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Abstract: Recent advances in sensor technology have facilitated the development and use of person-
alized sensors in monitoring environmental factors and the associated health effects. No studies have
reviewed the research advancement in examining population-based health responses to environmen-
tal exposure via portable sensors/instruments. This study aims to review studies that use portable
sensors to measure environmental factors and health responses while exploring the environmental
effects on health. With a thorough literature review using two major English databases (Web of
Science and PubMed), 24 eligible studies were included and analyzed out of 16,751 total records.
The 24 studies include 5 on physical factors, 19 on chemical factors, and none on biological factors.
The results show that particles were the most considered environmental factor among all of the
physical, chemical, and biological factors, followed by total volatile organic compounds and carbon
monoxide. Heart rate and heart rate variability were the most considered health indicators among
all cardiopulmonary outcomes, followed by respiratory function. The studies mostly had a sample
size of fewer than 100 participants and a study period of less than a week due to the challenges
in accessing low-cost, small, and light wearable sensors. This review guides future sensor-based
environmental health studies on project design and sensor selection.

Keywords: sensor; wearable; portable; environmental monitoring; health effect; human subject study

1. Introduction

Excessive environmental exposure is a major risk factor for the worldwide burden
of diseases nowadays. The Institute for Health and Evaluation (IHME) estimates that
approximately 12.4 million people died in 2019 due to living or working in unhealthy
environments, accounting for 20% of all global deaths [1,2]. Numerous studies have doc-
umented that exposure to environmental factors (e.g., air quality, temperature, noise) is
significantly related to various human diseases and premature deaths. For instance, air pol-
lution is associated with morbidity and mortality due to cardiovascular diseases [3], lung
cancers [3], diabetes [4], Alzheimer’s diseases [5,6], depression [7], and anxiety [8]. Mean-
while, noise exposure can damage the human cardiovascular system, autonomic nervous
system, endocrine system, and neurocognitive functioning [9]. Extreme environmental
temperatures significantly increase the risks of cardiovascular diseases [10], neurodegener-
ative diseases [11], depression [12], and anxiety [13]. In addition, illumination and light
can impact human cognitive functions [14].

It is often required to measure environmental exposure and health responses in envi-
ronmental health-related studies. Traditionally, environmental exposure levels are typically
measured using stationary monitoring stations or sampling devices placed at fixed locations
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in population-based studies [3,15–19]. For example, in a study assessing the relationship
between long-term exposure to fine particles (PM2.5) and premature mortality, the PM2.5
exposure levels were obtained from public monitoring networks [3]. In another study
examining the cardiorespiratory effects of various filters in building ventilation systems,
the ozone exposure levels were measured using a fixed-site instrument (2B Tech Model 205)
combined with time-activity questionnaires [19]. As for health response measurements,
the common ways include supervised or unsupervised questionnaires [20–22], routine
clinical visits in medical facilities [23], and portable medical devices operated by non-
medical persons [19]. All these traditional means of measuring environmental exposure
and health responses require either high-end instruments or operation by experienced
persons, limiting the application of such measures on a large scale. In addition, with
limited spatiotemporal resolutions, such measures make it challenging to measure personal
environmental exposure and health responses continuously.

In recent years, rapid advances in sensor technology have facilitated the development
and use of personalized sensors [24,25]. A report predicts that the global smart sensor
market will exceed USD 208 billion by 2031 [26]. As many sensors are relatively low-cost
and portable and can provide data with high spatiotemporal resolutions, they have been
used in many environmental health-related studies, especially in individual-monitoring
aspects. For instance, Runkle et al. used wearable sensors to continuously measure
individual experienced temperature and physiologic heat strain response among grounds
maintenance workers [27]. Sisto et al. used portable sensors to evaluate the hearing loss
of fiberglass-manufacturing workers due to noise exposure [28]. Tang et al. used mobile
sensors to investigate the effects of personal exposure to particle-bound polycyclic aromatic
hydrocarbons on the heart rate variability of healthy elderly [29].

There have been several reviews on the progress of portable sensor development and
application in environmental monitoring [25,30–36]. For example, Willner and Vikesland
reviewed nanosensor design and application in detecting environmental pesticides, heavy
metals, and pathogens. Meanwhile, another review by Ullo and Sinha [33] focused on
advances in intelligent environment monitoring systems using portable sensors and the
Internet of Things. Additionally, Morawska et al. systematically reviewed the applications
of low-cost sensing technologies for air quality monitoring and exposure assessment in
large projects, with attention to sensor validation, deployment, and data access [31]. On
the other hand, there are also reviews on health sensors [37–40]. Generally, the previous
reviews mainly focus on developing and applying either environmental or health sensors.
For instance, Meng et al. reviewed wearable pressure sensors for human pulse wave
monitoring, focusing on the transduction mechanism, microengineering structures, and
related applications in pulse wave monitoring and cardiovascular condition assessment [37].
Oh et al. reviewed health monitoring sensors in electronic skin, focusing on sensing
mechanisms and material [38]. To our knowledge, no studies have reviewed the research
advancement in examining population-based health responses to environmental exposure
via portable/wearable sensors. Herein, we refer to the studies measuring both exposure
and health indicators with portable/wearable sensors rather than those with sensing
measurements in only one aspect. Sensors applied in both the environment and health
enable a detailed time–location–exposure–health picture for each individual and a deep
analysis of how environmental exposure impacts human health indicators dynamically.

