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Abstract: Au nanoparticles were decorated on the surface of Co-doped ZnO with a certain ratio of
Co2+/Co3+ to obtain a novel semiconductor-metal composite. The optimal substrate, designated
as Co400-ZnO/Au, is beneficial to the promotion of separation efficiency of electron and hole in a
semiconductor excited under visible laser exposure, which the enhances localized surface plasmon
resonance (LSPR) of the Au nanoparticles. As an interesting finding, during Co doping, quantum dots
of ZnO are generated, which strengthen the strong semiconductor metal interaction (SSSMI) effect.
Eventually, the synergistic effect effectively advances the surface enhancement Raman scattering
(SERS) performance of Co400-ZnO/Au composite. The enhancement mechanism is addressed in-
depth by morphologic characterization, UV-visible, X-ray diffraction, photoluminescence, X-ray
photoelectron spectroscopy, density functional theory, and finite difference time domain (FDTD)
simulations. By using Co400-ZnO/Au, SERS detection of Rhodamine 6G presents a limit of detection
(LOD) of 1 × 10−9 M. As a real application, the Co400-ZnO/Au-based SERS method is utilized to
inspect tyramine in beer and the detectable concentration of 1 × 10−8 M is achieved. In this work,
the doping strategy is expected to realize a quantum effect, triggering a SSSMI effect for developing
promising SERS substrates in future.

Keywords: Co-ZnO/Au; synergistic quantum effect; Raman enhancement; tyramine; Rhodamine 6G

1. Introduction

The surface-enhanced Raman scattering (SERS) technique has superior sensitivity and
affords the molecular fingerprint information of a target sample adsorbed or approaching
on the surfaces of noble nanostructures (Ag, Au, and Cu), which has been widely explored
in the fields of biological, pharmaceutical, contaminant, and toxin detections [1,2]. Two
acceptable dominant enhancement mechanisms are the charge transfer (CT) process [3,4]
and the localized surface plasmon resonance (LSPR) field, which is connection with incident
laser lines [5,6]. In the literature, the greatest enhancement factor that has been reported
is 1014, due to specific molecules located within the gaps of neighbor Ag nanoparticles,
namely LSPR hot spots [7]. Nevertheless, metallic nanoparticles expose some shortcomings
such as instability, expensive cost, and limited excitation wavelength [8].

As an alternative, more attention has been focused on the possibility of semiconductor
materials as SERS substrates, owing to their chemical and mechanical stabilities, such
as being less-poisonousness, having high photo-efficiency, and better resistance to the
environment [9]. However, most semiconductors with nanostructures only contribute an
enhancement factor for Raman scattering below 105 [10,11]. For further improving the SERS
feature of semiconductors, morphology optimization, element doping, and the composites
with noble metals were investigated [12–16]. Amongst these, the metal and semiconductor
composites exhibit the best merits because of the strong semiconductor metal interaction
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(SSMI) effect. Therefore, further systematical exploration of enhancement mechanisms for
composites is important to design a promising SERS substrate for actual detection.

In this work, considering the similar ionic radius between Co2+ and Zn2+ ions, Co
element with an optimized ratio of Co2+/Co3+ was doped in ZnO (designated as Co-ZnO),
which achieved broad adsorption of the visible spectrum based on the Dopant effect [17,18].
Interestingly, when Co was doped into ZnO, quantum dots of ZnO were generated. After
gold nanoparticles (Au NPs) were decorated on the surface of Co-ZnO (designated as
Co-ZnO/Au), the composite showed strengthened a strong semiconductor and metal
interaction (SSSMI) effect. Additionally, electron immigration increased in the interface
of the metal and semiconductor, which resulted in remarkable enhancement of the LSPR
effect over the whole composite. Density functional theory (DFT) and finite difference time
domain (FDTD) simulations were conducted to understand the quantum-effect-advanced
synergistic enhancement principle. As a real application case, by using optimal Co-ZnO/Au
substrate, SERS detection of tyramine (Tyr), a kind of bioamines produced in the food-
digestion process, was performed. It exhibited high detection sensitivities, with the limit of
detection being around 1 × 10−8 mol/L.

