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S1. Basic introduction to the ML models used in this study

a. Support Vector Machine (SVM)



SVM predicts new patterns based on the training data as the goal of learning a maximum-margin
hyperplane in the feature space [17]. The maximum hyperplane is formed when the decision
boundary has the maximal distance from any training data. During the training step, input variables
are mapped from a low-dimension to a high-dimension feature space via kernel functions. The
SVM attempts to determine a set of linear or nonlinear (e.g., polynomial or sigmoidal) objective
functions that have a maximum deviation of ¢ with respect to the actual values in the training

dataset.

b. Gaussian Process Regression (GPR)

Gaussian process regression (GPR) applies a stochastic process to collect random variables, any
finite number of which have a joint Gaussian distribution [18]. GPR organizes data in a manner,
based on a non-parametric approach, such that any given subset of the organized data invariably

follows a multivariate Gaussian distribution.

c. Random Forest (RF)

Random Forest, a collection of tree predictors, is based on the integration of two machine learning
techniques: bagging and random feature selection [19, 20]. During the training process, a series of
“deep” unpruned decision trees are grown, thus dividing the entire training dataset into multiple,
uncorrelated splits. For any given input, the RF model collects predictions from all of its

constituent trees and subsequently averages them to yield the final prediction.

d. K-nearest Neighbor Instance-Based Learner (IBK)

K-nearest neighbor instance-based learning (IBK), a lazy learner, collects the training data as
instances and find the closest k nearest training records via distance measurements [21]. In order

to compute the testing records, the model finds the instances which have the most similar input



variables to the testing data in the collection and returns outputs of the instances as the predicted
value for testing data [22]. For multiple attributes, the instance is classified by a majority vote of
the k nearest neighbors. The weights of each instance are weighted by the inverse of the attribute
distance from the testing data, which allows the model to modify the strength of the votes via the
distance from testing data [23]. This method was used because it has several advantages [21]: (1)
simplicity- a rigorous analysis can be used in the model; (2) robust model- noise and irrelevant
attributes can be tolerated; (3) relaxed concept bias- piecewise linear approximation of concepts
are learned; (4) low updating cost- saves the new instance without additional computation. The
only limitation of this model is that the prediction accuracy depends on the ability to store instances.

e. Ensemble model: Additive Regression-Support Vector Machine (AR-SVM)

The additive regression (AR) technique employs the gradient boosting approach to improve the
prediction performance of the SVM. In the first step, the standalone SVM model is employed,
whilst using the entire database, with all input and output variables, for construction of “deep”
trees. In the second step, residuals of the predictions (i.e., the differences between actual and SVM-
predicted values) are used to construct a second set of trees; the objective, here, is to train the
second set of trees to fit the residuals such that the overall training error is reduced. This tandem
between the aforementioned pair of steps—of performing predictions using the SVM-model, and
subsequently refining the prediction performance by fitting the residuals—is repeated over several

iterations until convergence is reached, that is, reduction in training error is < 107 units for 3

successive iterations. In the last step, the predictions of all trees within the ensemble are averaged

to obtain the final predictions.
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Figure S1. The Newport femtosecond laser microfabrication system, an FBG structure, and the

corresponding reflection spectrum. (a) The newly purchased fs laser microfabrication system in
the Missouri S&T Blast Lab (Emerson Electric. Co. Hall, room G-18). (b) A newly made FBG
structure observed under a microscope with annotated fiber structures. The fabricated fiber Bragg
grating is located within the fiber core. The scale bar is 20 um. (c¢) The reflection spectrum

collected using the fabricated FBG structure sample in (b).

S2. Brief steps of FBG sensor fabrication using the femtosecond laser microfabrication

system

a. Sample installation: Fabrication of the FBG sensor starts with the immobilization of a single-
mode optical fiber mounted on top of a microscopic slide, which is then fixed to the micro-
fabrication stage. Next, a couple of drops of RI matching gel are applied atop the optical fiber.
Next, another slide is quickly placed on top of the fiber, so that a sandwich structure is formed,

with all parts affixed to the stage.

b. Optical fiber alignment and focal plane adjustment: To obtain and retain a clear view of the
fiber core during fabrication of the FBG, a whole region of interest of the fiber needs to be aligned
perpendicular to the laser path using the X/Y stages and the rotating and tilting micrometers.