Given the gaps in the existing literature, this study aims to review studies that use
portable sensors to measure both environmental factors and health responses while explor-
ing environmental effects on health. As such, the present review and analysis guide future
sensor-based environmental health studies on project design and sensor selection.

2. Methods
2.1. Data Source and Search Strategy

We searched articles published from 1 January 1990 to 31 March 2022 in two major English
databases (Web of Science and PubMed). Using the Boolean phrase and wildcard character,
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we tried a variety of search strategies. Firstly, we focused on the “health effects” of general
“environmental factors/exposure” using “wearable/mobile/portable” sensors. Secondly, we
further searched the articles on a specific physical, chemical, or biological environmental factor
(i.e., noise, heat, temperature, humidity, radiation, electromagnetic, UV, ozone, nitrogen oxide,
ammonia, chemical, organic, inorganic, formaldehyde, volatile organic compound (VOC),
particulate matter (PM), virus, bacteria, fungi). All the terms were searched in topics that
included titles, abstracts, and keywords. Thirdly, the references of the included papers and
other relevant papers of the lead authors that met the eligibility criteria were also reviewed.
The search strategy is shown in Table S1 (Supplementary Materials). EndNote (Version X8)
was used to manage the citations.

2.2. Eligibility Criteria

The eligibility criteria were as follows: (1) language was limited to English; (2) arti-
cle types were limited to research articles; (3) both environmental exposure and health
responses were measured by portable sensors/instruments rather than stationary devices
or questionnaires. Meanwhile, articles lacking available full texts were excluded.

With all the search results determined, as shown in Table S1, one reviewer performed
the first screening of titles and abstracts based on the above eligibility criteria. Afterward,
another reviewer examined the full text and re-screened the selected literature. Lastly, all
reviewers checked the screened full text to validate quality. Disagreements were resolved
by consensus after discussion.

2.3. Study Inclusion

The flow chart of study inclusion is shown in Figure 1. With the above search strategy,
16,751 records were identified in the initial search, including 14,092 from the Web of Science
and 2659 from PubMed. After the 1st screening based on titles and abstracts, 88 records
remained. With full texts screened by another reviewer, 36 records remained after ineligible,
and duplicated records were removed. Furthermore, 18 articles were identified based on
the citations of the 36 records, adding up to 54. Thirty records were further excluded after
all the reviewers screened the full texts and discussed their eligibility. Finally, 24 studies
were included in our analysis.

2.4. Analysis Strategy

The 24 included studies were summarized based on environmental factors. Specifically,
the studies were separated into three major categories, i.e., physical factors, chemical
factors, and biological factors. Physical factors include noise, temperature, humidity,
and radiation. Chemical factors include inorganic gaseous pollutants, organic gaseous
pollutants, particles, and heavy metals. In contrast, biological factors include viruses,
bacteria, and fungi. Eligible studies for each subgroup were summarized in a table, with
information on specific environmental factors, health indicators, sensor models, location,
period of analysis, and population. Furthermore, challenges and opportunities regarding
the wearable sensor-based environmental health studies were discussed. In the review, we
focused on introducing the methods, particularly about sensors, of the reviewed studies
rather than the results or conclusions. As such, we aim to facilitate future studies on how
to design projects, especially on how to choose reliable, portable, and low-cost sensors.
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3. Results
3.1. Overview

The 24 included studies are summarized in Figure 2 and Table S2, including 5 studies
on physical environmental factors and 20 on chemical factors (one study involved both
factors). No eligible studies on biological factors were found. Among the five studies on
physical environmental factors, two examined noise, and three examined temperature. No
eligible studies were found for electromagnetic, UV, visible light, or infrared radiation.
As for the studies on chemical factors, 16 examined PM, six examined inorganic gaseous
pollutants, two examined organic gaseous pollutants (total volatile organic compounds
(TVOCs)), and one examined a heavy metal—arsenic. In addition, no eligible studies were
found for ozone, sulfate oxides, ammonia, radon, or a specific VOC. Regarding environ-
mental media, 23 studies focused on the atmospheric environment, and only one focused
on the water environment. In contrast, no studies were found for the soil environment.
Twenty studies were published in the past ten years, while thirteen were published in the
past five years, indicating an emerging and growing research interest. The studies were
primarily conducted in China (nine papers) and the USA (eight papers), with the others in
some Asian and European countries. Additionally, the typical sensors and the wearable
positions in the included studies are illustrated in Figure S1.
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PM = particulate matter.

