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Abstract: To enhance the treatment of motor function impairment, patients’ brain signals for self-
control as an external tool may be an extraordinarily hopeful option. For the past 10 years, researchers
and clinicians in the brain–computer interface (BCI) field have been using movement-related cortical
potential (MRCP) as a control signal in neurorehabilitation applications to induce plasticity by
monitoring the intention of action and feedback. Here, we reviewed the research on robot therapy
(RT) and virtual reality (VR)-MRCP-based BCI rehabilitation technologies as recent advancements
in human healthcare. A list of 18 full-text studies suitable for qualitative review out of 322 articles
published between 2000 and 2022 was identified based on inclusion and exclusion criteria. We used
PRISMA guidelines for the systematic review, while the PEDro scale was used for quality evaluation.
Bibliometric analysis was conducted using the VOSviewer software to identify the relationship
and trends of key items. In this review, 4 studies used VR-MRCP, while 14 used RT-MRCP-based
BCI neurorehabilitation approaches. The total number of subjects in all identified studies was 107,
whereby 4.375 ± 6.3627 were patient subjects and 6.5455 ± 3.0855 were healthy subjects. The type of
electrodes, the epoch, classifiers, and the performance information that are being used in the RT- and
VR-MRCP-based BCI rehabilitation application are provided in this review. Furthermore, this review
also describes the challenges facing this field, solutions, and future directions of these smart human
health rehabilitation technologies. By key items relationship and trends analysis, we found that
motor control, rehabilitation, and upper limb are important key items in the MRCP-based BCI field.
Despite the potential of these rehabilitation technologies, there is a great scarcity of literature related
to RT and VR-MRCP-based BCI. However, the information on these rehabilitation methods can be
beneficial in developing RT and VR-MRCP-based BCI rehabilitation devices to induce brain plasticity
and restore motor impairment. Therefore, this review will provide the basis and references of the
MRCP-based BCI used in rehabilitation applications for further clinical and research development.

Keywords: neurological diseases; electroencephalography; biomedical signal; brain–computer inter-
face; human healthcare; virtual reality; robot therapy; machine learning

1. Introduction

Neurological disorders lead to a problematic life-compromising medical situation.
Globally, neurological disorders are presently the primary cause of motor disability and
the second primary cause of mortality, as stated in the current Global Burden of Disease
(GBD) study. Their burden has increased over the last 30 years [1–3]. Despite advances in
traditional motor rehabilitation, persistent motor impairments remain a major issue. Motor
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function impairment affects patients’ movement, their ability to participate in daily life
activities, civic participation, and financial challenges due to their low chances of returning
to work. These factors add to the poor overall quality of life [4]. Consequently, forecasting
the most effective and efficient rehabilitation treatment interventions for better and prompt
functional recovery has received close attention and effort in recent years.

Brain–computer interface (BCI) is a computer-based technology that translates brain
signals into commands sent to an external function or usage to realize the user’s intention.
As a result, patients can communicate with the environment, even though they do not
use their peripheral nervous system and muscles [5]. BCI was referred to by a famous
Brazilian neuroscientist Miguel Nicolelis [6], as Type 2 hybrid brain–machine interfaces
(HBMIs), which control artificial devices through real-time sampling and processing of
large-scale brain activity. Currently, brain neural activities are recorded by different BCI
techniques and operative methods to extract valuable signals. Noninvasive techniques,
such as magnetoencephalography (MEG), electroencephalography (EEG) [7–10], near-
infrared spectroscopy (NIRS), and functional magnetic resonance imaging (fMRI) are
prevalently used in human subjects [11]. A BCI system based on EEG has been a more
general approach due to its portability, lower cost, flexible adaptation for clinical purposes,
and direct measurement of brain neural activities than all previously mentioned BCI
approaches [12–14]. The electrical brain activity induced by the discharge of electric
currents during excitations of the neuron dendrites in synapses is measured by an EEG-
based BCI, which is exceedingly sensitive to secondary effects as conductors are positioned
on the scalp (Figure 1) [11]. Additionally, EEG-based BCI signals are appropriate for clinical
and research purposes because they have high temporal resolution [15]. More details about
EEG-based BCIs are found in this literature review [11].
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Figure 1. General schematic representation of RT and VR-MRCP-based BCI systems from signal
acquisition and signal processing to application in either VR or RT.

EEG-based BCI employs steady-state visual evoked potentials (SSVEPs), P300 event-
related potentials, movement-related cortical potentials (MRCPs), and sensorimotor rhythms
(SMRs) as different neuro mechanism types of EEG-based BCIs. Recent research has shown
that the Movement-related Cortical Potential (MRCP) extracted from the low-frequency
time-domain (LFTD) (0–5 Hz) [16–18] approximately 2 s earlier than the onset move-
ment contains enough information to be associated with both intent and executed move-
ments [19]. The magnitude and latency of MRCPs are more modulated by movement
features, such as force, speed, and directional information than other methods. MRCPs
have been successfully studied for detection using many trials and a single trial [20], mak-
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ing them potentially promising neural control signals. BCI with MRCP as a control signal in
neural rehabilitation applications to induce plasticity by monitoring movement intent and
feedback is researched [21]. The correlation of MRCP signals in detecting different types of
movements and distinguishing between rest and motion has been demonstrated in [16,22],
which is why MRCP signals are used in rehabilitation. They reflect many neurophysiologi-
cal processes [20]. Furthermore, offline or online analyses have done the decoded MRCP
signal to control external rehabilitation devices, such as wheelchairs, exoskeletons, and
serious games [23]. The MRCP signal is influenced by engagement attention fatigue and
the user’s skill level [19,24].