Meanwhile, the focal plane of the laser-guiding lens must be adjusted such that the fiber core



boundary is blurred; the boundary, however, must become apparent again when moving the z stage

up or down by 5 um.

c. Parameter designations: The featured wavelength and bandwidth of the fabricated FBG can be
changed by controlling the repetition rate of the fs laser and the speed of the moving stage. Here,

the wavelength, bandwidth, and reflectivity of the FBG are determined by:
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where Veans 1S the moving speed of the laser head along the Y-axis, m is the order of the FBG, f; is
the fs laser pulse repetition frequency, L is the length of FBG, and 4n is the RI perturbation inside
the optical fiber core. From Equations (S2) and (S3), we can calculate that the longer the length of
the FBG, narrower the bandwidth and the higher the reflectivity. Hence, the FBG bandwidth can
be reduced by decreasing 4n or using a higher order of m. In addition, the side lobes of the FBG
can be suppressed by making an apodized FBG instead of the regular FBG. The apodized profile

can also be modified by changing the laser power.

d. Linear single-line raster. In the final step, the laser writing position along the fiber core is

progressively changed until a sufficient number of structural units are fabricated for an FBG.

A microscopic image of a single FBG structure, made along an optical fiber core using the

femtoFBG, is shown in Figure 2b. The boundary between the core and cladding can be observed.



The dark line along the center of the core is the FBG pattern that was fabricated. This result
demonstrates our ability to fabricate an FBG—using the state-of-the-art microfabrication system
in the Missouri S&T Blast Lab—without compromising the fiber polymer cladding. Through our
experiments, we have also finalized the “optimal” set of parameters for fabrication: stage
translation speed = 95 um/s; repetition rate of the fs laser = 61 Hz; and, the RI profile set to a
Gaussian distribution. The reflection spectrum obtained from the FBG is shown in Figure 2¢. The
figure exemplifies a high-fidelity result that can only be obtained if the FBG structure is accurate.
The peak observed at 1558 nm is a clear sign that the FBG is fully functional; notably, its full-
width-half-maximum (FWHM) bandwidth is 2.4 nm and the signal-to-noise ratio is 18 dB, which

also corroborate the FBG’s reasonable performance.

Figure S2 Picture of a single FBG embedded smart helmet prototype. Red arrow shows the location

of the FBG sensor, which is fabricated with a length of 0.5 cm.



Incident
Light
Broadband A

Light Source Optical 1 Single
fiber 1] Incident Light FBG

Circulator

3
FBG
Interrogator

Reflected
Light

FBG
Data transfer Embedded
via USB Helmet
Cable (wired) 1. Wired to wireless communication;
v 2. Miniaturization and Integration.
r——=—=—==-=-=-===== -
Incident
Light
Broadband
Light Source Optical 1 Incident Single
fiber 1 Light FBG
Sensor

Circulator
—
Reflected
FBG Light
Interrogator |
I o o ) (o e o ) i i
& Data transfer FBG
via WiFi Embedded
(wireless) Helmet

Figure S3 Schematics of the wired (upper) and wireless (lower) interrogation methods.
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Figure S4. Graphs of predicted magnitude (bowling ball initial release height in cm) versus
measured magnitude derived from four ML models. The ML models employed include: (a)
Support Vector Machine (SVM), (b) Multilayer Perceptron—Artificial Neural Network (MLP-
ANN), (c¢) Random Forest (RF), (d) IBK. The plotted data represent 25% of the parent Database
that were not previously included in the training process of the ML models. The dashed line

represents the line of ideality and the solid lines represent +10% boundaries.
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Figure S5. Graphs of predicted direction versus measured direction derived from four ML models.
The ML models employed include: (a) Support Vector Machine (SVM), (b) Multilayer
Perceptron—Aurtificial Neural Network (MLP-ANN), (c) Random Forest (RF), (d) IBK. The
plotted data represent 25% of the parent Database that were not previously included in the training
process of the ML models. The dashed line represents the line of ideality and the solid lines

represent +10% boundaries.
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Figure S6. Graphs of predicted impact latitude (position) versus measured latitude derived from
four ML models. The ML models employed include: (a) Support Vector Machine (SVM), (b)
Multilayer Perceptron—Artificial Neural Network (MLP-ANN), (¢) Random Forest (RF), (d) IBK.
The plotted data represent 25% of the parent Database that were not previously included in the
training process of the ML models. The dashed line represents the line of ideality and the solid

lines represent +10% boundaries.

Measured Position (Unitless)

Measured Position (Unitless)




Table S1. Prediction performance of ML models on impact magnitude based on the
test set (i.e., 25% of the parent database). Five statistical parameters (i.e. R, R?,
MAE, MAPE, and RMSE) and the composite performance index (CPI) are shown.