2. Experimental Section
2.1. Reagents and Materials

Sodium hydroxide (NaOH), cobalt(II) acetate (C4H6CoO4), ammonium bicarbonate
(NH4HCO3), tyramine (≥98%), and ZnNO3·6H2O were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Chloroauric acid (HAuCl4·4H2O) was bought from Sinopharm
Chemical Reagent (Shanghai, China). Rhodamine 6G (R6G) was obtained from Adamas
Reagent (Shanghai, China). All chemicals and reagents were of analytical grade. Ultrapure
water (18.2 MΩ cm) was used throughout all experiments. Glassware was embathed
in aqua regia and then thoroughly rinsed with ultrapure water. Canned beer (Tsingtao,
Qingdao, China) was obtained from a supermarket.

2.2. Synthesis of ZnO/Au

First, 0.2 g zinc acetate was dispersed in 70 mL ultrapure water by ultrasonic wave for
30 min. A total of 10 mL of NaOH solution (2 mol/L) was added to the zinc acetate solution
under constant agitation. The above solution was transferred to a reaction kettle and then
put into an oven for the reaction (160 ◦C, 20 h). After natural cooling to room temperature,
the sample was washed several times with ultrapure water to remove residual ions and
molecules, and dried under a 70◦ vacuum. About 0.015 g of ZnO was dissolved in 25 mL
of ultrapure water and heated to boiling under stirring. Finally, 1 mL of 10−3 M HAuCl4
solution was injected for 30 min under agitation until the solution turned purplish-red to
obtain ZnO/Au.

2.3. Synthesis of Co-ZnO

Co-doped ZnO was synthesized as follows: following standard procedure, ZnNO3·6H2O
(0.40 g) and C4H6CoO4 with different amounts including 0, 40, 120, 200, 280, 400, 480, and
600 mg were dissolved in 10 mL ultrapure water at room temperature. After 8 mL NaOH
(0.5 mol L−1) was added, the suspension was stirred for 40 min, after which 2.4 g NH4HCO3
was added and stirred until it completely dissolved. The suspension was then dried at 60 ◦C for
10 h. The product was calcined in a corundum crucible with a cover at 500 ◦C for 2 h, followed
by rapid cooling to room temperature to yield the Co-ZnO product. The obtained products were,
respectively, marked as Co40-ZnO, Co120-ZnO, Co200-ZnO, Co280-ZnO, Co400-ZnO, Co480-ZnO,
and Co600-ZnO.

2.4. Synthesis of Co400-ZnO/Au

A total of 0. 02 g of Co400-ZnO was dispersed in 25 mL ultrapure water, and heated
to a boiling while constantly stirring. Then, 5 mL of 5% HAuCl4 solution was injected
under stirring for 30 min until the solution turned brown-red to obtain Co400-ZnO/Au
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successfully. After cooling to room temperature naturally, Co400-ZnO/Au was washed
with ultrapure water several times to remove residual ions and molecules, and dried at
70 ◦C under vacuum.

2.5. SERS Measurement

For SERS detection, the analyte solution was mixed with Co400-ZnO/Au nanocompos-
ite suspension by a volume ratio of 1:2. Raman test was conducted by using 633 nm laser
with power at 5 mW and a collection time of 3 s with 2 accumulations.

2.6. Instrumentation

UV-vis spectra were collected by a UV-vis spectrophotometer (SHIMADZU, UV-1800,
Kyoto, Japan). The morphologies of SERS substrates were taken by a JEM-2100EXII trans-
mission electron microscope (JEOL Co., Ltd., Tokyo, Japan), operating at 200 kV. The
high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)
images and elemental mapping of SERS substrates were acquired on a Tecnai G2 S-Twin F20
field-emission transmission electron microscope (FEI, Hillsboro, OR, USA). X-ray photo-
electron spectroscopy (XPS) (model PHI 5000, Versa Probe, NEC Corporation, Tokyo, Japan)
was performed to identify the chemical composition of Co-ZnO/Au. X-ray diffraction
(XRD) analysis was conducted on D/Max-2000 VPC (RIGAKU, Tokyo, Japan). Raman
experiment was performed by using a confocal laser Raman system (Super LabRamII, Jobin
Yvon, Longjumeau, France). HPLC-MS results were collected by a Q EXACTIVE PLUS
HPLC-MS spectrometer (Thermo Scientific, Waltham, MA, USA).