Robot therapy (RT) and virtual reality (VR) MRCP-based BCI systems are two non-
invasive rehabilitation technologies that are now being extensively studied to enhance
rehabilitation therapy efficacy and functional evaluation for patients with motor impair-
ment. These rehabilitation technologies employ the brain’s neural activity to determine
the subject’s movement intention. The most commonly used neural activity is from the
motor cortex area of the brain. Various robots and modified commercial games or simple
homemade games that mimic the actual movement of the therapist during therapy ses-
sions are currently being used as rehabilitation interventions. Because of the brain neural
activity involved in controlling an external device, the potential of employing RT- and
VR-MRCP-based BCI systems as rehabilitation methods have drawn much attention. Three
fundamental questions will be answered with this systematic review: (i) What type of
electrodes and extracted features are used in RT- and VR-MRCP- based BCI rehabilitation
systems? (ii) What are the characteristics of MRCP signals in RT- and VR- based BCI?
(iii) What are these rehabilitation technologies’ challenges and future potentials?

In rehabilitation, the RT-MRCP-based BCI system approach recognizes the move-
ment intention or execution of a task from the patient using an EEG signal acquisition
system [25,26]. The information is decoded and sent to the external robotic device to
produce assistive force movement of the paretic limb in a way that imitates the procedures
of a therapist in traditional clinical therapy sessions [27–29]. The resulting feedback is
patient-driven and is designed to bridge the disconnection between movement intent and
execution (Figure 1). This method is believed to induce activity-dependent neuroplasticity
within brain regions and restore motor function to achieve a specified target [30,31], making
the patient’s active participation in rehabilitation exercises an essential element of motor
relearning development [32,33]. An RT-MRCP-based BCI system can deliver movement
assistance to patients from fully passive to assistive to fully active movements. A combina-
tion of RT-MRCP-based BCI therapy and traditional clinical rehabilitation is far more likely
to achieve the desired effect of motor function recovery.

VR-MRCP-based BCI therapy as a rehabilitation method in stroke patients stimulates
neural networks via the mirror neuron system [34] by utilizing movement visualization,
movement intent, and movement imagery [35] that enhance post-stroke motor recovery.
One of the fMRI studies revealed that whether or not the virtual limb was shown on
the screen, mirror neuron activity could be increased in healthy volunteers during the
movement observation task [36]. Thus, it proves a link between VR systems and the mirror
neuron system. In applying VR-MRCP-based BCI therapy as a post-stroke rehabilitation
method, BCI software records MRCP-EEG signals from the brain as a control signal. Then,
the signal is processed, and the required features are extracted. Extracted features are
then classified to generate input commands to interact with a virtual environment. The
VR software processes the classified input commands to provide meaningful post-stroke
patient feedback (Figure 2). MRCP-EEG signals, in conjunction with VR and a BCI, can
improve the stimulation of motor brain regions by enhancing the perception of physical
movement and the good feeling in VR, thereby involving specific brain neural systems and
organizing the required neural plasticity improvements. Various studies have highlighted
the advantages of using VR-MRCP-based BCI therapy: VR-MRCP-based BCI therapy
provides a safe environment for post-stroke patients to interact with a dynamic and realistic
environment [37]. Since motivation has been demonstrated to be important in post-stroke
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patients, VR-MRCP-based BCI systems can deliver motivation that enhances adherence
to the training [38]. Additionally, VR-MRCP-based BCI therapy has various physiological
effects on patients by increasing emotional responses [39,40].

Many review articles using various EEG signal modalities have been published on
BCI-based EEG neural rehabilitation applications [41–46]. However, no research on BCI-
based EEG using MRCP as a control signal in neural rehabilitation applications for RT
or VR has been published. Thus, reviewing RT and VR-MRCP-based BCI rehabilitation
technologies and determining their potential is crucial for designing better treatment
interventions for motor impairment. These rehabilitation approaches allow patients with
motor dysfunction to regain control of their limbs and build an active neural feedback
closed loop to achieve motor function restoration, making full engagement in rehabilitation
training visible. Furthermore, these technologies offer promising strategies to modulate
neuroplasticity and provide enhanced rehabilitation treatment for patients who have lost
limb movement control after a stroke.
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This study can support engineers and researchers in RT- and VR-MRCP-based BCI
rehabilitation field to improve the existing clinical systems and methods, solve the current
challenges and improve the usability of the MRCP-based BCI systems for healthy persons
and those with motor impairment. Thus, this review aims to: examine the potential of
RT and VR-MRCP-based BCI neurorehabilitation approaches as the adopted methods to
translate a patient’s movement intention into an actual movement; bring awareness of this
emerging field; and recognize the challenges and prospects in this area of research. The
main contributions of this review are as follows:

• A comprehensive survey of RT- and VR-MRCP-based BCI neurorehabilitation ap-
proaches using a systematic literature review and bibliographic overlay visualization;

• Identification of the MRCP signal processing approaches, including classifiers and
performance measures;

• A review of the MRCP signal preprocessing methods, including epochs, selected
electrodes, and applied bandpass filters in RT and VR-MRCP-based BCI neurorehabili-
tation approaches;

• Provision of the measure for the methodological quality of studies based on the
Physiotherapy Evidence Database (PEDro) scale;

• Determining the potential challenges and suggesting solutions for RT- and VR-MRCP-
based BCI rehabilitation techniques.
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2. Methods

We used standard systematic review methods, including search methods, inclusion
and exclusion criteria, data collection, and quality assessment, based on Preferred Reporting
Items for Systematic Reviews analysis and Metal Analysis (PRISMA) guidelines and the
Physiotherapy Evidence Database (PEDro) scale to complete this study. The details of our
method are defined below:

2.1. Search Methods

The authors searched major scientific search engines, medical databases, and digital
libraries, including Google Scholar, PubMed, and IEEE Xplore databases, for the extensive
scientific research articles related to the VR and RT-based BCI rehabilitation technologies
for this review. The PRISMA guidelines for systematic review were followed, as presented
in Figure 3. The search strategy encompassed studies published between 2000 and March
2022, and it was developed using a combination of standardized Medical Subject Heading
terms and keywords (MeSH). These keywords and terms include but are not limited to
(Stroke and (acute or subacute) or Seizures or Parkinson’s or Dementia or Epilepsy or limb
impairment (upper or lower) and spinal cord injuries) AND (rehabilitation or therapy or
treatment or recovery) AND (neural plasticity or neural therapy or motor rehabilitation or
therapy or exercise) AND (slow cortical potential or movement-related cortical potential or
neuro intention or neuro preparation or neuro anticipation) AND (electroencephalography
or brain–computer interface or brain-machine interface or mind–machine interface or
neural control interface) AND (virtual reality or serious games or therapeutically games
or commercial games) AND (robot or powered exoskeleton or orthosis or assistive arms).
The PRISMA checklist is in the Supplementary Materials, and the criteria for inclusion and
exclusion are listed in Figure 3.
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2.2. Inclusion and Exclusion Criteria

The criteria for the inclusion of the searched articles in the review were (i) articles
that described the use of MRCP-EEG-based BCIs, (ii) studies that reported on the use of
MRCP-BCIs and VR (e.g., serious games, therapeutic games, and rehabilitation games) as
treatment interventions, (iii) studies that reported on the use of MRCP-BCI and RT (e.g.,
exoskeletons and orthoses) and (iv) studies that conducted single or multiple trials on
healthy participants or a clinical trial to observe neural reorganization by decoded MRCP
signals. The searched articles were also subject to the following exclusion criteria: (i) studies
that used other EEG-BCI intention signal modalities (e.g., motor imagery (MI), SSVEP, P300,
and sensorimotor rhythms) and (ii) studies that reported the application of BCI RT and VR
by using signal modalities other than MRCP-EEG. The full texts of identified articles were
then further screened to ensure the articles met the criteria for inclusion in the review. We
used the PRISMA literature search checklist to present the final full article results.

2.3. Data Extraction

We extracted the following data and result from the full-text articles identified for
inclusion in this review: (i) the patient’s or healthy subject’s condition before the rehabil-
itation intervention; (ii) the applied intervention (RT- or VR-MRCP based BCI); (iii) the
MRCP-BCI features, artifact removal, and decoding methods; and (iv) the outcome and
performance of the applied method.

2.4. Quality Assessment Method

We used the PEDro scale to perform the methodological quality assessment (Table 1).
The PEDro scale is based on criteria determined by specialists in physiotherapy practice;
it has 11 items found free online [48]. The items included in the PEDro scale are; group
comparability at baseline, blinded therapists, eligibility criteria, random assignment of
subjects, assignment concealment, blinded subjects, blinded therapists, blind assessors,
key results, intention to analyze a key outcome, statistical comparison between groups,
and incoherence measures for at least one significant effect. When using the PEDro scale,
a higher score indicates better methodological quality.

Table 1. Scores of methodological quality assessment of the included studies based on the PEDro scale.

Ref. [49] [15] [50] [51] [52] [53] [54] [55] [56] [47] [57] [58] [59] [60] [61] [62] [63] [64]

E 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

R 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B 1 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1

B1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

I 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1

B4 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0

P 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1

Total 6 7 6 5 5 6 3 5 4 6 5 5 7 4 6 3 5 6

E: Eligibility; R: Randomize allocation; C: Concealed Allocation; B: Baseline comparability; B1: Blinded subjects; B2:
Blinded therapists; B3: Blinded assessors; M: Main outcomes; I: Intention -to- treat; B4: Between group statistical
comparison; P: Point and variability measures.
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3. Synthesis and Analysis
3.1. Key Items Coincidence Analysis

As part of this review, a map was created based on network data using the VOSviewer
tool [65]. This software creates maps, visualizes, and explores them based on any type
of network data. In addition, the software is used to identify the relationships between
key items as indicators of important systematic research [66,67]. As shown in Figure 4,
overlay visualization has been selected as a more effective method of examining the
relationships between the chosen key items and time scale elements. The distance between
them represents the strength of the two items, the shorter the distance, the stronger the
relation. The item that appears more in the publications is shown on the map by a large
circle. However, key items were classified by color depending on the year of publication,
and yellow circles show the key items found in the most recent publications. As described
on the map, 22 key items met the threshold, and the key items, including upper limb, motor
control, and rehabilitation classified as the top key items with the most incidence at the
average publications above the year 2018, suggesting a new hotspot in MRCP-based BCI
rehabilitation field.
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3.2. Identified Article Results

Initially, the total number of articles discovered was 322; after deduplication, 298 full-
text articles remained. Following title and abstract screening, 256 articles were eliminated,
leaving only 42 eligible full-text articles. Twenty-four of these articles were later removed
after full-text screening for the following reasons: the articles did not meet our inclusion
criteria, the design was not for MRCP-BCI, and the review did not involve RT or VR. Finally,
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a list of 18 full-text studies suitable for qualitative review was identified (Figure 3). In this
review, 4 out of the 18 studies used VR-MRCP-based BCI neurorehabilitation approaches,
while the rest used RT- MRCP-based BCI neurorehabilitation approaches.