R R? MAE MAPE RMSE CPI
ML Model
Unitless  Unitless cm % cm Unitless
SVM 0.891 0.793 3.492 8.991 4.730 0.000
RF 0.799 0.638 5.484 14.549 6.692 0.768
MLP-ANN 0.729 0.532 5.625 14.440 7.364 0.996
IBK 0.782 0.611 4.780 11.814 6.561 0.635

Table S2. Prediction performance of ML models on impact direction based on the
test set (i.e., 25% of the parent Database). Five statistical parameters (i.e. R, R?,
MAE, MAPE, and RMSE) and the composite performance index (CPI) are shown.

R R? MAE MAPE RMSE CPI
ML Model
Unitless Unitless Degree % degree  Unitless
SVM 0.960 0.921 21.415 24554  30.781 0.282
RF 0.948 0.899 26.528  33.883  39.360 0.652
MLP-ANN 0918 0.843 25.811 25.888 43.114 0.938

IBK 0.952 0.905 7.492 4.670 32.586 0.108




Table S3. Prediction performance of ML models on impact latitude based on the
test set (i.e., 25% of the parent Database). Five statistical parameters (i.e. R, R?,
MAE, MAPE, and RMSE) and the composite performance index (CPI) are shown.

R R? MAE MAPE RMSE CPI
ML Model
Unitless Unitless Unitless % Unitless  Unitless
SVM 0.924 0.855 0.323 10.853 0.440 0.175
RF 0.864 0.746 0.481 16.445 0.613 0.887

MLP-ANN 0.842 0.708 0.440 14.169 0.621 0.926

IBK 0.915 0.837 0.204 6.373 0.454 0.061
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Figure S7 Graphs of predicted impact magnitude versus measured magnitude from six boosted
ML models. The ML models employed include: (a) SVM+, (b) S-SVM, (c¢) S-SVM+, (d) IBK+,
(e) S-IBK, (f) S-IBK+. The plotted data represent 25% of the parent database that were not
previously included in the training process of the ML models. The dashed line represents the line

of ideality and the solid lines represent +£10% boundaries.
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Figure S8 Graphs of predicted impact direction versus measured direction from six boosted ML
models. The ML models employed include: (a) SVM+, (b) S-SVM, (c) S-SVM+, (d) IBK+, (e) S-
IBK, (f) S-IBK+. The plotted data represent 25% of the parent database that were not previously

included in the training process of the ML models. The dashed line represents the line of ideality
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Figure S9 Graphs of predicted impact latitude versus measured latitude from six boosted ML
models. The ML models employed include: (a) SVM+, (b) S-SVM, (¢) S-SVM+, (d) IBK+, (e) S-
IBK, (f) S-IBK+. The plotted data represent 25% of the parent database that were not previously

included in the training process of the ML models. The dashed line represents the line of ideality
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Table S4. Prediction performance of boosted ML models on impact magnitude
based on the test set (i.e., 25% of the parent Database). Five statistical parameters
(i.e. R, R?, MAE, MAPE, and RMSE) and the composite performance index (CPI)

are shown.
R R? MAE MAPE RMSE CPI
ML Model
Unitless Unitless cm % cm Unitless

SVM 0.891 0.793 3.492 8.991 4.730 0.162
SVM+ 0.876 0.767 3.240 8.366 4.940 0.175
S-SVM 0.897 0.805 3.337 8.610 4.552 0.086
S-SVM+ 0.889 0.790 2.980 7.635 4.680 0.042
IBK 0.782 0.611 4780 11.814 6.561 0.981
IBK+ 0.776 0.602 4560  11.648 6.403 0.952
S-IBK 0.786 0.618 4720  11.600 6.492 0.944
S-IBK+ 0.782 0.611 4540  11.570 6.332 0.921

Table S5. Prediction performance of boosted ML models on impact direction based
on the test set (i.e., 25% of the parent Database). Five statistical parameters (i.e. R,
R?, MAE, MAPE, and RMSE) and the composite performance index (CPI) are

shown.
R R? MAE MAPE RMSE CPI
ML Model
Unitless Unitless degree % degree  Unitless
SVM 0.960 0.921 21415 24.554  30.781 0.801
SVM+ 0.954 0910  20.280 24.150  32.367 0.939
S-SVM 0.963 0.928 20.302  23.200  29.606 0.664
S-SVM+ 0.956 0.913 19.920 23.154  32.087 0.886
IBK 0.952 0.905 7.492 4.670  32.586 0.654
IBK+ 0.955 0.912 6.600 4.423 31.350 0.537
S-IBK 0.971 0.942 3.960 3.536  25.385 0.000
S-IBK+ 0.971 0.942 3.960 3.536 25.385 0.000




Table S6. Prediction performance of boosted ML models on impact latitude based
on the test set (i.e., 25% of the parent Database). Five statistical parameters (i.e. R,
R?, MAE, MAPE, and RMSE) and the composite performance index (CPI) are
shown.