3.2. Physical Factors

In this section, we found two eligible studies on noise and three on non-optimal
temperature, as summarized in Table 1.

Table 1. Studies focusing on health effects of physical factor exposure.

Study Location Scenario Period Subject Exposure
Measurement

Health
Measurement

Number of
Records Main Findings

Nserat et al.
[41] Jordan Industrial

plants 2017 191 male
workers

Noise level:
Casella

sound level
meter CEL-450A,

~USD 4000

Blood pressure
(BP): KaWe

Mastermed A2
Aneroid BP

Monitor, ~USD 43

One time for
each subject

Exposure to a high
level of noise was
associated with
elevated blood

pressure.

Cole-Hunter
et al. [42] Spain Traffic 2011

28 healthy
non-

smoking
adults

Noise level
(LAeq): CESVA

sound level
meter SC160

Heart rate (HR),
heart rate

variability (HRV):
Gem-Med Holter

monitor
CardioLight

8 h for each
subject Not presented.

Runkle et al.
[27] USA Occupational 2016 35 outdoors

workers

Ambient
temperature:
Thermochron

iButton DS
1921G, ~USD 50

HR:
Garmin vivoActive
HR watches, ~USD

1500

5 days for each
subject

The association
between increasing

temperature and
heat strain

was nonlinear and
exhibited a
U-shaped

relationship.

Sugg et al. [43] USA Occupational 2018 54 outdoors
workers

Ambient
temperature,

solar radiation
intensity:

Thermochron
iButton DS

1921G, ~USD 50

HR:
Garmin vivoActive
HR watches, ~USD

1500

1 week for each
subject

A weak significant
relationship was

observed between
personal ambient
temperatures and
weather station
measurements.

Basu and
Samet [44] USA Daily

routine 2000 42 elderly
residents

Ambient
temperature:

unknown
temperature

sensor probes

HR, body
temperature:

unknown polar
chest strap,

temperature sensor
probes, mercury

detectors

48 h for each
subject

Body temperature
was not associated

with ground
station

temperature.
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3.2.1. Noise

Noise is a prominent feature of the environment, mainly including the noise from
industry, construction, and traffic. Based on the IHME estimates, approximately 17.4%
of hearing loss worldwide in 2019 was attributed to occupational noise exposure, corre-
sponding to about 7 million disability-adjusted life years (DALYs) [1]. In addition, a WHO
report shows that environmental noise (mainly traffic noise in the analysis) accounted for
at least one million healthy life years per year in Western Europe, including 61,000 years of
ischemic heart disease, 45,000 years of the cognitive impairment of children, 903,000 years
from sleep disturbance, 22,000 years from tinnitus, and 587,000 years from annoyance [45].

We found two studies examining the health effects of noise exposure using portable
sensors, as summarized in Table 1. Both studies used portable sound meters [41,42], which
contain a flexible membrane that moves slightly in sound waves and converts membrane
movement into an electrical signal. As for the health measurement, one study measured one-
time blood pressure (BP) with a portable BP monitor operated by a technician, whereas the
other measured heart rate (HR) and BP continuously for eight hours with a Holter monitor.
In addition, the former focused on 191 male workers in an industrial noise exposure
scenario, whereas the latter focused on 28 healthy adults in a traffic noise exposure scenario.
In addition, the continuous HRV measurement enabled a high-resolution data analysis at
a 5 min scale. However, the health measurements were mainly on a few cardiovascular
indicators with limited portability and operability. In contrast, the investigations on hearing
loss were mainly conducted via questionnaires or clinical visits, rather than portable
sensors [46,47]. One study found that exposure to a high noise level was associated with
elevated blood pressure [41], whereas the other study mainly reported the health effects of
air pollution, as discussed below.

3.2.2. Temperature

Extreme temperatures have increasingly occurred in recent years due to global warm-
ing. Based on the IHME estimates, non-optimal temperatures led to about 2 million deaths
and 37.6 million DALYs worldwide in 2019, mainly from cardiovascular diseases, chronic
respiratory diseases, respiratory infections, tuberculosis, diabetes, and kidney diseases [1].
Another analysis showed that the increased frequency and magnitude of heat waves af-
fected over 125 million adults during 2000–2016, resulting in a 5.3% decrease in global
outdoor manual labor productivity [48]. Non-optimal temperatures can impact human
health in many aspects. Particularly, heat exposure can cause dizziness, weakness, fatigue,
cramps, and fainting, and in the case of heat stroke, it can even lead to multi-organ fail-
ure, coma, and death. Meanwhile, cold exposure increases the risk of cardiovascular and
respiratory disease [49].

