. To prevent the differences between reaction
processes on the different membranes, the substrate solution (luminol: H2O2 (1:1, v/v), cat.
No. 1705040, BioRad, Rehovot, Israel) was added simultaneously using a multichannel
pipette and read at the same time. The plate was run kinetically for 10 min at an interval
of 2 min with 6 reads per well. The signal at which the enzymatic reaction came to the
steady-state phase was taken as the final relative light unit (RLU) value.

The chemiluminescence was analyzed by reading the plate in a plate reader (BioTek
EL808-I Ultra Microplate Reader (BioTek Instruments Inc., Winooski, VT, USA).

2.9. Optimization Steps
2.9.1. Optimization of Antibody Stability in Conjugation Pad

Conjugation membranes were prepared by punching 6 mm diameter circles from the
polyester membrane using a paper puncher. Pre-treatment of conjugate pads is crucial to
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ensure the stability of antibodies. The effect of the chemical and physical parameters on the
immobilized antibodies’ stability and functionality was optimized using different buffers
at different temperatures.

Buffers for blocking of conjugate pads were prepared as described:

(a) Borate buffer (5 mM, pH 7.4) containing 0.05% (v/v) Tween 20
(b) PBS (10 mM, pH 7.4) buffer containing 0.05% (v/v) Tween 20
(c) PBS (10 mM, pH 7.4) containing 0.05% (v/v) Tween 20 with 5%, 10% or 20% (w/v) sucrose
(d) PBS (10 mM, pH 7.4) containing 0.05% (v/v) Tween 20 with 5%, 10% or 20% (w/v) lactose

The antibodies were first diluted (1:1000) in different blocking buffers, and conjugate
pads were immobilized by applying 20 µL of antibodies solution using a micropipette. The
conjugate pads were dried under two other conditions, viz., at 37 ◦C for 60 min and in a
fume hood under an airflow rate of 0.75 m/s for 90 min. The dried conjugate pads were
stored under different temperatures viz., at room temperature (RT), 4 ◦C, and −20 ◦C for
24, 48, and 72 h, to determine the most effective method to ensure the stability of antibodies
during long term storage. The antibody functionality was assessed every 24 h by measuring
the luminescence exhibited by conjugate pads in a 96-well plate in a plate reader.

2.9.2. Optimization of Conjugate Release

The pre-treatment of conjugate pads is also critical to ensure the consistent and uni-
form release of antibodies upon hydration. It has been reported that the addition of
carbohydrates in pre-treatment buffer facilitates the release of conjugate from the conjugate
pad. Hence, to select the disaccharide that enhances the antibody release, in this study,
conjugate pads were immobilized with antibodies diluted in 10 mM PBST buffer containing
varying concentrations (5%, 10%, and 20% (w/v)) of different sugars (sucrose, lactose, and
trehalose). The sugars were selected based on their observed effect on antibody stability
during long-term storage, as explained in Section 2.9.1. After drying, the antibody-coated
conjugate pads were placed in the 3D-printed holders in the stacked-pad arrangement of
membranes (from top to bottom)-sample pad, conjugate release pad, and six clear polyester
membranes (without immobilized E. coli DH5α) and absorbent pad. The PBS buffer (90 µL)
was added gradually to allow the antibodies to migrate towards the absorbent pad. The
membranes removed from the 3D-holders were added with luminol: H2O2 (1:1, v/v)
solution and luminescence was measured in a 96-well plate in the plate reader.

2.9.3. Optimization of Flow Management

Maintaining a controlled sample flow rate in the designed VFIA is necessary for
forming the antibody-analyte complex. Hence, to impede the antibodies released from
the conjugate pad upon wetting, PVA films of varying concentrations (5%, 7%, 10%, 15%
(w/v)) were placed beneath the conjugate pad to allow the binding of antibodies to the
analyte (E. coli DH5α) present in the sample. PVA films were prepared by punching
6 mm diameter circles from the synthesized PVA sheet and were integrated beneath the
conjugation pad into the customized 3D-printed holders. A separation pad was placed
between the conjugation pad and PVA film to minimize the direct contact of antibodies
with dissolved PVA. After the PVA films were integrated into the holder, a colored dye was
then added through the top entrance of the holder. The dissolution times of tested films
were measured after observing the visible flow of the ink sample into the absorbent pad.
Furthermore, to determine whether the integration of a PVA layer in VFIA could negatively
affect the activity of the antibody/HRP enzyme, anti-E. coli DH5α antibody at different
dilutions was incubated with studied concentrations of PVA solutions in a 96-well plate, and
antibody/HRP functionality was assessed by measuring the chemiluminescence intensity.