3.3. General Information of the Subjects

The total number of subjects from all 18 identified studies is 107, where 4.375 ± 6.3627
are patients and 6.5455 ± 3.0855 are healthy subjects. All studies used either healthy
subjects or patients alone or both healthy subjects and patients. The different experimental
procedures, few subjects, and varied outcome results make it impossible to analyze potential
group differences between healthy subjects and patients. The paper [68] is among the
identified articles that enrolled many patients suffering from superior, middle cerebral
artery stroke. In contrast, most studies enrolled many healthy subjects [57,59,63]. Several
articles performed tests for both healthy subjects and patients. In [64], four SCI patients and
three healthy subjects were to test clinical safety and validate the technology; [52] had four
healthy subjects and two patients; and [49] had only one patient and two healthy subjects.
All of these studies used different procedures for the two groups.

3.4. Applied Rehabilitation Methods

In the reviewed articles with RT-MRCP-based BCI neurorehabilitation as therapeutic
interventions, the four most frequently used devices were AMADEO, Lokomat, Rex, X1
exoskeleton robot, and BCI-MAFO, shown in Table 2. The lower-limb exoskeleton Rex was
primarily used in the studies for gait support without any other external system. Due to
its stability, the device can support the subject’s weight and perform crucial tasks such as
sitting, walking, standing, and turning by using programmed motions. In [56], the Rex
exoskeleton was used to acquire real-world MRCP walking intention data when healthy
subjects performed a self-paced movement. The subject-dependent MRCP feature selection
method was proposed in [56] on a single trial to detect robust MRCP data. In [57], the Rex
exoskeleton was also used to simulate a real-world environment for neurorehabilitation.
Healthy subjects used the exoskeleton’s standing and walking forward functions, then
MRCP data were collected, and a subject-dependent and section-wise spectral filtering
(SSSF) method was used to improve the MRCP data decoding performance.

Table 2. Applied rehabilitation methods in identified studies.

Studies Rehabilitation Methods Rehabilitation Tool Name

[15,52,62]

RT-MRCP-based BCI therapy

AMADEO

[51] Lokomat

[54,56,57] Rex,

[58] X1 exoskeleton robot

[59] BCI-MAFO

[47,50,58,63] VR-MRCP-based BCI therapy Controlling a virtual walking
avatar and 2D cursor

Furthermore, [54] used the Rex exoskeleton on patients, focusing on walking, turn-
ing right/turning left, and sit-rest-stand motion tasks. The MRCP movement intention
data were recorded during these tasks, and the offline accuracy was approximately 98%.
Zhang [49] also used the Rex exoskeleton to acquire MRCP data from one healthy subject
and one spinal cord injury patient. He showed the viability of simultaneously classify-
ing the pattern of the subject’s MRCP movement intention signals and understanding
the comparative significance of various scalp brain regions based on the multiple kernel
learning (MKL) algorithm. In addition, another lower-limb device was the X1 exoskeleton.
The exoskeleton is a wearable robotic device with 10 degrees of freedom (DoF) created in
a collaboration between the Institute for Human & Machine Cognition (IHMC) and the
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National Aeronautics and Space Administration (NASA) ‘s Johnson Space Center. The
sequence of elastic actuators with custom motor controllers helps the robot’s motion. The
X1 exoskeleton robot alters its joint angles to match the user’s motion, making it relatively
easy to use. In [61], the X1 exoskeleton robot was pioneered as a potential assistive, di-
agnostic, and therapeutic tool for Stroke from the perspective of gait rehabilitation. The
author tested the viability of decoding the MRCP-EEG signal of kinetics and kinematics of
the lower limb joints during walking with the X1 robot. Other stationary lower-limb robots
were the Lokomat, designed on a treadmill [51] and the BCI-MAFO, used while sitting on a
chair and designed by Xu [59].

Furthermore, in [15,52,62], the researchers used the customized upper-limb exoskele-
ton AMADEO robotic device manufactured by Tyro motion GmbH, Bahnhofgürtel 59,
8020 Graz, Austria. AMADEO is a distal upper-limb motor recovery end-effector robot-
assistive device for post-stroke patients. AMADEO enables active and passive fingers to
produce different finger and thumb motion patterns. The AMADEO robot device’s joints
have 5 DoF and present four modes of instruction, including passive training, passive
training with biofeedback, assistive training together, and active 2D training games [62].
In [52], four healthy subjects and two post-stroke patients used the AMADEO robotic
device to detect intention signals during the visual cues and AMADEO game training
protocols. The effectiveness of the two training protocols was more evident during the
AMADEO game training protocol for healthy subjects and patients.

Similarly, [15] trained one stroke patient on the AMADEO robot to detect the MRCP
amplitude signal at different training levels. The results indicated that the subject recovered
the most when fully participating in the exercise. In addition, [62] conducted two-stage
(4 and 8 weeks) AMADEO hand motor-assisted rehabilitation robotic training in three
post-stroke patients to investigate whether one or combined rehabilitation phases signif-
icantly impact motor recovery and neuroplasticity. The results demonstrated that using
both training stages effectively improved neuroplasticity changes and hand-motor abilities
but using only one training stage did not. The four studies identified used different BCI
designs RT capable of movement training during rehabilitation [53,55,60,64]. Another
identified therapeutic intervention from this review was VR-MRCP-based BCI neurore-
habilitation, which provides exciting visual feedback for activating and monitoring the
effect of targeted neurons. The targeted brain neurons determined the type and intensity of
neurorehabilitation [69]. Thus, as indicated in [70], VR-MRCP-based BCI systems enhance
traditional rehabilitation therapy by promoting self-assisted training, motivation, and
good performance with a pleasant treatment experience, including real-time movement
neurofeedback.

