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Abstract: The aim of this study was to evaluate the accuracy and usability of a novel continuous glu-
cose monitoring (CGM) system designed for needle-free insertion and reduced environmental impact.
We assessed the sensor performance of two GlucoMen® Day CGM systems worn simultaneously by
eight participants with type 1 diabetes. Self-monitoring of blood glucose (SMBG) was performed
regularly over 14 days at home. Participants underwent two standardized, 5-h meal challenges at the
research center with frequent plasma glucose (PG) measurements using a laboratory reference (YSI)
instrument. When comparing CGM to PG, the overall mean absolute relative difference (MARD) was
9.7 [2.6–14.6]%. The overall MARD for CGM vs. SMBG was 13.1 [3.5–18.6]%. The consensus error
grid (CEG) analysis showed 98% of both CGM/PG and CGM/SMBG pairs in the clinically acceptable
zones A and B. The analysis confirmed that GlucoMen® Day CGM meets the clinical requirements
for state-of-the-art CGM. In addition, the needle-free insertion technology is well tolerated by users
and reduces medical waste compared to conventional CGM systems.

Keywords: diabetes technology; CGM; accuracy; type 1 diabetes; sustainability

1. Introduction

The introduction of continuous glucose monitoring (CGM) represents one of the most
important advancements within diabetes treatment and self-management over the last
decades. CGM provides easy access to current glucose levels, glucose trends, and the
retrospective analysis of glucose excursions, thus facilitating easier and better diabetes
management for both people living with diabetes (PLWD) and health care professionals. As
a result, PLWD using CGM technology show improvement in HbA1c, glucose variability,
hypoglycemia prevalence, overall well-being, and treatment satisfaction and have less fear
of hypoglycemia compared to SMBG [1–3].

One critical issue with this technology remains the quality of the accuracy of glucose
measurements, even though vast improvements in this regard have become evident over
the last years [4–7]. Nevertheless, most current CGM have already reached accuracy levels
of SMBG and are, therefore, labeled for nonadjunctive use by regulators, meaning that CGM
can be utilized for treatment decisions without the subsequent SMBG confirmation [8–11].
Furthermore, as CGM enables easy assessment of the time spent in target range (TIR),
which has been shown to be a valid marker of glycemic control alongside HbA1c, there has
been an evolution of individual treatment guidelines for CGM use with a focus on TIR [12].
However, further improvement in CGM accuracy, particularly in the hypoglycemic range, is
crucial for the development of reliable diabetes technology, especially for automated insulin
delivery systems, as well as for reducing the burden of diabetes management for PLWD.

Another key aspect of CGM technology that is crucial to adherence is comfort in
both wearing and inserting the sensor. Registry data show that wearing discomfort is the
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prevailing factor for CGM discontinuation [13]. Therefore, new developments in diabetes
technology aim to reduce discomfort in diabetes management and, thus, facilitate better
quality of life with diabetes.

As CGM technology is made available to a growing number of PLWD, the negative
impact on the environment and natural resources increases due to the use of disposable
products and accumulation of plastic and medical waste, including hazardous parts such as
insertion needles. This problem is increasingly being addressed not only by environmental
organizations but also by users of diabetes technology and patient organizations. There-
fore, the Diabetes Technology Society started its Green Diabetes Initiative to promote the
development of medical devices in terms of sustainability and reduce the environmental
impact associated with advancements in diabetes technology [14].

In the present analysis, we aimed to assess the accuracy and usability of a novel
CGM system that is the first to feature predominately reusable components with needle-
free insertion.

2. Materials and Methods

In this monocentric, open-label, non-randomized, single-arm clinical study, eight
individuals with type 1 diabetes were equipped with two sensors of the GlucoMen® Day
CGM system (Waveform Cascade, A. Menarini Diagnostics, Florence, Italy; Figure 1)
to wear at home. This novel CGM features a needle-free insertion system containing a
single-use, disposable sensor, the reusable transmitter to be recharged after 14 days of use
(for up to 5 years), the reusable sensor insertion tool (for up to 5 years), the transmitter
charging unit with a USB port, and the GlucoMen® Day App supported by Android and
iOS devices allowing for viewing glucose levels and trends, for calibrating the system, and
for setting alarms.
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Figure 1. The GlucoMen®  Day CGM system. Figure 1. The GlucoMen® Day CGM system.