2.9.4. Optimization of Absorption Efficacy

The absorbent pad is a critical component of VFIA as it is placed at the bottom of
the vertical stack-pad design to absorb the excess sample volume, preventing its backflow.
Absorbent pads with high absorbing capacity could allow an analysis of a comparatively
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large sample volume, thereby enhancing the sensitivity of VFIA. Therefore, to determine
the effect of absorption efficiency on the performance of VFIA, three types of absorbent
pads, viz., AP080, AP0110, and AP0120, with different characteristics were employed
(Table 1). The absorbent pads were placed in the VFIA set-up in a similar way as described
in Section 2.7, and PBS (90 µL) was applied gradually to the membrane stack placed in
the plastic holder. After that, the membranes were removed from the holder, and their
luminescence was measured as described in Section 2.9.2.

Table 1. Physical and performance characteristics of different types of absorbent pads.

Properties AP080 AP110 AP120

Thickness (µm) 650–950 970–1330 1120–1580

Weight (mg/cm2) 10–22 57–93 60–100

Water holding capacity (mg/cm2) 52–112 87–147 110–200

3. Reproducibility and Statistical Analysis

One-way repeated-measures analysis of variance (ANOVA), followed by Tukey’s post
hoc test, was employed to evaluate the dispersion between different tested parameters. The
error bars represent the standard error of independent replicates and biological samples,
and the marking in the figures indicates the level of statistically significant difference
(“*” when p < 0.05 and “**” when p < 0.01). The data were analyzed with Graphpad Prism
(Graphpad Software, Inc., Version 5, San Diego, CA, USA).

4. Results and Discussion
4.1. Optimization of the Efficacy of Conjugate Pad

Conjugate pads play a pivotal role in regulating the performance of paper-based
vertical/lateral flow assays. The function of the conjugate pad is to retain the antibodies
and maintain their functional stability until the assay is conducted. This is assured by
blocking the conjugate pads with a blocking solution containing buffer salts and sugars
(sucrose, trehalose), which function as a preserving and rehydrating agent.

4.1.1. Selection of Base Buffer

The base buffer used to apply the conjugate onto the conjugate pad is a critical factor for
the VFIA as buffer ions interact with antibodies, affecting their conformation and reactivity.
Adding buffer salts to the conjugate pad can also minimize the variation exhibited by
samples with different pH and ionic strength [13–15]. Hence, selecting a suitable base
buffer is essential as it stabilizes the reaction elements for improved performance of VFIA.
Previous reports have suggested the use of a borate buffer as a blocking reagent, owing to
its superior performance for LFIAs [16–18]. Hence, based on the preliminary results, we
compared the performance of two different base buffers, viz., borate buffer (5 mM, pH 7.4)
and PBS (10 mM, pH 7.4). Both the buffers were added with 0.05% (v/v) Tween-20 as it
promotes re-solubilization of the conjugate, reduces nonspecific binding of the conjugate,
and minimizes the analyte’s adsorption to the membrane.

Among the tested buffers, 10 mM PBST (PBS with Tween-20) showed an enhanced
effect on antibody stability during the drying process, as shown in Figure 2. This may
be because compared to borate buffer, PBST could more efficiently form hydrogen bonds
with the reporter molecule before the drying process, which enabled the maintenance of
the native form of the antibodies [14]. PBS at 10 mM concentration has also been shown
to improve the thermostability of the HRP enzyme by significantly increasing its half-life
from 13 to 35 min at 80 ◦C [19].
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Figure 2. Effect of 5 mM borate and 10 mM PBST buffer on the stability of conjugate pads during the
drying process (* p < 0.05 by ANOVA).