We identified four studies that employed VR-MRCP-based BCI therapy [47,50,58,63].
In [50], the authors demonstrated how to control virtual avatar walking movements by
decoding the EEG signal of the lower-limb angle of joints from the scalp in a real-time
closed-loop BCI during treadmill walking. This review recruited two healthy male subjects
to walk on a treadmill. The designed neural decoder decoded brain neural activity in
real-time to lower-limb movements through scalp EEG. It was observed that the subjects
managed to control the avatar gait patterns in the virtual environment through MRCP-BCI
signals that were generated from the subject’s scalp. The more subjects controlled the
walking avatar, the more walking improved, suggesting that the virtual avatar triggers
cortical plasticity.

Additionally, [63] introduced an electro-tactile menu and a brain switch for online
closed-loop control using a BCI. The healthy subjects successfully achieved high achieve-
ment on a target-hitting task by moving a 2D cursor in a specified direction and stopping.
Furthermore, to investigate brain neural activity behavior during unusual real-life situa-
tions, [47] demonstrated how MRCPs behave during non-emergencies and emergencies.
They designed two VR BCI games to match emergency and non-emergency environments.
Seven healthy subjects were recruited to participate in all the experiments. There was a
significant difference between the two tasks. The accuracy in the non-emergency task was
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higher than that in the emergency task. This finding suggests that the environment must
be considered when a VR-MRCP-based BCI is applied to brain neural activity rehabilita-
tion. Thus, a set of rules recognized in a normal environment may not be suitable during
an emergency.

3.5. Signal Acquisition and Processing

The MRCP signal is the typical signal associated with movement intention or execution.
In 17 out of 18 identified studies, MRCP signals were generated in the Bereitschaft potential
(asynchronous), which is known as a self-paced method. Only [61] showed the MRCP
signal generated in a contingent negative variation (synchronized), known as a cue-based
method. Offline analysis of MRCP signals was mostly used to process the signals in the
identified studies; only five studies used online analysis to process the MRCP signals. As
proposed in [71], offline processing produces precise and valuable results, while online
analysis may produce lower-quality results. However, in [72], the offline and online signals
were explored, and the results were compared. Higher accuracy was obtained from each
subject in online BCI models than in offline BCI models, suggesting that BCI exoskeleton
online analysis applications are preferred. All reviewed studies in this work showed that
the supplementary motor area (SMA) and cingulate motor areas are particularly evolved in
pre-movement preparation and readiness for voluntary movement.

As shown in Table 3, all of the identified studies that were reviewed used electrodes
on various scalp locations to obtain the MRCP signal. Before further processing, the
MRCP signal must undergo several preprocessing procedures, such as filtering and artifact
removal. In identified studies, the frequency range of the MRCP signal was bandpass
filtered primarily between 0.01 and 5 Hz using different signal processing filters that
decrease and flatten out high-frequency noise related to a measurement. Furthermore, the
Cz C1, C2, and C3 channels are most commonly used to detect motor intention using the
MRCP signal, with C3 being demonstrated to be for right-hand motor intention.

Table 3. Research studies, electrode, and classifiers used, and the outcomes of RT- and VR-MRCP-
based BCI neurorehabilitation techniques.

Ref. Electrode Epochs (s) Bandpass Filter (Hz) Classifier Performance (%)

[47] Fz, FC1, FC2, C3, Cz, C4,
CP1, CP2, Pz −2 to 0 0.04 to 3 MF-SVM

Sensitivity was 60.57 ± 14.79 for
non-emergency tasks and 44.29 ± 5.73 for

emergency tasks.

[49] - −2 to 1 0.1 to 2 MKL Accuracy was above 90 for classifying gait
states from EEG signals.

[52] C3, FC3, CP3, Cz, T7 −2 to 0 0.1 to 1 SVM
Accuracy was 79.7 in healthy subjects and

66.64 in patients for movement
execution trials.

[55] Cz, Fz, FC1, FC2, C3, C4,
CP1, CP2, Pz −1 to 1 0.05 to 3 LPP-LDA Sensitivity was 80 for the movement

execution task and 70 for the intended task.

[56] Cz, C1, C2, CPz −2 to 1 0.1 to 4 RLDA Accuracy was 87.6 for the walking
intention task.

[57] C1, C2, CPz, Cz −2 to 1 0.05 to 2 RLDA
Accuracy was 86 in the generated dataset

and 73 in the public dataset for the
movement execution task.

[58] Cz, CPz, FCz,
C2, C1, CP1, CP2, C3 −1 to 2 0.1 to 1 LDA Sensitivity was 83 for movement intention.

[59] Cz, Fz, FC1, FC2, C3, C4,
CP1, CP2, Pz −1.5 to 0.5 0.05 to 3 LPP-LDA Sensitivity was 73.0 ± 10.3 for movement

intention.

[63] Cz, Fz, FC1, FC2, C3, C4 −2 to 0 0.1 to 5 LPP-LDA Accuracy was 97 for motor execution and 92
for motor imagery.

[64] FCz, FC2, C1, Cz, C2,
CP1, CPz, CP2 −1 to 1 0.1 to 1 SDA

Sensitivity was 84.44 in healthy subjects and
77.61 in patients for activating exoskeleton

movement.
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3.6. Performance of the Applied Method

The identified studies did not clearly explain evidence of the performance of the ap-
plied intervention, which may be because most studies tested the intervention to determine
its methodology, and no clinical outcome evaluations were carried out to validate the
methods (Table 3). The low number of healthy subjects and patients and the differences
in the experimental procedures and performance measures applied make between-study
comparisons unfeasible. In theory, studies can be compared using the same frame of
reference (i.e., number of subjects, procedures, and performance measures).