2.7. Calculation Methods

The density of states (DOS) of ZnO and Co-doped ZnO were calculated by first-
principle calculation based on density functional theory (DFT). The pseudopotentials and
the starting DFT calculation were performed based on the Perdew–Burke–Ernzerhof (PBE)
exchange-correlation functional. The plane-wave cutoff energy was set to 340 eV, and
the Monkhorst-Pack method with a k-points mesh of 4 × 4 × 2 was used to sample the
Brillouin-zone.

The electric field strengths of ZnO, Co400-ZnO, and Co-ZnO/Au were calculated
by using a finite difference time domain (FDTD) method. The grid precision for FDTD
simulation was 2 nm in the X, Y, and Z directions, and the time step was set at 200 fs.
Periodic boundary conditions were applied in both the X and Y directions, while perfect
matching layer boundary conditions in the Z direction were conducted. The plane-wave
source propagated along the z-axis at incident wavelengths including 532, 633, and 785 nm
on the nanoparticles.

3. Results and Discussion
3.1. Characterization of Co-ZnO

The ionic radius of Co2+ (0.72 Å) is similar to that of Zn2+ (0.74 Å). Therefore, Co
element can be easily doped into a ZnO lattice to substitute the position of Zn2+ ions,
which avoids lattice mismatch to an extent [19,20]. In addition, the rich electronic states
of Co element benefit the optimization of the magnetic, electrical, and optical properties
of ZnO [21]. Consequently, the elevated impurity level caused by Co dopant shortens
the energy gap of ZnO and simultaneously improves the charge-carrier separation due
to creating many electron traps [22]. Herein, first, we tuned the amount of Co element in
ZnO to improve SERS performance of the resultant composite. As depicted in Figure S1 of
Supplementary Material, with an increasing amount of Co dopant, the color of composite
ZnO materials changes from white to dark greenish. This is due to the high spin state Co2+

3d7 (4F) involving d–d transition for oxygen coordination in tetrahedral symmetry [23,24].
In Figure 1, the XRD patterns of different Co-ZnO substrates display their wurtzite struc-
tures in good agreement with the JCPDS 36-1451. There being no obvious change in
diffraction peaks of Co-ZnO substrates indicates that the amorphous Co oxides have a
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slight effect on the crystal structure of ZnO [25]. Clearly, in Figure S2 and Table S1, the
crystallite size (D), micro strain (ε), and dislocation density (ρ) of Co doping inhibiting
crystallite growth of ZnO results in a size decrease in Co-ZnO composite, which shows a
connection between their differences in ionic radii and valence states [26,27]. The small
size of Co-ZnO increases the surface area and boundaries, which accelerates the carrier
mobility [28,29]. Additionally, elevating the amount of Co doped in ZnO initially increases
the strain, resulting in alteration of the lattice constant of the composite, which is proven
by the visualization of the broadened XRD peaks and slight position shifts [30,31].
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XPS analysis was performed to investigate the elemental composition and chemical
state. In the survey spectrum of ZnO (Figure S3), two significant peaks, centered at 1021.18
and 1044.08 eV, are attributed to the binding energies of core-level Zn 2p3/2 and Zn 2p1/2,
respectively. The fitted O 1s spectrum in the ZnO matrix resolves into both peaks at 530.28
and 531.28 eV, which are, respectively, ascribed to O2- ions associated with Zn2+ ions and
O2− ions in oxygen-deficient regions [32]. Obviously, in Figure S4 and Tables S2 and S3,
for Co400-ZnO, after Co doping, the binding energy position and intensity changes in Zn2+

and O arise from the alternation of electron density around Zn2+ [33,34].
UV-vis diffuse absorption spectra provided the evidence for the substitution of Co in

the ZnO lattice. In Figure S5, ZnO, when alone, showed an adsorption band at 392 nm. In
the case of Co-ZnO, the red shift of the band edge (marked with the arrow in Figure S6)
indicates the decrease in band gap energy [35]. Detailed information involving the band
gap (Eg) was estimated by Tauc formula, [36] and the optical absorption edge (nm) of
pure ZnO and Co-ZnO samples is tabulated in Table S4. Co400-ZnO presents the highest
absorption edge at 479 nm and the broadest visible absorption region, which peaked at
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567, 612, and 654 nm, corresponding to the d–d transitions of the Co ions, [18] showing
that visible light excitation in the solar spectrum could generate more electron–hole pairs
within Co400-ZnO [37,38].