R R? MAE  MAPE RMSE CPI
ML Model
Unitless Unitless Unitless % Unitless Unitless

SVM 0.924 0.855 0.323 10.853  0.440 0.814
SVM+ 0.901 7.960 0.228 7.960 0.486 0.647
S-SVM 0.934 0.871 0.292 9.750 0.414 0.599
S-SVM+ 0.917 0.842 0.192 6.633 0.447 0.540
IBK 0.915 0.837 0.204 6.373 0.454 0.579
IBK+ 0.909 0.827 0.184 6.453 0.473 0.645
S-IBK 0.927 0.859 0.140 4.600 0.424 0.270

S-IBK+ 0.927 0.859 0.140 4.600 0.424 0.270
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Figure S10 Graphs of predicted impact magnitude versus measured magnitude for the new training
dataset with an 80 ms time frame. The ML models employed include: (a) SVM, (b) IBK, (c) S-
SVMH+, (d) S-IBK+. The plotted data represent 25% of the parent database that were not previously

included in the training process of the ML models. The dashed line represents the line of ideality
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Figure S11 Graphs of predicted impact direction versus measured direction for the new training
dataset with an 80 ms time frame. The ML models employed include: (a) SVM, (b) IBK, (c) S-
SVMH+, (d) S-IBK+. The plotted data represent 25% of the parent database that were not previously
included in the training process of the ML models. The dashed line represents the line of ideality

and the solid lines represent +10% boundaries.
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Figure S12 Graphs of predicted impact latitude versus measured latitude for the new training
dataset with an 80 ms time frame. The ML models employed include: (a) SVM, (b) IBK, (c) S-
SVM+, (d) S-IBK+. The plotted data represent 25% of the parent database that were not previously
included in the training process of the ML models. The dashed line represents the line of ideality

and the solid lines represent +10% boundaries.



Table S7. Prediction performance on impact magnitude with the old (200 ms) and new (80 ms)
training dataset, measured based the test set (i.e., 25% of the parent database). Five statistical

parameters (i.e. R, R, MAE, MAPE, and RMSE) and the composite performance index (CPI)

are shown.

R R? MAE MAPE RMSE CPI

ML Model Unitless  Unitless cm % cm Unitless
SVM 0.891 0.793 3.492 8.991 4.730 0.120
S-SVM+ 0.889 0.790 2.980 7.635 4.680 0.000
SVM (80 ms) 0.881 0.776 3.540 9.140 4.811 0.179
S-SVM+ (80 ms) 0.868 0.754 3.420 8.899 5.030 0.225
IBK 0.782 0.611 4.780 11.814 6.561 0.999
S-IBK+ 0.782 0.611 4.540 11.570 6.332 0.937
IBK (80 ms) 0.845 0.714 4.283 10.740 5.535 0.551
S-IBK+ (80 ms) 0.809 0.655 4.360 10.917 6.033 0.753

Table S8. Prediction performance on impact direction with the old (200 ms) and new (80 ms)
training dataset, measured based on the test set (i.e., 25% of the parent database). Five
statistical parameters (i.e. R, R?, MAE, MAPE, and RMSE) and the composite performance
index (CPI) are shown.

ML Model R 1.{2 MAE MAPE RMSE (?PI
Unitless  Unitless degree % degree Unitless
SVM 0.960 0.921 21.415 24.554 30.781 0.845
S-SVM+ 0.956 0913 19.920 23.154 32.087 0913
SVM (80 ms) 0.971 0.942 17.747 18.920 26.726 0.445
S-SVM+ (80 ms) 0.972 0.945 13.440 14.492 25.456 0.289
IBK 0.952 0.905 7.492 4.670 32.586 0.656
S-IBK+ 0.971 0.942 3.960 3.536 25.385 0.082
IBK (80 ms) 0.960 0.921 7.930 5.870 29.483 0.448

S-IBK+ (80 ms) 0.973 0.948 S5.880 4.846 24.075 0.037




Table S9. Prediction performance on impact latitude with the old (200 ms) and new (80 ms)
training dataset, measured based on the test set (i.e., 25% of the parent database). Five
statistical parameters (i.e. R, R?, MAE, MAPE, and RMSE) and the composite performance
index (CPI) are shown.