The sensors were simultaneously inserted into the subcutaneous adipose tissue on the
opposite sides of the lower abdomen and worn for 14 days. Additionally, participants were
requested to calibrate the CGM devices once daily and perform 8–9 finger-prick glucose
tests per day (GlucoMen Day METER, A. Menarini Diagnostics, Florence, Italy).

The primary objective was to assess the device’s accuracy compared to a laboratory
reference instrument (YSI 2300, Yellow Springs, OH, USA). The secondary objectives
included comparing CGM to SMBG and a precision assessment by evaluating the agreement
between the two sensors worn in parallel. Additionally, a usability assessment including a
10-item questionnaire with an ordinal rating scale asking about insertion pain, adhesive
adherence, problems with calibration, reliability of readings, usability of and satisfaction
with the mobile application, device wearability, and overall experience was performed.
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2.1. Meal/Insulin Challenge

On days 4 and 10 of the study, a 5-h meal and insulin challenge was performed at
the research center. Each participant consumed a standardized meal containing 100 g
of carbohydrates and received an increased insulin bolus (the regular bolus insulin dose
plus 20%) subcutaneously. Venous plasma and capillary blood samples were collected
simultaneously every 20 min. Plasma glucose was measured on site with YSI, while SMBG
was performed using the study-specific BG meter.

2.2. Data Analysis

CGM accuracy was assessed by calculating MARD, MAD (mean absolute difference),
Median ARD, Median AD, and CEG for both CGM/YSI and CGM/SMBG matched pairs.
Following a frequently used approach in glucose monitoring system accuracy evaluations,
MARD (and median ARD), as a percentage error, was calculated for glucose above the
100 mg/dL threshold only (i.e., values in the 100- to 400-mg/dL range), while, for the lower
glucose values (ranging from 40–99 mg/dL), it calculated the absolute error as MAD (and
median AD) [15,16]. The lag time between CGM and blood glucose data was determined for
each sensor and applied prior to calculating MARD and MAD. The lag time was calculated
as the shift in time that provided the best CGM/reference correlation, using the Poincarè
method (time shift giving the best R 2 vs. references), and was adjusted for SMBG and YSI
data and for YSI data individually for each sensor. The average lag time was calculated as
the weighted average (based on the respective N of data) of the lag time of all the sensors.
All statistical analyses were performed following the intention-to-treat principle.

3. Results

Eight adult participants (3 females (37.5%), age 41.6 ± 13.3 years, BMI 28.0 ± 6.1 kg/m2,
HbA1c 55.6 ± 12.2 mmol/mol, diabetes duration 13.9 ± 6.5 years) completed the study.
During the study period, on average, 94.4% of the theoretically possible data was collected
and used for analysis after applying the exclusion criteria for data recording (estimated
CGM signal).

3.1. Accuracy CGM vs. YSI

Overall, the 450 CGM/YSI matched pairs available for analysis were generated from
glucose data collected within the range of 40–400 mg/dL. This resulted in a MARD of 9.7
(±9.4)% and a MAD of 20.5 (±18.7) mg/dL, as summarized in Table 1.

Table 1. System accuracy compared to YSI and SMBG.

YSI SMBG

[Glucose] < 100 mg/dL [Glucose] < 100 mg/dL

MAD (±SD), mg/dL 20.5 (+/−18.7) MAD (±SD), mg/dL 16.6 (+/−16.8)
Median AD [IQR 25th/75th], mg/dL 16.5 [9.5–24.0] Median AD [IQR 25th/75th], mg/dL 12.0 [3.0–23.0]

[Glucose] ≥ 100 mg/dL [Glucose] ≥ 100 mg/dL

MARD (±SD), mg/dL 9.7 (+/−9.4) MARD (±SD), mg/dL 13.1 (+/−12.8)
Median ARD [IQR 25th/75th], mg/dL 6.7 [2.6–14.6] Median ARD [IQR 25th/75th], mg/dL 9.8 [3.5–18.6]