In Figure S7 and Table S4, compared with ZnO, the CT process between d electrons of
the Co element and the conduction band (CB) or valence band (VB) of ZnO decreases the
band gap for Co-ZnO composites, and Co400-ZnO has the lowest band gap. The diagram
of VB-XPS spectra for the band structure evolution of Co-doped ZnO samples are given in
Figures S8 and S9. The ease degree of electrons jumping from the VB to the CB is closely
dependent on the band gap width [39,40]. In Figure S10, the corresponding calculated
density of states (DOS) is consistent with the experiment results. The VB width of Co-ZnO
is slightly increased compared to ZnO alone, implying mobility enhancement of the hole.
Identically, the broadened CB also suggests the accelerating electron mobility [41,42].

Photoluminescence (PL), as a direct method for estimating the recombination rate of
photo generated charge pairs in the crystal structure, is related to lattice defects and surface
states [43]. High intensity in the PL signal indicates a rapid recombination rate of charge
carriers, resulting in poor SERS performance [44]. The PL emission spectra of the samples
were recorded by using an excitation wavelength of 233 nm. In Figure S11, comparably,
the lowest PL signal from Co400-ZnO samples can be attributed to the coexistence of
Co3+ and Co2+, with the ratio of 0.9578 greatly inhibiting the recombination between
electron–hole pairs.

The chemical structure of the Co-ZnO composites was also studied by the Fourier
transform infrared (FTIR) method. In Figure S12, for pristine ZnO, the FTIR bands at
1438, 1649, and 3450 cm−1 belong to -OH deforming, O-H stretching, and -OH stretching,
respectively [45]. After Co-doping, the FTIR bands regarding ZnO vibrations shift to a low
wavenumber because of a partial electron transfer between ZnO and Co [46]. One of the
possible principles is that defects produced in ZnO by introducing Co could act as electron
traps and become an intermediate state of electron transfer bridge [47,48], which would
improve photon-induced charge transfer (CT) and the photo-generated charge carrier
separation efficiency.

The Raman spectra of R6G (10−6 M) on Co-ZnO/Au substrates in Figure S13 indicate
that the resultant optimal Co400-ZnO could greatly improve the separation efficiency of
electron and hole under visible light excitation. Furthermore, the Co400-ZnO/Au composite,
as the SERS substrate, exhibits a long-term stability and remarkable detection sensitivity.

The photon-induced charge-transfer mechanism of Co-ZnO is shown in Figure S14A.
Obviously, for ZnO alone, the visible light hardly excites the electrons from the VB to CB
because of the large band gap between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) level of the target molecules. In the
case of Co-ZnO, the narrowed band gaps would benefit electronic transitions from the
VB of ZnO to the surface state energy level (Ess) [49,50], and the electrons would then be
injected into the LUMO of the adsorbed molecules.

A conceivable energy level diagram with the carrier transfer mechanism is displayed
in Figure S14B. The Co2+ ion is unstable owing to easy loss of d7 electronic configuration
to Co3+ (d7). In detail, Co2+ tends to transform electrons to the surface absorbed oxygen
(Equation (2)) [51] and, simultaneously, to the formation of superoxide (·O2

−). The Co3+

tends to convert to Co2+ (Equation (3)) by capturing the photo-induced electrons. In the
case of a low amount of Co dopant, the occurrence of Co2+ ions as electron traps enhances
the separation of electron and hole. However, at a higher concentration of Co dopant,
with the ratio of Co2+/Co3+ decreasing, the availability of electron traps descends due
to excessive Co3+ ions with vacancies as novel centers, facilitating the recombination of
electrons and holes.

ZnO + hv→ e − CB + h+ VB (1)

Co2+ + O2 → Co3+ + ·O2
− (2)

Co3+ + e − CB→ Co2+ (3)
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In all, the due ratio of Co2+/Co3+ in Co400-ZnO composite correspondingly resulted
in the smallest grain size, the narrowest band gap, the lowest PL intensities, and supe-
rior light absorption capability. As mentioned above, the CT mechanism of Co400-ZnO
composite is the dominant contribution to the following superior Raman enhancement of
target molecules. Therefore, Co400-ZnO was chosen to prepare Co400-ZnO/Au as the next
SERS substrate.