4.1.2. Optimization of Stabilizers and Drying Temperature of Reporter

The addition of sugars in the buffer has been reported to enhance the stability of antibod-
ies formulations. When the conjugate pad is dried in the presence of sugar, the sugar molecules
form a layer around antibodies, thereby retaining their biological/structural integrity [20,21].
The sugar molecules rapidly dissolve when the sample diffuses through the conjugate pad,
carrying the antibodies into the fluid stream. There are conflicting reports regarding the role of
different types of sugars in maintaining protein’s stability. Various studies reported trehalose
as an efficient stabilizer because of its higher glass transition temperature (Tg) as compared
to sucrose [22–24]. On contrary, there are studies that have demonstrated the employment
of sucrose for preserving protein structure [17,25,26]. Hence, in this study, to determine the
effect of sugars on the integrity and thermal stability of antibodies, they were diluted in
PBST buffer containing different types of sugars, viz., sucrose, trehalose, and lactose, at three
different concentrations (5%, 10%, and 20% (w/v)). After applying conjugate on the pads,
they were exposed to two different drying conditions, viz., at 37 ◦C for 60 min and air-dry at
RT for 90 min. The efficacy of dried pads impregnated with sugar-supplemented conjugate
was compared to the undried pads added with the conjugate just before chemiluminescent
analysis (T0). The results showed that 5% (w/v) lactose significantly improved the stability
of dried conjugate pads among tested sugars (Figure 3a). This is probably because lactose
interacts stronger with biomolecules than sucrose and is more effective in protecting proteins.
Lactose also exhibits low hygroscopicity, excellent compatibility with active ingredients, and
remarkable physical and chemical stability [27]. Interestingly, the dried pads impregnated
with 5% (w/v) lactose exhibited higher signal strength than undried ones (T0). This could
be because of less aggregation due to the homogenous dispersion during drying, leading
to high adsorption of the lactose-laden conjugate on the conjugate pads. However, with a
further increase in the concentration of lactose, a drop in chemiluminescent signal intensity
was observed. This is probably due to the lower solubility of lactose at high concentrations.
Supplementation of PBST buffer with sucrose also exhibited a protective effect on the an-
tibodies at all the tested concentrations, as reported in various studies [15,17,18]; however,
its impact was weaker than lactose. At the same time, trehalose showed minimal effect on
retaining the functional integrity of antibodies at all tested concentrations. It has also been
reported that trehalose is unsuitable for long-term storage at low temperatures. It is more
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prone to crystallization during freeze-concentration, leading to loss of cryoprotective function,
thereby causing protein instability [25,26,28].
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process and (b) storage at different temperatures.

The drying of conjugate pads is essential to achieve long-term stability, as the pres-
ence of water facilitates the chemical and physical degradation of proteins. The drying
temperature and time also significantly affect the stability of the antibodies, as subjecting
the antibodies to heat stress during the drying process leads to irreversible denaturation of
antibodies [26,29]. Hence, to select the optimal drying temperature, in this study, conjugate
pads impregnated with antibodies were dried under two conditions viz., first set was
placed in an incubator at 37 ◦C for 60 min and the second set was air-dried in a chemical
hood at an airflow rate of 0.75 m/s for 90 min.

As shown in Figure 3a, air-drying of conjugate pads at RT preserved the functionality
of the antibodies. However, conjugate pads dried at 37 ◦C exhibited a significant activity
loss. These results revealed that air-drying of conjugate pads at a lower temperature
for a comparatively longer duration is a more appropriate method as it causes minimal
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damage to antibodies. Although many previous studies have demonstrated drying of
conjugate pads at higher temperatures (37–42 ◦C) for varying durations of time [17,30,31],
the results of the present study clearly reveal that heat-induced stress can cause substantial
denaturation of the antibody, thereby decreasing the sensitivity of VFIA.