MMl K K MAE  MAPE RMSE CF
Unitless Unitless Unitless % Unitless Unitless
SVM 0.924 0.855 0.323 10.853 0.440 0.839
S-SVM+ 0.917 0.842 0.192 6.633 0.447 0.674
SVM (80 ms) 0.924 0.854 0.322 10.760 0.440 0.839
S-SVM+ (80 ms) 0.927 0.860 0.176 5.960 0.420 0.424
IBK 0.915 0.837 0.204 6.373 0.454 0.728
S-IBK+ 0.927 0.859 0.140 4.600 0.424 0.361
IBK (80 ms) 0.943 0.889 0.199 6.260 0.373 0.118

S-IBK+ (80 ms) 0.928 0.862 0.168 5.193 0.420 0.375
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Figure S13 Transient oscillatory signals generated by nine different impact directions on the
wireless smart helmet, conducted using the mid-level impact energy, 10.82 J. Full view of the first
200 ms transient signals is shown on the left. Expanded view of the red box is shown to the right
illustrating the first 50 ms signals. Black arrows and lines indicate the signal patterns of peaks-

and-valleys.
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Figure S14 Graphs of predicted impact magnitudes versus measured magnitudes for the wireless
sensing datasets derived from eight ML models. The ML models employed include: (a) IBK, (b)
SVM, (c) S-IBK, (d) S-SVM, (e) IBK+, (f) SVM+, (g) S-IBK+, (h) S-SVM+. The plotted data
represent 25% of the parent database that were not previously included in the training process of
the ML models. The dashed line represents the line of ideality and the solid lines represent £10%

boundaries.
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Figure S15 Graphs of predicted impact directions versus measured directions for the wireless
sensing datasets derived from eight ML models. The ML models employed include: (a) IBK, (b)
SVM, (c) S-IBK, (d) S-SVM, (e) IBK+, (f) SVMH+, (g) S-IBK+, (h) S-SVM+. The plotted data
represent 25% of the parent database that were not previously included in the training process of
the ML models. The dashed line represents the line of ideality and the solid lines represent +10%

boundaries.



Table S10. Prediction performance on impact magnitude for the wireless sensing datasets,
measured based the test set (i.e., 25% of the parent database). Five statistical parameters (i.e.,
R, R?, MAE, MAPE, and RMSE) and the composite performance index (CPI) are shown. The
results of the best performing ML models are highlighted in bold.

R R2 MAE MAPE RMSE CPI

ML Model Unitless Unitless cm % cm Unitless
IBK 0.751 0.564 6.667 17.107 9.629 0.785
SVM 0.862 0.743 4.676 11.789 7.197 0.144
S-IBK 0.762 0.581 6.193 15.832 9.385 0.687
S-SVM 0.864 0.747 4.632 11.641 7.152 0.130
IBK+ 0.699 0.488 6.897 17.816 10.828 1.000
SVM+ 0.838 0.701 4.138 9.655 7.878 0.130
S-IBK+ 0.711 0.506 6.552 17.126 10.667 0.927
S-SVM+ 0.852 0.726 3.793 8.506 7.656 0.071

Table S11. Prediction performance on impact direction for the wireless sensing datasets,
measured based on impact directions. Five statistical parameters (i.e., R, R?, MAE, MAPE,
and RMSE) and the composite performance index (CPI) are shown. The results of the best
performing ML models are highlighted in bold.

ML Model R RZ MAE MAPE RMSE CPI
Unitless Unitless degree % degree Unitless

IBK 0.970 0.941 8.016 5.971 19.908 0.579
SVM 0.973 0.947 13.622 113.205 18.439 0.626
S-IBK 0.970 0.941 8.013 5.972 19.907 0.578
S-SVM 0.974 0.948 13.702 113.624 18.376 0.609
IBK+ 0.973 0.946 6.207 3.678 19.298 0.340
SVM+ 0.977 0.955 12.379 108.912 20.795 0.556
S-IBK+ 0.973 0.946 6.207 3.678 19.298 0.340

S-SVM+ 0.973 0.947 11.345 108.481 18.421 0.554