3.2. Characterization of Co-ZnO/Au

UV-vis diffuse spectra of Co400-ZnO and Co400-ZnO/Au (Figure S15) show successful
preparation of Co400-ZnO/Au substrate due to the occurrence of a SPR band at 523 nm from
Au nanoparticles. The hydrothermal preparation protocol was employed to synthesize a
three-dimensional Co400-ZnO/Au composite. SEM and TEM images (Figure S16) reveal
that the morphology of Co400-ZnO is cylindrical and the Co400-ZnO/Au is a Coral-shaped
porous structure. In Figure S17, compared with Co400-ZnO, broadened XRD patterns for
Co400-ZnO/Au at 31.66◦ and 34.22◦ with a slight shift indicate the partial incorporation
of Au element into the crystal lattice of Co400-ZnO [52]. Owing to the fact that the Fermi
energy of ZnO is lower than Co and Au, the modification of gold species changes the charge
distribution and, then, the electron transfer on the surface, to achieve balance state [53].
As a result, a remark of numerous free electrons on the boundaries between metal and
semiconductors is conducive to enlarging the localized SPR (LSPR) effect [41,54]. The
detailed band structure distributions of the Co400-ZnO and Co400-ZnO/Au are illustrated
in Figure 2.
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In Figure 3D, the lattice spacing merits of ZnO indicate the presence of stacking
faults and defects. Clearly, in Figure S18, there are a large amount of quantum dots (QDs)
of ZnO, ranging from 2.3 to 3.3 nm, generated in the Co400-ZnO/Au composite, which
should contribute to the quantum confinement effect [55]. According to the Hamiltonian of
semiconductors, in the presence of ZnO QDs, very high mobility of charge carriers leads to
the fusing of exciton and plasmon resonances [56].

The corresponding energy-dispersive X-ray (EDX) elemental mapping images (Figure 4)
and TEM-EDS results (Figure S19) of Co400-ZnO/Au were recorded to confirm the uniform
distribution of the Co, Zn, and Au elements.
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On the other hand, QDs with many defects and a lack of long-range atomic or-
der [57,58] further strengthen the strong semiconductor metal interaction (SSSMI) effect
within Co400-ZnO/Au composite. The HRTEM images demonstrate that the particles
tightly contacted to form an interfacial hetero junction, efficiently retard the recombina-
tion of photo-generated electron/hole pairs, reduce the photo-generated charge diffusion
length [59,60], and augment the exposure area of active sites. Therefore, quantum confine-
ment inducing the SSSMI effect enabled Co400-ZnO/Au to provide a greater SERS effect.
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In the XPS results, shown in Figure 5A and in Table S5, compared with ZnO and
Co400-ZnO, the binding energies of Zn, O, and Co in Co400-ZnO/Au shift, demonstrating
the intra-atomic CT process [61]. In Figure 5B, for the XPS spectrum of Zn2p in Co400-
ZnO/Au, the binding energies of Zn 2p3/2 and Zn 2p1/2 present at 1021.3 and 1044.3 eV,
respectively [62]. Notably, the binding energy of Zn 2p in Co400-ZnO/Au showed a
positive shift of 0.31 eV in comparison to 1044.08 eV of Zn 2p in Co400-ZnO (Figure S3),
further proving the strengthened strong semiconductor metal interaction (SSSMI) effect
between ZnO and Au NPs [63]. In Figure 5C, a faint Co2p central peak appears in the
span from 775 to 800 eV. In detail, two binding energies of Co2p3/2 and Co2p1/2 orbitals
were located at 781.2 and 796.7 eV, respectively. A jolting companion peak at 786 eV is
indicated as Co2+ [64,65]. In Figure 5D, for Co400-ZnO/Au, XPS bands at 87.38 and 88.38 eV,
corresponding to electronic states of Au2+ (minor amount) and Au3+ (high amount), hint
at the abundant free electrons in the composite. Additionally, the binding energy of the
Au4f5/2 in the composite centered at 88.38 eV, shifts (the standard XPS peak of Au4f5/2
positioned at 87.4 eV), which is also due to the SSSMI effect [66]. The electron exchange
between Au3+ and Co2+ ions is given as follows:

Au3+ + Co2+ = Au2+ + Co3+ (4)
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3.3. Simulation of Electromagnetic Field Enhancement

The FDTD simulation was used to simulate the surface electric field distribution of
ZnO, Co-ZnO, and Co-ZnO/Au under exposure to lasers at 532, 633, and 785 nm. As
shown in Figure 6, under irradiation with a 633 nm laser, the electric field enhancement
factor of Co-ZnO can reach about six at the gap of neighboring nanoparticles, which is due
to the Co doping effectively changing the photoelectric properties in comparison with the
case of ZnO alone.
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When it comes to Co-ZnO/Au, the SSSMI effect between ZnO QDs and AuNPs
contributes to a great enhancement of the electric field, and an enhancement factor ap-
proximately equal to 40 could be reached, which is seven-fold greater than Co400-ZnO,
shown Figure S20. Figure S20 shows the concentration-dependent SERS spectra of R6G
solutions recorded on Co400-ZnO. Clearly, Co400-ZnO, due to the CT mechanism, could
also contribute to the Raman signal enhancement of target molecules, to an extent.

The FDTD simulation is validated by the SERS results of 10−7 mol/L R6G acquired
on Co400-ZnO/Au under different irradiations with 532, 633, and 785 nm lasers. Clearly
shown in Figure S21, the matching of the 633 nm laser to the electromagnetic resonance
absorption of the Co400-ZnO/Au substrate contributes the greatest SERS signal [67]. As
shown in Figure S22A, by using Co400-ZnO/Au, the limit of detection (LOD, determined
on the ratio of the signal to noise (S/N) equaling to 3) for R6G is 1 × 10−9 mol/L.

3.4. Co400-ZnO/Au-Based SERS Detection of Tyr

Tyramine (Tyr), as one of bioamines, is commonly produced in food and beverage as a
consequence of microorganism fermentation and decomposition processes [68]. Overdose
of Tyr from food stuffs taken by a person results in various adverse physiological effects
such as hypertension, rash, cardiac palpitation, intracerebral hemorrhage, and even death
in some severe cases [69]. The European Union poses a maximum limitation of Tyr content
of 100–800 mg/kg in foods. Routinely, liquid chromatographic-fluorescence detectors
(LC-FLD) [70] and liquid chromatographic-mass spectrometry (LC-MS) [71] are employed
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to analyze Try residue in foods. However, LC-based methods suffer from tedious sample
pre-concentration, reagent-consumption, and the need for well- training persons.

As shown in Figure S22B, Co400-ZnO/Au has the strongest Raman enhancement
effect for Try. Concentration-dependent SERS spectra of Tyr, using Co400-ZnO/Au, are
shown in Figure 7A and the normal Raman spectrum of powder Tyr is also given in
Figure S23. Figure 7B shows a linearity concentration relationship ranging from 1.0 × 10−8

to 1 × 10−5 mol/L, with the correlation coefficient of 0.9838 based on the characteristic
band intensity at 1208 cm−1. Tyr, with a concentration at 1 × 10−8 M, could be detectable,
which meets the detection sensitivity requirement of the EU for total tyrosine content in
foods. In Figure S24, the relative standard derivation (RSD) of the SERS intensities at
613 cm−1 recorded from 20 randomly selected points on Co400-ZnO/Au substrate is 8.05%,
which indicates a reasonable signal uniformity. After storage in ambient conditions for
70 days, the Raman signal recorded on Co400-ZnO/Au substrate kept 90% of its level
of signal intensity obtained on freshly prepared substrate, exhibiting excellent shelf-time
(Figure S25). We can obtain reproducible SERS spectra of R6G (10−6 M) on the three batches
prepared Co400-ZnO/Au substrates in Figure S26.
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As shown in Figure 8, in beer, tyramine at concentration as low as 1 × 10−8 M can
be detected. As shown in Table 1, the relative standard deviation is 0.29~5.05%, and the
reasonable recovery is 91.20~107.15%. In Table 2, compared with the other assays for Tyr in
the literature, the Co400-ZnO/Au-based SERS method shows a good sensitivity.