However, to evaluate the performance of the applied intervention methods, the identi-
fied studies used various performance measures with different detection algorithms. Sensi-
tivity and accuracy were the measures used for assessing performance in the identified stud-
ies, as shown in Table 3. Sensitivity and accuracy are calculated using Equations (1) and (2),
respectively, where TP, TN, FP, and FN represent the true-positive, true-negative, false-
positive, and false-negative numbers, respectively [73,74].

Sensitivity =
TP

TP + FN
(1)

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

The likelihood that a model accurately predicts recognized movements, or the true-
positive rate (TPR), is known as sensitivity. The hypothesis in this situation of manipulating
an external device is that the individual intends to move. Five studies used sensitivity
measures to measure their model’s performance [47,55,58,59,64]. In [55], seven healthy
subjects were recruited to test a proposed new concept of communication and control
based on the BCI system. The intention of distinguishing presented choices and selecting
the desired choice was detected online by scalp MRCP-EEG using locality-preserving
projection followed by linear discriminant analysis (LPP-LDA). The concept’s viability was
demonstrated with a four-choice BCI, which generated 80% and 70% sensitivity for the
movement and intention selection commands. Similarly, the LPP-LDA classifier was used
in [59] to detect MRCP movement intention. Ten healthy subjects were required to perform
self-paced ballistic dorsiflexion movements of their right foot using motorized ankle-foot
orthotics. The sensitivity achieved was 73.0 ± 10.3% in the online analysis.

Furthermore, when the number of features was large in comparison to the number
of observations, a sparse discriminant analysis (SDA) classifier was used to investigate
the feasibility of using a closed-loop BMI to control an ambulatory exoskeleton with no
balance support. The MRCP signals of three healthy subjects and four spinal cord injury
patients were used to decrypt their movement intention and activate exoskeleton move-
ment. The results showed that the sensitivity for healthy participants was 84.44 ± 14.56%,
while the sensitivity for spinal cord injury patients was 77.61 ± 14.72% [64]. Furthermore,
to maximize the signal-to-noise ratio, a matched filter was used with a support vector
machine (SVM) [47] to detect the differences between MRCP during an emergency and
non-emergency state in VR environment tasks. The sensitivity attained was 60.57 ± 14.79%
in non-emergency states and 44.29 ± 5.73% in emergency states. As with other perfor-
mance measures, accuracy can be defined as the ratio between correctly observed and
wrongly observed movements to the total number of observed movements. Four studies
among the identified studies used accuracy, in percentages, as the performance mea-
sure [50,52,57,63,75].

Two other studies defined accuracy as the percentage of EEG samples correctly clas-
sified [49,54]. In [52], SVM was used to detect MRCP-(EEG-BCI) signals from different
movement training using robot assistance. The classification accuracy achieved was 79.7%
for healthy subjects and 66.64% for post-stroke subjects. In [49], the MKL algorithm was
used to classify gait states from EEG signals. The results from the tested subjects achieved
average accuracies of over 90% for the two types of exercise classification tasks and over
65% for the other four complex types of exercise classification tasks. Regarding singularity
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challenges, regularized LDA (RLDA) offers a useful answer. In [56], Jeong 2017 used RLDA
to decode MRCP walking intention under the lower-limb exoskeleton. Grand average
classification accuracy of 87.6% was attained by five healthy participants who performed
a self-initiated walking task while wearing the exoskeleton. In [54], he proposed the use
of a local Fisher’s discriminant analysis (LFDA) followed by a Gaussian mixture model
(GMM) classifier to decode subjects’ motion intentions while wearing a lower-body ex-
oskeleton. The offline assessment accuracies were approximately 98%. Jeong 2020 [57]
proposed SSSF as a powerful machine learning filtering method to accurately determine a
user’s intention on a single trial. Decoding results using RLDA reached 86%, and public
dataset performance was 73% for all subjects. Six studies did not present any performance
results [15,51,53,60–62].

MRCP-BCI has been highly explored in the past 10 years because it is associated
with movement intention and execution [16,59,76–78]. Many selected EEG electrodes
were used in the most identified studies, and the MRCP-EEG signal was filtered in a
lower frequency-time domain. A combination of LPP-LDA and LFDA-GMM classification
methods applied in [54,55,59,63] were observed to perform better at minimum latency.
Hybridized classifiers have been demonstrated to minimize large dimensionality problems
and to improve prediction accuracy [79–81]. However, SVM, LDA, and SDA had better
performance among the simple classifiers, as depicted in Table 3, because they have a low
variance and a high bias. In contrast, complex classifiers have the opposite [82]. Usually,
the number of datasets determines which classifier to use to achieve better accuracy. The
dimensionality is proposed to be at least five to ten times the number of training samples
per class [83,84].

Although the mode of MRCP-BCI may affect the efficiency of the system, both self-
paced (online or offline) and cue-based (offline or online) methods have been shown to
induce neural plasticity, as mentioned in several studies [85–87]. In most identified studies,
self-paced offline analysis was used, as indicated in Table 4. This is because the self-paced
offline analysis can accurately detect changes in neural activity and promotes engagement
with rehabilitation sessions compared to cue-based (offline or online) systems. Furthermore,
MRCP-BCI was accurately detected with low latency, allowing enough time for an external
device to provide relevant sensorimotor feedback and reach the cortical level [68,88].

Table 4. Previously published papers evaluated based on subject, application, frequency, analysis,
pace, and study description.