By analyzing specific glucose ranges, it was observed that sensor accuracy as assessed
by MARD was better in the 201–400-mg/dL range compared to the 100–200-mg/dL range
(6.1% vs. 10.7%), while MAD was lower in the 40–70-mg/dL range compared to the
71–99-mg/dL range (19.5 vs. 20.9 mg/dL). Furthermore, both MARD and MAD were
lower on day 4 compared to day 10 (7.4% vs. 11.4% and 17.7 vs. 27.3 mg/dL). CEG analysis
showed that 84.9% of CGM/YSI data pairs was in the clinically acceptable zone A, while
the combined percentage for zone A and B was 97.8. CEG is displayed in Figure 2a.
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Figure 2. (a,b) CEG during study phases. (a) CGM compared to venous reference glucose values
during meal challenge at the research center; (b) CGM compared to capillary glucose values at home.

3.2. Accuracy CGM vs. SMBG

During sensor use at the research center and at home, a total of 1957 CGM/SMBG
matched data pairs were collected in the range of 40–400 mg/dL. The overall MARD was
13.1 (±12.8)% for values between 100–400 mg/dL, while the MAD for glucose values
between 40–99 mg/dL was 16.6 (±16.8) mg/dL, as summarized in Table 1. Similar to what
was observed for YSI, the MARD and MAD were lower in the higher glucose range (13.4%
for 100–200 mg/dL vs. 12.2% for 201–400 mg/dL and 20.2 mg/dL for 40–70 mg/dL vs.
15.2 mg/dL for 71–99 mg/dL), while the CEG analysis showed a combined percentage of
98.2 for zones A and B (Figure 2b).

3.3. Sensor Precision

Glucose values recorded by the two sensors worn in parallel were evaluated using
mean ± SD and coefficient of variation (CV) for each participant. An average SD of
11.1 mg/dL and an average CV of 9.7% were observed, demonstrating acceptable agreement
between the two sensors.

3.4. Usability

The participants were requested to complete a questionnaire containing 10 questions
with an ordinal five-scale answer rating. When asked about pain perception at insertion,
50% stated that the procedure was painless and 25% claimed it to be less painful than
finger pricking. The remaining 25% found the insertion as painful as routinely used
SMBG (12.5%) or more painful than finger pricking (12.5%). There was also predominant
satisfaction with sensor adhesive, wearability, calibration procedure, and user-friendliness
of the dedicated mobile application. The results of the usability assessment can be found in
the supplementary appendix (Figure S1).

4. Discussion

High CGM accuracy is crucial for good diabetes management, especially when CGM
readings are used for insulin dosing both alone or in combination with open/closed-loop
systems. Accurate readings are also essential for precise calculations of time in range (TIR),
a parameter that has become increasingly popular for treatment decisions and the overall
assessment of glycemic control. By modeling the 7-point glucose profiles collected in the
DCCT (Diabetes Control and Complications Trial), it was shown that TIR was strongly
associated with development of microalbuminuria and retinopathy progression, suggesting
that it represents a valid surrogate indicator of microvascular complications [17].
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So far, MARD has been commonly used to assess overall CGM accuracy, while MAD
is used to assess accuracy in the low glycemic range. Good CGM performance is generally
assumed in systems with an overall MARD < 10%, although analytical performance cannot
be fully assessed by a single parameter [18]. In the present analysis, the GlucoMen®

Day CGM achieved a MARD of 9.7% compared to YSI during meal/insulin challenges
(with one daily calibration), while compared to SMBG, a MARD of 13.1% was obtained
over the 14-day wear period. The higher MARD calculated for SMBG may result from
lower accuracy associated with glucose meters compared to laboratory reference. This
finding is often seen during assessment of CGM devices at home [19–21]. The results of
the present analysis are comparable to those obtained for other CGM systems such as
the real-time (rt) CGM G6 (Dexcom, San Diego, CA, USA) with a MARD of 9.9% or the
intermittently scanned (is) CGM systems Freestyle Libre 1 and 2 (Abbott, Chicago, IL, USA)
with respective MARDs of 12.0% and 9.2% in adults compared to YSI [22–24].