Biosensors 2022, 12, x FOR PEER REVIEW 10 of 15 
 

suffer from tedious sample pre-concentration, reagent-consumption, and the need for 
well- training persons. 

As shown in Figure S22B, Co400-ZnO/Au has the strongest Raman enhancement ef-
fect for Try. Concentration-dependent SERS spectra of Tyr, using Co400-ZnO/Au, are 
shown in Figure 7A and the normal Raman spectrum of powder Tyr is also given in 
Figure S23. Figure 7B shows a linearity concentration relationship ranging from 1.0 × 10−8 
to 1 × 10−5 mol/L, with the correlation coefficient of 0.9838 based on the characteristic band 
intensity at 1208 cm−1. Tyr, with a concentration at 1 × 10−8 M, could be detectable, which 
meets the detection sensitivity requirement of the EU for total tyrosine content in foods. 
In Figure S24, the relative standard derivation (RSD) of the SERS intensities at 613 cm−1 
recorded from 20 randomly selected points on Co400-ZnO/Au substrate is 8.05%, which 
indicates a reasonable signal uniformity. After storage in ambient conditions for 70 days, 
the Raman signal recorded on Co400-ZnO/Au substrate kept 90% of its level of signal in-
tensity obtained on freshly prepared substrate, exhibiting excellent shelf-time (Figure 
S25). We can obtain reproducible SERS spectra of R6G (10−6 M) on the three batches pre-
pared Co400-ZnO/Au substrates in Figure S26. 

 
Figure 7. (A) Concentration-dependent SERS spectra of tyramine recorded on Co400-ZnO/Au sub-
strate. (B) Calibration plot based on Raman intensity at 1208 cm−1. 

As shown in Figure 8, in beer, tyramine at concentration as low as 1 × 10−8 M can be 
detected. As shown in Table 1, the relative standard deviation is 0.29~5.05%, and the 
reasonable recovery is 91.20~107.15%. In Table 2, compared with the other assays for Tyr 
in the literature, the Co400-ZnO/Au-based SERS method shows a good sensitivity. 

 
Figure 8. Concentration-dependent SERS spectra of tyramine in beer on Co400−ZnO/Au substrate. 

  

Figure 8. Concentration-dependent SERS spectra of tyramine in beer on Co400−ZnO/Au substrate.



Biosensors 2022, 12, 1148 11 of 15

Table 1. Detection recovery of tyramine in Beer by Co400-ZnO/Au-based SERS.

Samples ADD
(umol/L)

SERS (M)
(umol/L)

Recovery
(%) ± SD

1 10 10.23 102.33 ± 1.03

2 1 0.912 91.20 ± 5.05

3 0.316 0.338 107.15 ± 1.84

4 0.1 0.095 95.50 ± 0.29

Table 2. Comparison with other methods for the determination of Tyramine.

Method Substrates Linear Range
(moL/L)

LOD
(moL/L)

Real
Sample Reference

Raman Co400-ZnO/Au 10−5–10−8 1 × 10−8 Beer This work

Molecularly Imprinted Fe3O4@SiO2-MPS@MIP 5.4 × 10−4–1 × 10−6 1.8 × 10−7 Beer [72]

Electrochemistry Ag-substituted ZnO
modified GCE 9 × 10−4–1 × 10−6 2.72 × 10−7 Beer [73]

Electrochemistry poly-TB
modified carbon SPE 2.7 × 10−4–2 × 10−8 2 × 10−8 - [74]

Electrochemistry poly(His)/SPGE 2 × 10−5–5 × 10−7 2.2 × 10−7 Cheese [75]