Ref. Subj. App. Frequency Analy. Paced Description

[15] 1 Patient RT
3 blocks of 10 min

every 3 days
a week

Offline Self

The use of EEG signals to improve the
engagement of stroke patients using

robot-assisted multisession
rehabilitation training.

[47] 7 Healthy VR

5 rounds, 5 min per
round; 2–3 min of

resting after
two rounds

Offline Self MRCP detection concerning
emergency and non-emergency tasks.

[49] 2 Healthy
1 Patient RT Multiple sessions in

30 days Offline Self

To compare the brain areas used for
identifying movement intentions in

healthy subjects and individuals with
spinal cord injury.

[50] 2 Healthy VR

Pre-exposure for
8 min, exposure for

15 min, and
post-exposure for
8 min for 8 days

Online Self
The use of the closed-loop BCI-VR
technology to control the walking

movements of a virtual avatar.
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Table 4. Cont.

Ref. Subj. App. Frequency Analy. Paced Description

[51] 8 Patient RT

Cumulated number
of hours and sessions
recorded after 4, 7, 10,

and 12 months

Offline Self

Long-term training with a
BMI gait protocol induces partial

neurological recovery in paraplegic
patients.

[52] 4 Healthy
2 Patient RT 6 blocks consisting of

23 trials Offline Self

Using an EEG-BCI system with
robot-assistive technologies to

improve the effectiveness of the hand
motor skills in post-stroke patients.

[53] 21 Patient RT
30–50 training trials
of dorsiflexion of the

foot
Offline Self

The application of BCI to chronic
Stroke led to an increased output of

the motor cortex to the target muscle.

[54] 1 Patient RT 8 trials followed by a
45-min break Offline Self

To decode the motion intentions of a
paraplegic person and give him the
ability to walk using a lower-body

exoskeleton.

[55] 10 Healthy RT 30 training trials Online Self

The capability of the user to
discriminate between a set of external
sensory stimuli combined with a fast

and reliable BCI brain switch.

[56] 5 Healthy RT.
50 trials, 9 s of

one-step walking,
and 10 s of resting

Offline Self Under the powered exoskeleton
environment, decoding user intention.

[57] 10 Healthy RT

50 trials of resting,
walking intention,
and exoskeleton

walking

Offline Self To improve the performance of MRCP
decoding.

[58] 6 healthy VR 50 trials Offline Self
EEG activities were utilized to

characterize the intention to move in
rehabilitation procedures.

[59] 10 Healthy RT 30 trials Online Self

MAFO is powered by a BCI for stroke
rehabilitation, with evidence of its

efficacy in promoting cortical
neuroplasticity.

[60] 4 Healthy RT
20 trials per run, with

5–8 s between each
task

Online Self Neurofeedback study for variations in
MRCP in real-time.

[61] 2 Patient RT

5-min walk with
robot-on, robot-off,

and no-robot
conditions

Offline Cue
Implementation of multimodal

physiological interface with the X1
device during walking.

[62] 3 Patient RT
24 training sessions,

each lasting for
30 min 3 days a week

Offline Self
Application of two-stage

robot-assisted training for hand motor
recovery.

[63] 11 Healthy VR 30 trials of ballistic
dorsiflexion Online Self

Application of the new BCI to
dynamic real-life scenarios: feasibility

and benefit.

[64] 3 Healthy,
4 Patient RT

For healthy subjects,
5–10 min of walking
with the exoskeleton.
For the patients, 20

and 30 min

Online Self
Analyzing the indicators of the

viability of the system for clinical
purposes.
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4. Discussion

This systematic review mainly focused on the potential of closed-loop RT- and VR-
MRCP-based BCI neurorehabilitation methods to translate chronic stroke patients’ move-
ment intentions into actual movements. Eighteen studies published between 2000 and
2021 were collected for this review. This chapter discusses a summary of each MRCP-BCI
rehabilitation system and its challenges. Finally, the reliability of the rehabilitation methods
is analyzed, along with the potential future rehabilitation methods for post-stroke patients.

One of the outcome rehabilitation methods from this review is closed-loop RT-MRCP-
based BCI neurorehabilitation. The MRCP movement intention signal is decoded from the
brain activity, and the external device initiates the required motion related to the user’s
intention to perform specific movements. The advantage of these rehabilitation methods is
that they can be used even in patients with no motor function and help them to interact with
their external environment. Various studies have shown that this rehabilitation method
is promising for inducing plasticity. It facilitates neural activity training with continual
repetition and simultaneously offers motion support.

Nevertheless, because the MRCP signal is very weak and is heavily influenced by
the subject’s attention and fatigue, maintaining the robot’s movement in real-time settings
is a significant problem because post-stroke patients quickly become tired and find it
difficult to concentrate on a task. Moreover, another limitation of RT-MRCP-based BCI
neurorehabilitation is that its operating system is cumbersome, complex, and massive. The
patients may lose motivation and feel uneasy in performing training exercises.

Another evaluation of rehabilitation methodology was closed-loop VR-MRCP-based
BCI neurorehabilitation, which was developed to provide rewards and encourage patients
to fully engage in the rehabilitation training program, thereby overcoming the problem
of patients becoming bored and dropping out. VR-MRCP-based BCI neurorehabilitation
is more cost-effective than RT-MRCP-based BCI neurorehabilitation. It directly interacts
with the physical environment, boosting user concentration to participate in the task and
activating more brain neural networks to induce plasticity. VR-MRCP-based BCI neu-
rorehabilitation can be used with or without a therapist present. Despite these enormous
advantages, few studies have been published, perhaps because VR-MRCP-based BCI neu-
rorehabilitation is a new rehabilitation method. A small sample of healthy subjects and
post-stroke patients have been involved in testing the implementation of the techniques.
Additionally, post-stroke patients find it difficult to interact with commercial VR games
due to the functional complexity of the games, which were customized for healthy subjects.
Therefore, customized VR neurorehabilitation should be designed to match post-stroke
patients’ needs in a realistic environment. Hence, further in-depth exploration should be
conducted to apply the method and study the viability of VR-MRCP-based BCI neuroreha-
bilitation approaches in post-stroke patients.