The efficiency of the air-drying process was also demonstrated by measuring the
weight of conjugate pads before applying buffer (W0) and after drying it for 90 min (W1).
The conjugate pads applied with solutions devoid of sugars (PBST and water) were kept as
controls. Results showed that in negative controls, the weights of conjugate pads before
(W0) and after drying (W1) were similar, which implies that the drying process was efficient
as it resulted in complete removal of moisture (Figure S2). However, the increased weight
of conjugate pads impregnated with sugar-laden buffers after the drying process could
be attributed to the weight of specific sugars as the pads applied with 20% (w/v) sucrose
showed more increase in weight followed by pads loaded with 10% (w/v) lactose and 5%
(w/v) lactose. Furthermore, to confirm the efficiency of the drying process, the pads were
air-dried overnight under similar drying conditions. Results showed that after overnight
air-drying, the weights of all pads (W2) were similar to the weight observed after 90 min
drying (W1) (Figure S2), which confirms that air-drying of membrane pads for 90 min is
sufficient to ensure complete moisture loss.

The use of sugars for the long-term storage of proteins is pretty common as many com-
mercially available antibody formulations contain different sugars [22,32]. Hence, based
on the stabilization efficiency of tested sugars, two best disaccharides (5% (w/v) lactose,
20% (w/v) sucrose) were selected to determine their effect on the preservation of antibodies
during long-term storage at three different temperatures, viz., room temperature (RT), 4 ◦C
and −20 ◦C for 72 h. Chemiluminescence analysis showed that blocking conjugate pads
with sugars-supplemented PBST buffer significantly enhanced their stability compared to
the pads blocked with only PBST buffer without disaccharides. The signal appeared to
decrease gradually with increased duration of storage; however, the pads blocked with
PBST buffer supplemented with 5% (w/v) lactose exhibited more stability both at 4 ◦C and
−20 ◦C as compared to PBST buffer containing 20% (w/v) sucrose (Figure 3b). Among the
tested storage temperatures, −20 ◦C appeared to be the optimum temperature for storing
conjugate pads; however, both the sugars exhibited incompetence in preserving the stabil-
ity of conjugate pads at room temperature for all-time intervals. This is attributed to the
degradation or unfolding of antibodies at RT, leading to their inactivity. Therefore, owing
to the sensitivity of antibodies to high temperatures (>4 ◦C, −20 ◦C), the designed VFIA
device could be effectively used only at settings with lower temperature storage facilities.

4.2. Optimization of Conjugate Release
4.2.1. Influence of Conjugate Pad Blocking on Conjugate Release

A consistent and uniform release of the conjugate is essential for VFIA to allow a
smooth and fast flow of immunocomplexes towards the absorbent pad, leading to less non-
specific binding and higher sensitivity. To achieve optimal antibody release, all conjugate
pads were prepared by diluting the antibodies in the PBST buffer added with previously
determined amounts of sugars (5% (w/v) lactose, 20% (w/v) sucrose). The conjugate pads
were placed in the membrane stack in a plastic holder. As this optimization was performed
to evaluate the effect of sugars on conjugate release, hence clear polyester membrane pads
(without immobilized E. coli) were placed beneath the conjugate pads, and PBS (90 µL) was
applied on top of the stack pad to facilitate the release of conjugate across the membranes.