4. Conclusions

In summary, the resultant optimal Co400-ZnO could reasonably improve the sep-
aration efficiency of electron and hole under visible light excitation. Furthermore, the
Co400-ZnO/Au composite was prepared as an SERS substrate, which exhibited a long-term
stability and a remarkable detection sensitivity for R6G with the LOD being as low as
1 × 10−9 M. Based on XPS characterization, DFT simulation, and FDTD theoretical explo-
ration, this promising SERS effect can be attributed to the doping of Co to generate ZnO
semiconductor with many defects accompanying the formation of certain QDs, triggering
SSSMI between ZnO QDs and AuNPs. The synergistic effect boosted the huge localized
electromagnetic field. As a real application case, by using Co400-ZnO/Au-based SERS assay,
the lowest detectable concentration was 1 × 10−8 M. In this work, an effort was made to
explore whether the composite of noble metal and semiconductor quantum dots could be
developed as the excellent SERS substrate for trace detection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bios12121148/s1. Figure S1: The digital pictures of the as-prepared
different percent of Co-doped ZnO samples; Figure S2: (a) Crystallite size and (b) micro strain
and dislocation density for all the samples investigated in this study (from 1 to 8: ZnO, Co40-ZnO,
Co120-ZnO, Co200-ZnO, Co280-ZnO, Co400-ZnO, Co480-ZnO, Co600-ZnO, respectively); Figure S3:
(A) XPS survey spectrum of ZnO, (B) and (C) XPS spectra of Zn 2p and O for ZnO; Figure S4: XPS
spectra of (A) XPS survey spectrum of Co400-ZnO, (B) Zn 2p (C) Co 2p, and (D) O 1s for Co400-ZnO;
Figure S5: UV-vis diffusion reflectance spectra of Au(A) and ZnO/Au(B) samples; Figure S6: UV-vis
diffusion reflectance spectra of ZnO and Co-ZnO samples; Figure S7: Band gaps for the as-prepared
different percent of Co-doped ZnO samples; Figure S8: VB-XPS spectra of Co-doped ZnO samples;
Figure S9: Schematic band structure evolution of Co-doped ZnO samples; Figure S10: The density
state of (A) pristine ZnO and (B) Co substitution in ZnO lattice. The dotted lines at energy zero
represent the Fermi level; Figure S11: PL spectra at the excitation wavelength of 233 nm of ZnO and
Co- doped ZnO samples; Figure S12: FTIR spectra of ZnO and Co-doped ZnO samples; Figure S13:
The Raman spectra of R6G(10−6 M) on Co-ZnO/Au substrates; Figure S14: Band structure of the
ZnO (A) and change in the band structure of ZnO by Co dopant; Figure S15: UV-vis diffusion
reflectance spectra of Co400-ZnO and Co400-ZnO/Au samples; Figure S16: (A,B) TEM images of
Co400-ZnO. (C) SEM image of Co400-ZnO. (D) SEM image of Co-ZnO/Au; Figure S17: XRD patterns
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of ZnO, Co400-ZnO, and Co400-ZnO/Au. (A) Wide-angle patterns and (B) Selected-angle patterns;
Figure S18: Size distribution of ZnO quantum dots in Co400-ZnO/Au; Figure S19: TEM-EDS result
of Co-ZnO/Au; Figure S20: Concentration-dependent SERS spectra of R6G solutions recorded on
Co400-ZnO; Figure S21: SERS spectra of R6G (10−7) recorded on Co400-ZnO/Au under different
irradiations with 532, 633, and 785 nm lasers; Figure S22: (A) SERS spectra of R6G molecules
adsorbed onto Co-ZnO/Au. (B) SERS spectra of Tyr (1 × 10−8 M) on Co-ZnO/Au, ZnO/Au, and
Au NPs; Figure S23: Normal Raman spectrum of powder Tyramine; Figure S24: (A) SERS spectra of
R6G (10−6 M) recorded from 20 randomly- selected points on Co400-ZnO/Au. (B) The statistic on
Raman Intensities of R6 G (10−6 M) recorded from 20 randomly- selected points on Co400-ZnO/Au;
Figure S25: Raman intensities of R6G (10−6 M) by using Co400-ZnO/Au monitored during storage in
ambient condition for 90 days; Figure S26: The SERS spectra of R6G (10−6 M) recorded on the three
batches of Co400-ZnO/Au substrate; Table S1: Summary of Crystallite size (D), Dislocation density
(ρ), and Micro strain (ε); Table S2:. Binding energy (BE) of Co in Co-ZnO samples; Table S3: Binding
energy (BE) of Zn and O in Cox-ZnO samples; Table S4: The band gap (Eg) and optical absorption
edge (nm) of pure ZnO and Co-ZnO samples; Table S5: Binding energy (BE) of ZnO, Co400-ZnO and
Co400-ZnO/Au.
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