Regarding Table 4, small samples of healthy participants were evident in most re-
viewed studies. Nevertheless, some commercial RT-MRCP-based BCI systems, such as
AMADEO, Lokomat, Rex exoskeleton, XI robot, and BCI-MAFO, were alleged to be as
valuable and practical as VR-MRCP-based BCI systems, as in [47,50], and were shown to
be helpful in healthy subjects. Still, the effectiveness of these rehabilitation approaches in
a large number of post-stroke patients is debatable. Hence, more clinical trials should be
conducted to support these claims. Moreover, another remaining problem is to turn these
complex rehabilitation methods into cost-effective, user-friendly, and small systems that
can be used regularly at home.

Home-based neurorehabilitation devices would improve the quality of life of post-
stroke patients. They would allow low-cost therapy to be performed without therapist
supervision or the need to schedule rehabilitation sessions. Another potential concern
is the scalp’s lack of a standardized electrode location to record MRCP signals. MRCP
signals were decoded using electrodes placed at various locations on the scalp in the studies
mentioned in this review. In this review, the Cz and C3 channels are the most commonly
used to detect motor intention using the MRCP signal, with C3 being demonstrated to be
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for right-hand motor intention. However, only [52] found FC3 to be the most consistent
electrode site for detecting hand motor intention. In another work [89], fMRI was used to
study the Bereitschafts-BOLD response, and it showed that the supplementary motor area
(SMA) and cingulate motor areas are particularly evolved in pre-movement preparation
and readiness for voluntary movement. MRCP signals were also observed in the motor
cortex area [90].

Furthermore, hybrid LPP-LDA classifiers were mainly used and attained high per-
formance in many studies [55,59,63], even though careful studies must still be conducted
to minimize noise and other artifacts. The importance of generalization skills is sometimes
neglected. Improvements in skill generalization might be a solution to the classifiers. The
number of training repetitions; the force used; and difficulties in the training, attention,
and pathological lesions in specific brain areas influence the amplitude and latency of
the MRCP signal [16]. The classifier is an independent factor during preprocessing of the
MRCP signal, whereas the frequency and the spatial filters are dependent factors [91]. As
a result, robust detection with low latency and high accuracy is required for an RT- or
VR-MRCP-based BCI neurorehabilitation system to be useful.

Limitation

However, there are several limitations to this review. First, a group comparison
analysis of the two rehabilitation methods was not performed because of the small number
of studies obtained from only three databases with restricted publication years. For this
reason, meta-analyses should be included in future review studies. Second, although
RT- and VR-MRCP-based BCI rehabilitation methods are promising neurorehabilitation
methods for inducing plasticity in post-stroke patients, the generalization of the efficacy
results is limited due to the small number of studies and subjects used in the review. Very
few studies have conducted efficacy analyses of the tested methods in clinical settings.
Therefore, we recommend that future studies evaluate the efficacy of RT- and VR-MRCP-
based BCI rehabilitation methods using a large number of subjects in clinical settings.

5. Future Direction

Although we have highlighted the potential of RT and VR-MRCP-based BCI neurore-
habilitation therapies for patients with motor impairment, high technological challenges
make these new rehabilitation approaches challenging to use outside the controlled en-
vironment. Future improvements in hardware and software design and the reliability of
neural signal acquisition methods, processing techniques, and signal classification methods
should be carefully considered to encourage the use of these rehabilitation technologies
in clinical settings elsewhere. To address these challenges, researchers with various pro-
fessional backgrounds, such as clinical therapists, physicians, neuroscientists, robotic and
software engineers, and others, must collaborate by disseminating technical skill informa-
tion and pondering technological advancements to ensure the simplicity and reliability of
the approaches. Furthermore, many subjects, both patient and healthy, should be included
in the RT- and VR-MRCP-based BCI neurorehabilitation research. Therefore, this infor-
mation could be beneficial in developing a patient-driven rehabilitation device based on
MRCP-based BCI to induce brain plasticity and to restore motor impairment in the future.

6. Conclusions

The present systematic review focused on the RT- and VR-MRCP-based BCI neurore-
habilitation techniques. The RT- and VR-MRCP-based BCI rehabilitation techniques are
discussed in terms of their potential application, challenges pertaining to signal acquisi-
tions, preprocessing, and processing methods. We also discussed the prospects intending
to raise awareness of this emerging field. Adding these novel rehabilitation therapies to
standard clinical therapies can improve the clinical success of motor impairment rehabil-
itation training by allowing for real-time functional assessment and effective treatments.
The relationship between key items using the overlay visualization method is carried out,
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helping to identify the trend of the most frequent and recent key items used in this field.
Due to the various challenges and limitations facing this field, as mentioned in Section 4
above, very few studies have been published from the searched databases. Perhaps, this is
because of the newness and complexity of these rehabilitation techniques and the enormous
demanding investment of cost and professionalism. Therefore, this study will support
engineers and researchers in RT and VR- MRCP-based BCI systems to: improve clinical
systems and methods, solve the current challenges, and enhance the usability of the RT-
and VR-MRCP-based BCI rehabilitation systems for healthy persons and those with motor
impairment.
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