The results showed that both the sugars (5% (w/v) lactose, 20% (w/v) sucrose) signifi-
cantly enhanced the release of antibodies through the blocked conjugate pads compared
to the unblocked ones coated with antibodies diluted in only PBST buffer. Among both,
the disaccharides, conjugate pads treated with 20% (w/v) sucrose exhibited more efficient
diffusion of antibodies as compared to pads coated with 5% (w/v) lactose (Figure 4). These
results are consistent with a previous study that reported optimal antibody release at a
sugar concentration of 20% (w/v) [33]. However, comparatively higher non-specific binding
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of released antibodies to the bottom-placed clear polyester membranes was observed for
conjugate pads coated with 20% (w/v) sucrose, which led to the low signal intensity of the
absorbent pad. This was probably because the high concentration of sugar (20% (w/v) su-
crose) increases the viscosity of the flowing sample stream, which reduces the flow velocity,
thereby increasing the interaction time between diffused antibodies and clear membrane
pads [34]. On the contrary, conjugate pads treated with 5% (w/v) lactose showed minimal
non-specific binding of antibodies to the membranes, which is also correlated with the ob-
served high signal intensity exhibited by the absorbent pad. However, in an unblocked pad
impregnated with buffer devoid of sugars, less conjugate transfer throughout the vertical
flow set-up could be due to the binding of antibodies to the conjugate membrane surface,
which hinders their release. It has been reported that blocking the conjugate pad prevents
the interaction of antibodies with the membrane surface, improving the signal-to-noise ratio
and facilitating the release of antibodies [33]. The other possible reason could be related
to membrane fouling that might have been caused owing to the high tendency of dibasic
sodium phosphate to crystallize, leading to the aggregation of antibodies. Besides eliciting
the aggregation, the freezing and thawing of biotherapeutics in the presence of PBS buffer
lacking stabilizers (sugars, polyols) also results in their degradation/denaturation [35,36].
Although absorbent pad of the stack pad comprising conjugate pad blocked with 5% (w/v)
lactose exhibited higher chemiluminescent intensity as compared to other tested stack pads
(Figure 4), however, when the intensities of all layers of each stack pad were combined,
no significant difference in the integrated chemiluminescent intensity was observed for
stack pads including conjugated pads blocked with 5% (w/v) lactose or 20% (w/v) sucrose
(Figure S3).
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4.2.2. Sample Deposition Mode

The method of sample addition through the vertically stacked membranes also im-
pacts the sensitivity of the vertical-flow assay. This study evaluated the effect of two
different sample deposition modes, viz., continuous-flow and sequential flow modes, on
the conjugate release through the vertical flow setup. To compare the impact of the sam-
ple deposition modes on the conjugate release and sample flow pattern, clear polyester
membrane pads without immobilized E. coli were stacked beneath the conjugate pads as
described in Section 4.2.1. In the continuous-flow mode, a volume of 90 µL PBS was added
through the vertical membrane stack-pad set-up in a single step, while in the sequential
flow mode, 30 µL of PBS was sequentially dispensed three times at an interval of 20 s.
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The results showed that the sequential flow method maximized the sensitivity by causing
an enhanced release of antibodies through the conjugate pad. It also prevented the non-
specific binding of antibodies to the clear membranes, thereby causing the flow-through
of the entire sample to the absorbent pad. In contrast, the minimal release of antibodies
through the conjugate pad was noticed in continuous-flow mode (Figure 5). Furthermore,
the rapid flow rate of the sample in continuous-flow mode, prevented its seepage through
the membranes, thereby causing the entrapment of the sample in the membranes, limiting
the sample flow to the absorbent pad. This promoted the non-specific binding of antibodies
to the stacked membranes, thereby decreasing the overall sensitivity and specificity of
the assay.
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However, when the intensities of all layers of each stack pad were combined, the
stack pad set-up, wherein the sample was added in continuous flow mode, showed higher
integrated chemiluminescent intensity as compared to stack pad set-up added with the
sample in sequential mode (Figure S4). This is because the observed chemiluminescent
intensity of the absorbent pad in sequential mode was lower as compared to its expected
value. In sequential mode, most HRP-conjugated capture antibodies directly migrated
to the absorbent pad without getting trapped on the clear membranes. Owing to the
fluid retention capacity of the absorbent pad, some of the capture antibodies along with
the sample got entrapped in the inner layers of the absorbent pad and hence did not get
exposed to the luminol substrate solution. This led to lower chemiluminescent intensity of
the absorbent pad, which in turn resulted in lower integrated intensity for sequential flow
mode, compared to continuous flow mode.

It is not feasible to employ the sequential sample deposition mode for LFIA owing to
its different geometry; hence, this modification in VFIA gives it an advantage over LFIA
in terms of sensitivity. LFIA is generally affected by mass transport limitations (MTLs)
that occur as the target analyte is transported distally across the nitrocellulose membrane
by passive capillary flow. Hence, the application of the sample in sequential mode could
comprise the detection speed of LFIA [7].