Furthermore, similar to earlier findings in CGM systems, there was an increase in
MARD/MAD in the low glycemic range while accuracy was higher in hyperglycemic
ranges [25–27]. Since this effect was more pronounced during the meal challenges in our
analysis, it can be assumed that the assessed CGM system is more accurate following post-
prandial glucose excursions. Interestingly, MAD was slightly lower in the 40–70-mg/dL
range compared to the 71–99-mg/dL range, suggesting an increased or at least stable
accuracy in relevant hypoglycemia, whereas other CGM systems show an impaired ac-
curacy when BG levels drop below 70 mg/dL [22,25,27]. Given the fact that most CGM
systems are prescribed due to impaired hypoglycemia awareness, CGM accuracy in hypo-
glycemia is essential for giving a timely warning and taking adequate countermeasures to
avoid hypoglycemia.

In addition to MARD/MAD as measures of numerical accuracy, clinical accuracy, as
expressed by CEG, should also be evaluated to support the sensor performance data and
should be favored over Clarke Error Grid or Continuous Error Grid analysis [15]. In our
study, the CEG analysis showed 98% of all data pairs in the clinically relevant zones A and
B for both reference methods, thereby verifying the clinical accuracy of GlucoMen® Day.
For comparison, the CEG analysis of Freestyle Libre 1 and 2 showed a respective 99.7% and
99.9% of matched pairs in zones A and B [23–25].

Advancements in diabetes technology have so far drastically decreased the burden
for people with diabetes. The reduction of painful procedures associated with diabetes
management improved quality of life and facilitated good glycemic control [28–30]. The
replacement of SMBG and introduction of CGM in pediatric patients with diabetes was a
crucial advance in reducing finger pricking. However, especially in young children, sensor
insertions are reported to be one of several barriers of this technology regardless of the
significant advances of CGM use for children and parents in diabetes management [31].
Further reduction of painful procedures may lead to increased adherence in CGM users,
which is known to be age-dependent and especially poor in adolescents [32]. In the present
analysis, the CGM system with needle-free insertion intended for ages 6 and above resulted
in high user satisfaction in the majority of users claiming the insertion procedure to be
painless or less painful than finger pricking. An important innovative feature of GlucoMen®

Day CGM is reusability of most components, resulting in reduced environmental impact.
The wish for reducing the ecological footprint of diabetes technology is frequently expressed
by users and patient organizations, especially in the face of the present climate crisis.
Common CGM insertion systems often include bulky, disposable applicators that contribute
to a substantial increase in plastic and potentially hazardous medical waste accompanied
by a significant amount of packaging waste. This represents a rising problem worldwide
and is fueled by the, per se, favorable, increasing availability of CGM. Looking at data
from the DPV (Diabetes Patienten Verlaufsdokumentation) and the T1D exchange registry,
CGM use in type 1 diabetes increased from 6% in 2011 to 38% in 2018 [33]. In absolute
numbers, CGM use is presumably even higher due to its prevalence in type 2 diabetes
and is expected to grow due to increasing reimbursement by healthcare providers. The
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growing ecological burden associated with diabetes technology is already acknowledged
by the scientific community and is subject to ongoing discussion [14,34]. GlucoMen®

Day CGM includes a rechargeable transmitter and a reusable needle-free sensor insertion
applicator, both of which can be used for up to 5 years. Due to reduced insertion pain
and reusable components, this and similar systems can help promote sustainable diabetes
technology and stimulate other positive developments in this sector, such as biodegradable
components. Therefore, regulatory bodies should aim to establish rules for design and
development of diabetes technology with reusable components that meet medical needs
and are environmentally friendly. Additionally, waste reduction should be accounted for in
cost-effectiveness calculations and reimbursement strategies for such products.

5. Conclusions

The present analysis suggests that the GlucoMen® Day CGM is a user- and environ-
mentally friendly system that meets the current clinical requirements for state-of-the-art
CGMs. The reduced ecological impact of this needle-free system has to be emphasized and
may support further advances in sustainable diabetes technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12020106/s1. Figure S1: Usability Questionnaire Results
(N = 8).
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