We found three studies examining the health effects of non-optimal temperature
exposure using portable sensors, as summarized in Table 1. One of the studies assessed
measured the 48 h personal ambient temperature, body temperature, heart rate, and
activity level of 42 elderly residents in Maryland during heat episodes, without specifying
the makes and models of sensors [44]. The other two studies were from the same group,
which used the same small-size button-type sensors to measure temperature and used
smartwatches to measure heart rate and GPS coordinates [27,43,44]. The GPS information
facilitated the distinction between outdoor and indoor personal experienced temperatures.
While both targeted the outdoor occupational population, one focused on heat exposure
and the other on cold exposure. In total, 35 and 54 subjects were continuously monitored
for five consecutive days, respectively. One study revealed that the association between
increasing temperature and individuals’ heat strain was nonlinear and exhibited a U-shaped
relationship [27], whereas the other studies showed that the ground station temperature
might not well represent personal sensing or body temperature.
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3.3. Chemical Factors
3.3.1. Gaseous Pollutants

In this section, we found one eligible study on nitrogen oxides (NOx), four on carbon
monoxide (CO), one on carbon dioxide (CO2), and two on total VOCs (TVOCs). The details
are summarized in Table 2.

Table 2. Studies focusing on health effects of gaseous pollutant exposure.

Study Location Scenario Period Subject Exposure
Measurement

Health
Measurement

Number of
Records Main Findings

Matt et al. [50] Spain Traffic 2013–2014 30 healthy
adults

NOx: 2B Tech.
Model 410 Nitric
Oxide Monitor,

~USD 8000

Respiratory
function: Ndd

Medical
EasyOne

spirometer,
~USD 1900

8 h for each
subject

Associations
between NOx
exposure and

respiratory
measures

were modified by
participants’

physical activity
levels.

Tang et al. [29] China Daily life 2012–2013 7 healthy
older people

CO: TSI Q-TRAK
model 7575, ~USD

4300

HRV: MSI ECG
recorder and

analyzer model
E3-8010

144 h for each
subject

Exposure to CO
had a lagged effect

of 0–7 h on HRV
for elders.

Tang et al. [51] China Traffic 2009–2010 20 college
students

CO: Dräger PAC III
CO detection

instrument, ~USD
900

HRV: MSI ECG
recorder and

analyzer model
E3-8010

48 h for each
subject

Exposure to CO
had a > 4 h lagged
effect on HRV for

young people.

Saadi et al.
[52] Israel Daily life Not men-

tioned
44 healthy

women

CO: Dräger PAC III
CO detection

instrument, ~USD
900

HRV: Polar 810i
monitor

48 h for each
subject

Short-term
exposure to CO

below 7 ppm was
related to declined

HRV.

Deng et al.
[53] USA Working

and resting 2016 17 workers

TVOC: Self-made
portable wireless
VOC monitoring

device

Individual
resting metabolic

rate (RMR):
Breezing Indirect

Calorimeter,
~USD 550

2 h for each
subject

No obvious
correlation

between
VOCs exposure
and RMR was

found.

Wong et al.
[54] China

Chinese
restaurant
kitchens

Not men-
tioned

393 kitchen
workers

CO, CO2: TSI
Q-Trak Model 8554,

TVOC: RAE
Systems PGM-7240,

~USD 1200

Respiratory
function:

Vitalograph 2160

2 h for each
subject

Exposure to toxic
air pollutants in
kitchens led to

worse lung
functions and

higher prevalence
of respiratory

symptoms.

• NOx.

NOx is one of the most common environmental pollutants, mainly from human
activities related to the combustion of fossil fuels. NOx is associated with respiratory
diseases, especially asthma, often resulting in many respiratory symptoms (coughing,
wheezing, or difficulty breathing) [55,56]. Matt et al. studied the short-term effects of traffic-
related air pollution (including NOx) and physical activity on the respiratory function of
participants using portable sensors [50]. They focused on 30 healthy adults in Spain, each
going through four 2 h traffic-related exposure scenarios during 2013–2014. A nitric oxide
monitor was used to measure NOx continuously, and a portable spirometer was used to
assess the respiratory function three times.