4.3. Effect of PVA Layer on Flow Rate Delay

A slow flow rate in the sample reactive zone between conjugation and blocking lay-
ers is critical as it allows increased exposure time between antibodies and bacteria and
leads to the formation of more antibody-bacteria complexes, which is a prerequisite for
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successful detection of pathogenic bacteria in the sample. This helps to ensure higher
sensitivity, reactivity and reduces false-negative signals. A recent study demonstrated that
the incorporation of a cellulose stacking pad in a membrane-based platform enhanced
the detection sensitivity of the assay by extending the antigen-antibody binding interac-
tions [17]. Similarly, in another study, the inclusion of polyvinyl alcohol (PVA) dam in LFIA
was shown to delay the sample flow through the nitrocellulose membrane resulting in
increased bio-recognition time, which in turn contributed to enhanced sensitivity of the
assay [37]. Although these studies demonstrated the employment of time barrier layers
made of suitable materials to increase the sensitivity of the assay, in these studies, the
optimal time required to achieve maximal and effective interaction of analyte and antibody
was not optimized. In the present study, we first assessed the minimal time required for the
efficient coupling of E. coli cells and capture antibodies. The optimal time required to bind
capture antibodies with bacteria was first analyzed by incubating the blocking membranes
immobilized with E. coli DH5α with anti-E. coli DH5α antibodies for different time intervals
(0, 1, 2, 3, 4, 5 min). The formation of antibody-bacteria complex on membranes was then
determined by analyzing the chemiluminescence intensity. The results showed that the
minimum conjugation time required for effective binding of the antibody to bacteria was
3 min. In comparison, the time duration of less than 3 min was incompetent as it did not
allow the formation of an efficient antibody-bacteria complex (Figure 6a).

Hence, in this study, a PVA film was employed as a barrier layer inside the vertical
flow set-up to obstruct the sample flow rate until the film ultimately dissolves. PVA is
a water-soluble polymer as it comprises hydroxyl groups, which interact with the water
molecules through hydrogen bonds [38]. A prototype to hold the PVA film in a paper-
based vertical flow set-up was designed using 3D-printing technology. The PVA film was
integrated beneath the conjugation pad in the customized 3D-printed holder (Figure 7),
and the ability of these time-barrier films was examined by measuring the dissolution time.

PVA films of different concentrations (5%, 7%, 10%, 15% (w/v)) were prepared as the
dissolution time of films is directly correlated to PVA concentration. Results showed that
PVA films with lower percentages viz., 5% (w/v) and 7% (w/v) dissolved rapidly after 2 min
and 3 min, respectively, making them unsuitable to be employed as a barrier layer, as they
did not allow sufficient time for the binding of antibodies to bacteria. On the contrary, 15%
(w/v) PVA film dissolved too slowly, taking up to 15 min, making it less effective to be used
in VFIA devices. However, 10% (w/v) PVA film dissolved after 6–7 min, corresponding to
the time required to form the antibody-bacterial complex as shown in Figure 6b. The results
suggest that PVA films of optimum concentration can be efficiently employed in VFIA
based biosensor as it effectively tunes with the antibody-analyte conjugation time [37].
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Figure 6. (a) Determination of optimal time required for the conjugation of capture antibody to
E. coli (b) Effect of different concentrations of PVA films on the delay of sample flow rate (c) Effect of
different concentrations of PVA on the activity of anti-E. coli antibody.

The feasibility of employment of PVA layer as a barrier film in VFIA was also validated
by determining its effect on the activity of antibody/HRP enzyme. To test whether the
reaction of dissolved PVA with the antibodies could negatively impact the effectiveness
of antibody/enzyme, different dilutions of anti-E. coli DH5α antibody was mixed with
specific concentrations of PVA solutions that showed a delaying effect of flow rate. The
antibody/HRP enzyme efficiency was assessed by measuring the luminescent signal in-
tensity. The results showed that PVA solution at 7% and 10% (w/v) concentration did not
impose any negative impact on the activity of antibody/HRP enzyme; on the contrary, it
exhibited more vigorous signal intensity than the control (PBS) (Figure 6c). This is probably
that at low concentration, PVA acts as a stabilizer and preserves the activity of the HRP
enzyme [16,39–42]. However, with a further increase in the concentration of PVA solutions
to 15% (w/v), the luminescence intensity dropped drastically. This indicates that a higher
concentration of PVA inflicted a masking effect on the HRP enzyme, owing to its increased
viscous nature, demonstrating its incompetency to be employed as a time-barrier film
in VFIA.
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4.4. Effect of Absorption Efficacy