• Carbon monoxide (CO) and carbon dioxide (CO2)

Increased CO2 emissions aggravate global climate change and pose a potential car-
diopulmonary health risk to humans. Recent studies have shown significant linear phys-
iological changes in circulatory, cardiovascular, and autonomic systems due to excess
CO2 exposure [57]. In addition, CO2 is a significant factor associated with symptoms of
sick building syndrome (SBS) in office workers [58]. On the other hand, CO, one of the
five pollutants included in the Air Quality Index [59], can cause adverse reactions in the
cardiovascular system, including angina pectoris at moderate exposure concentrations
and myocardial infarction at high exposure concentrations [60,61]. In addition, CO can
lower the partial pressure of oxygen in the blood and significantly increase the risk of
heart-related complications after surgery [62].
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All four studies on CO used electrochemical sensors to continuously measure CO
levels, among which two used TSI Q-Trak [29,54], and the others used Dräger PAC III [51,52].
In addition to CO, Wong et al. also measured CO2 simultaneously using TSI Q-Trak.
Three measured HRV with a portable electrocardiograph (ECG) recorder or a smartwatch,
while the other measured respiratory function using a portable mechanical volumetric
spirometer. Focusing on daily life or traffic-related CO exposure scenarios, the studies
recruited 7–44 healthy adults and collected personal environmental exposure and health
data for 1–6 days. With high-resolution CO and HRV data, these studies were able to
identify the lagged effects of CO exposure on HRV [29,51].

• Volatile Organic Compounds (VOCs)

Increased generalized volatile organic compounds (VOCs) include a large compound
of organic pollutants, e.g., formaldehyde, benzene, toluene, xylene, phthalates, and poly-
cyclic aromatic hydrocarbons (PAHs). TVOC often refers to the total VOCs measured from
a sample using a TVOC sensor. VOC exposure has been associated with many adverse
health effects, such as sick-building syndromes, asthma, blood dyscrasias, nasopharyngeal
cancer, and leukemia [63]. The IHME estimates indicate that occupational exposure to
formaldehyde and benzene led to about 3000 deaths and 136,000 DALYs worldwide in
2019, mainly from nasopharyngeal cancer and leukemia [1].

We found two studies examining the physiological effects of VOC exposure using
portable sensors, as summarized in Table 2. While both studies measured TVOC via
portable sensors, one used a commercial device that contained a photoionization detec-
tor [54], and the other used a self-made portable device comprising an electrochemical
sensor [53]. As for physiological measurements, the former measured respiratory function
with a portable spirometer supervised by staff, whereas the latter measured the resting
metabolic rate with a portable indirect calorimeter. Moreover, both studies focused on the
occupational population: 17 office workers in one study and 393 kitchen workers in the
other. In addition, both studies examined the short-term effects, with 2 h exposure and
measurements for each subject. No obvious correlation between VOC exposure and RMR
was found. However, exposure to toxic air pollutants in gas-fueled kitchens led to worse
lung functions and a higher prevalence of respiratory symptoms.

3.3.2. Particles

Based on aerodynamic diameter sizes, ambient particles can be classified into ultrafine
particles (UFPs or PM0.1; no larger than 0.1 µm), fine particles (PM2.5; no larger than 2.5 µm),
inhalable particles (PM10; no larger than 10 µm), and total suspended particles (TSP; no
larger than 100 µm). In addition, some other common pollutants are related to particles,
including black carbon (BC) and particle-bounded PAHs (p-PAHs). Particle exposure has
been associated with various human diseases, including cardiovascular diseases, lung
cancers, diabetes, Alzheimer’s, depression [7], and anxiety [3–6,8]. The IHME estimates
indicate that particle pollution resulted in about 6.5 million deaths and 209.6 million DALYs
worldwide in 2019, representing the second largest risk factor for the global burden of
diseases [1].

We found 16 eligible studies on particles, representing 67% of all of the included
studies. The general information on exposure and health measurements, as well as study
subjects, is shown in Table 3. The studies involved measurements of PM2.5 (16 studies),
PM10 (5), PM1 (4), UFPs (3), PM7 (1), BC (3), and p-PAHs (1). While the particles were
measured via portable devices in all studies, most used lab-grade devices (e.g., CPC and
DiSCmini for UFPs, SidePak and DustTrak for PM2.5, and AE51 for BC) rather than lost-cost
sensors. Only four studies utilized low-cost particle sensors, such as Dylos devices [64]
and self-made boxes with PlanTower sensors [65–67]. Regarding health measurements,
13 studies measured HR or HRV, and 4 measured respiratory function (1 involved HR and
respiratory functions). Despite varying makes and models, these studies used a Holter or
ECG monitor to measure the HR and HRV, and a spirometer was used to measure the respi-
ratory function. While most studies focused on healthy adults, Tang et al. (2007) recruited
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asthmatic children, and Arvind et al. [65] also recruited asthmatic subjects. Additionally,
Xing et al. [68] examined hypertensive patients. Among the studies, the participants ranged
from 7–282, and the monitoring periods ranged from hours to six days. As a spirometer
is not a real-time device, the studies assessing participants’ respiratory function collected
non-continuous health data. With high-resolution PM and HRV data, some studies were
able to identify the lagged effects of PM exposure on HRV. For instance, Tsou et al. [66]
found that short-term exposure to PM2.5 showed 6–18 h lag effects on overweight people’s
HRV. In addition, Lee et al. [69] revealed that PM2.5 and BC exposure showed lagged effects
on obese people’s HRV and HR at least within 3 h.

Table 3. Studies focusing on health effects of particle and heavy metal exposure.

Study Location Scenario Period Subject Exposure
Measurement

Health
Measurement

Number of
Records Main Findings

Lee et al. [64] Korea Daily life 2018–2019 22 healthy
adults

PM2.5: Dylos
DC1700

BP: IEM Mobil-O
Graph

Ambulatory BP
monitor

HR and HRV:
Aria Del Mar

Reynolds
Medical ECG

monitor

24 h for each
subject

Short-term exposure
to PM2.5 was

associated with
decreased HRV.

Tang et al. [29] China Daily life 2012–2013 7 healthy
older adults

UFPs: DiSCmini
PM2.5 and PM10:

Grimm PAS Model
1.109

BC: MicroAeth
model AE51

p-PAHs: EcoChem
Photoelectric

sensor PAS2000CE

HRV: MSI ECG
Model E3-8010

144 h for each
subject

Different pollutants
showed different
lagged effects on

HRV.

Tsou et al. [66] China Daily life 2018–2019 35 healthy
adults

PM1 and PM2.5:
Self-made box with

PlanTower PMS
sensor

HRV: RootiRx 48 h for each
subject

Short-term exposure
to PM2.5 had 6–18 h

lagged effects on
overweight people’s

HRV.

Cole-Hunter
et al. [42] Spain Traffic 2011

28 healthy
non-

smoking
adults

UFPs: TSI CPC
Model 3007

PM2.5: TSI DusTrak
Model 8532

BC: MicroAeth
model AE51

HR and HRV:
Gem-Med Holter

monitor
CardioLight

8 h for each
subject

Exposure to TRAP
shows a rapid but

nonlinear impact on
HRV in healthy

adults.

He et al. [70] USA Daily life 2007–2009

106 healthy
non-

smoking
elders

PM2.5: Thermo
Scientific Personal

DataRam pDR
model 1200

HR: Mortara
12-lead HScribe
Holter System

24 h for each
subject

PM2.5
exposure was related

to HRV, with the
largest effects

occurring about 4–6 h
lagged.

Lee et al. [69] USA Daily life 2004 21 healthy
adults

PM2.5: TSI SidePak
AM510

HR and HRV:
Raytel Cardiac
Services ECG

Holter

48 h for each
subject

Short-term exposure
to PM2.5 showed a lag

effect on people’s
HRV up to 2.5 h.

Li et al. [71] China Daily life 2017–2018 97 young
adults

PM2.5: RTI
MicroPEM

BC: MicroAeth
model AE51

HR and HRV:
DM Software Inc.

12-channel
Holter recorder

MGY-H12

24 h for each
subject

PM2.5/BC exposure
showed lag effects on
obese people’s HRV

and HR at least
within 3 h.

Lung et al.
[67] China Daily life Not men-

tioned

36 healthy
non-

smoking
adults

PM2.5: Self-made
box with

PlanTower PMS
sensor

HRV: RootiRx 48–96 h for each
subject

Short-term exposure
to low-level PM2.5
(<10 µg/m3) was

related to HRV.

Magari et al.
[72] USA Industrial

plants
Not men-

tioned
40 male
workers

PM2.5: TSI
DustTrak 8534

HRV: Dynacord
3-channel device

423

up to 24 h for
each subject

Occupational and
environmental PM2.5

exposure within
minutes to hours was

related to HRV.

Langrish et al.
[73] China Daily life 2008

15 healthy
non-

smoking
volunteers

PM2.5: Thermo
Scientific

DataRAM monitor
pDR-1500

HRV: Spacelabs
Holter monitor

Lifecard

24 h for each
subject

Wearing a mask for
2 h tended to

eliminate the adverse
effects of air pollution

on blood pressure
and HRV.

Matt et al. [50] Spain Traffic 2013–2014

30 healthy
non-

smoking
adults

UFPs: TSI CPC
3007

PM2.5 and PM10:
TSI DustTrack 8534

HR: Gem-Med
Holter monitor

CardioLight
Respiratory

function: Ndd
Medical
EasyOne

spirometer

8 h for each
subject

Associations between
various pollutant

exposures and
respiratory measures

were modified by
participants’ physical

activity levels.
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Table 3. Cont.