The function of the absorbent pad is to increase the total volume of samples that can
enter the vertical stack pad device. It is placed at the stack pad’s bottom as it acts as a sponge
to absorb the additional sample running across the membrane bed [43]. This increased
volume is required for the enhanced release of antibodies from the conjugate pad. An extra
sample volume is also crucial to reduce non-specific binding and wash away the antibody-
bacteria complex across the blocking membranes, allowing the total analyte concentration
to reach the absorbent pad. This lowers the background and also assists in enhancing the
assay sensitivity. The employment of AP080 absorbent pad has been demonstrated for the
development of LFIA in the previously reported studies [11,44,45], while a few studies
have also examined the effect of absorbent pads of varying thickness viz., AP080 and
AP045 on the assay’s detection sensitivity. In one such study after preliminary optimization,
AP080 was eventually selected for LFIA development owing to its increased absorption
efficiency [46]. However, in another study, although no differences in the signal intensity
were noticed using AP080 or AP045 absorbent pad, however, they selected AP045 for LFIA
development, stating that owing to its less thickness, it allows a slower migration along the
nitrocellulose membrane, which may improve the number of interactions in the control
and test lines [47]. Hence, in this study, the effect of sample absorption efficiency of the
absorbent pad on the sensitivity of VFIA was evaluated using three types of cellulose
fiber-based absorbent pads of different physical and performance characteristics (AP080,
AP0110, and AP0120). The results showed that in the membrane stack pad with the
AP080 absorbent pad, the release of antibodies from the conjugate pad was minimal, and
owing to the insufficient absorption capacity of the absorbent pad; the released antibodies
remained entrapped in the clear membranes as indicated by higher chemiluminescent
signal exhibited by all six membranes (Figure 8). However, the AP0120 absorbent pad
demonstrated maximal fluid absorption followed by the AP0110 pad. It also affected
the conjugate release efficiency by causing the enhanced release of antibodies from the
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conjugate pad. Furthermore, it also prevented the non-specific binding of antibodies on the
clear membranes, thereby reducing the probability of false-negative results.
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Figure 8. Effect of absorption efficiency of different types of absorbent pads on the sensitivity of the
vertical flow assay.

The results revealed that the absorption efficiency of the absorbent pad plays a critical
role in enhancing the sensitivity of VFIA.

5. Conclusions

In the present study, we have reported that it is feasible to enhance the performance of
VFIA by modifying critical parameters such as improving the stability of dried conjugate
pads, increasing the reaction time between the analyte and capture antibody, and enabling
the analysis of a large volume of samples to enhance the sensitivity of the assay. The optimal
conditions that were demonstrated for preserving the conjugate pads during long-term
storage included the blocking of conjugate pads with 10 mM PBST buffer containing 5%
(w/v) lactose and air-drying of conjugate pads at room temperature. Furthermore, we
showed that the integration of a time barrier film viz., PVA at a specific location in the
sensor could pause the sample flow rate, thereby allowing the formation of an analyte-
antibody complex. Enhancing the absorption efficiency by using a thicker absorbent pad
significantly reduced non-specific binding, thereby improving the overall sensitivity of the
assay. The modifications suggested in this study are generic, cost-effective, and could be
implemented to other vertical flow immunoassays.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12020063/s1, Figure S1: Image of vertical flow set-up built from
a series of layers; Figure S2: Depiction of the efficacy of air-drying process based on the dry-weight
of conjugate pads; Figure S3: Effect of conjugate pad blocking on the integrated chemiluminescent
intensity of VFIA platform; Figure S4: Effect of different types of sample addition modes on the
integrated chemiluminescent intensity of VFIA platform.
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