Study Location Scenario Period Subject Exposure
Measurement

Health
Measurement

Number of
Records Main Findings

Tang et al. [51] China Traffic 2009–2010
20 healthy

college
students

PM1, PM2.5, and
PM10: GRIMM PAS

Model 1.108
HRV: MSI ECG
Model E3-8010

48 h for each
subject

Exposure to PM2.5–10,
among all

size-fractional
particles, led to the
largest variations in

HRV.

Tang et al. [74] China Daily life 2003–2005 30 children
with asthma

PM1, PM2.5, and
PM10: GRIMM PAS

Model 1.108

Peak expiratory
flow rate (PEFR):

Microlife
Electronic PEFR
monitor PF-100

14 h for each
subject

PM exposure showed
lagged and

cumulative effects on
the decrements in

morning PEFR.

Arvind et al.
[65] Greece Daily life Not men-

tioned
44 asthmatic

subjects
PM2.5: Airpseck

sensor (self-made)

Respiratory rate:
Respeck sensor

(self-made)

48 h for each
subject

Short-term exposure
to PM2.5 showed
lagged effects on

respiratory rates of
asthmatic adolescents

Xing et al. [68] China Daily life 2017–2019
282 hyper-

tension
patients

PM2.5: RTI
MicroPEM and TSI

SidePak AM520

HRV: 12-lead
Holter device.

JincoMed

3 days for each
subject

Short-term exposure
to PM2.5 was related
to HRV; BP control
and ARB treatment

alleviated the adverse
effects.

Nyhan et al.
[75] Ireland Traffic Not men-

tioned

32 young,
healthy
subjects

PM1, PM2.5, PM7,
PM10, and TSP:

Met One Aerocet
531

HRV: CamNtech
Actiheart units

8–10 h for each
subject

Short-term exposure
to PM2.5 was related
to HRV decline for

commuters.

Nafees et al.
[76] Pakistan

Drinking
groundwa-

ter
2009 100 subjects

≥15 yrs

Water Arsenic:
Industrial Test
Systems, Inc.

Arsenic Quick Kit

Lung function:
Vitalograph New

Alpha 6000
spirometer

One time for
each subject

Chronic exposure to
arsenic in drinking
groundwater was
associated with a
decrement in lung

function.

3.3.3. Heavy Metals

Metals, especially heavy metals such as lead, cadmium, chromium, and arsenic pose
a significant potential threat to human health in occupational and life situations. Heavy
metals in the environment can enter and accumulate in the body through various pathways,
including the respiratory, digestive, and dermal systems. Both high acute and chronic
concentrations have been demonstrated as significant health risks [77,78]. The IHME
estimates indicate that occupational exposure to arsenic, cadmium, nickel, and beryllium
led to about 20,000 deaths and 560,000 DALYs worldwide in 2019, mainly from tracheal,
bronchus, and lung cancer [1].

Over the last decade, environmental arsenic exposure has been a significant global
public health concern, especially in drinking water. Nafees et al. conducted a comparative
cross-sectional study to examine the associations between chronic arsenic exposure through
drinking groundwater and a decrease in lung function among 200 subjects in total [76]. A
portable kit was used to test the arsenic in water samples, and lung function was measured
using a portable spirometer.

4. Discussion

Among the 16,751 papers identified in the initial search, most measured environmental
factors or measured health responses with conventional methods, e.g., questionnaires [46,79],
clinical visits [47,80], and biochemical analysis [81,82], rather than portable sensors. Overall,
these studies using the above non-sensor methods consume vast amounts of human resources,
materials, and time, thus limiting the scale of the study sample size and period. However,
the included 24 studies examining environmental exposure and associated health effects via
portable sensors/devices are generally also short-term and small-sample-based. Excluding the
studies with one-time measurements, most included studies have a sample size of fewer than
100 participants and a study period of less than a week. It indicates that applying portable
sensors to extensive human subject studies still faces substantial challenges.

One of the main challenges is environmental sensors. Although the environmental
monitors used in the included studies were relatively portable/mobile, they mostly added
significant burdens to the participants due to their size and weight, preventing long-term
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personal exposure monitoring. The dimensions and weights of some portable environmen-
tal sensors/instruments for noise and chemical factors are summarized in Table S3. The
listed sensors/instruments (e.g., Casella sound meter, 2B Tech. NOx monitor, RAE TVOC
monitor, TSI aerosol monitor) are generally in decimeters and kilograms. For instance,
Tang et al. integrated several environmental sensors (UFPs, PM2.5, BC, p-PAHs) into a
6.6 kg system [29], challenging monitoring long-term personal exposure. In addition, the
costs are relatively high, mostly in thousands of US dollars (USD). In contrast, the sensor
for temperature monitoring (Thermochron iButton used in Runkle et al. [27]) was suitable
for personal monitoring due to the small size (17 mm in diameter and 6 mm in thickness)
and reasonable cost (~USD 50). On the other hand, the existing sensor-based studies mainly
focus on chemical factors (NOx, COx, TVOC, PM), with a few on physical factors (noise,
temperature) and almost none on biological factors. However, many other environmental
factors can affect human health, such as electromagnetic [83] and UV radiation [84] among
physical factors; ozone, formaldehyde, benzene, and other VOCs among chemical factors;
and pollen [85], viruses, bacteria, and fungi among biological factors. Almost no studies
have investigated the above factors via sensors. Notably, low-cost, portable environmental
sensors have been increasingly commercialized in recent years yet limited to light-scattering
particle counters and electrochemical/semiconductor sensors for some gaseous compo-
nents (NOx, COx, ozone, SO2, TVOCs) [30,36]. For example, Mallire et al. measured ozone,
TVOC, temperature, humidity, and activity levels with a 64 g wristband wearable de-
vice [86]. Moreover, studies on metal oxide (MOX) semiconductor gas sensors have drawn
much attention due to their low costs, trim sizes, and reasonable life span. Some studies
have developed prototypes of MOX-based gas sensors to measure a single VOC or multiple
VOC components with sensor arrays [87–89]. In addition, sensor-based methods have
been recently developed for per- and polyfluoroalkyl substances (PFAS) detection, such
as small molecule complexation and assay-based methods, nanoparticle-based methods,
molecularly imprinted polymer (MIP)-based methods, optical fiber-based method, and
immunosensor-based methods [90]. Additionally, a few recent studies reviewed sensor-
based methods for food contaminant detection, including pesticides, antibiotics, heavy
metal ions, phenolic compounds, and nitrites [91–93]. Such sensors can be valuable in
sensor-based environmental health research if commercialized. However, many of the
above electrochemical and MOX sensors are still in the lab-based process. Thus, commer-
cializing these sensors needs more work and cooperation from various parties. Developing
multi-functional, small-size, and highly portable environmental sensors is of great value
for future environmental monitoring research.

Another challenge is health sensors. Among the 16,751 initial records, many stud-
ies measured health responses via conventional methods (e.g., questionnaires, personal
reports, and clinical visits). The portable health sensors in the 24 eligible studies mainly
include a smartwatch for HR and activity level monitoring, a Holter and ECG recorder for
HRV monitoring, a BP monitor for BP measurement, and a spirometer for lung function
measurements. The BP monitor and spirometer used in these studies were not real-time
instruments—the measurements were performed manually. Currently, portable/wearable
sensors for continuous health indicators are very limited. In addition to smartwatches (HR,
physical activity, sleep quality, blood oxygen saturation), Holters (HRV), ECG recorders
(HRV), and wrist BP monitors (BP), some companies (e.g., Omron and Huawei) have
launched their smartwatch BP edition. However, these BP smartwatches cannot provide
continuous BP monitoring as the user needs to trigger the measurement following a stan-
dard operating procedure. With advances in sensor technology, new portable sensors such
as EEG signal monitoring [94], blood glucose monitoring [95], and electronic skin [38] are
emerging. Commercial blood glucose sensing products have been increasingly popular, e.g.,
continuous glucose monitoring (CGM) products from Dexcom, Eversense, and FreeStyle
Libre. However, the commercialization of flexible sensors needs more work on the sensor
stability over long-term operations or the bending influence on sensing performance [96].
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Future studies utilizing such emerging sensors can advance our understanding of the
health effects of environmental exposure.

Figure 3 illustrates a framework of human subject studies using environmental and
health sensors. Wearable sensors placed on fingers, wrists, arms, necks, and heads are
promising for personal exposure and health monitoring. Ideally, in a well-designed
wearable sensor-based human subject study, various environmental and health-related
information should be continuously monitored and collected to examine the health ef-
fects of environmental exposure. Information on time, location, demographic charac-
teristics, and personal conditions should also be constantly collected to enable high
spatial–temporal and stratified analysis. Measured data can be wirelessly transmitted
to cloud servers and stored therein. Data quality can be assessed and controlled remotely
through an algorithm applied to the servers. In addition, electronic questionnaires can
be distributed to the study participants through the servers, avoiding the hassle of point-
to-point distribution. Accordingly, with the sensors deployed (e.g., wearable environ-
ment/electroencephalograph/cardiovascular/continuous glucose monitoring sensors) and
data collected, the population time–location–environment–health profiles can be mapped in
detail, facilitating the analysis on various spatial and temporal scales. In addition, the real-
time measurements of multiple factors and outcomes enable a comprehensive univariate
and multivariate analysis.
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We identify several aspects that can be investigated regarding population environ-
mental health studies based on wearable smart sensors. First, a low-cost, small and light
wearable device detecting multiple environmental factors or health indicators is needed.
Ideally, one wearable device measures all environmental factors and health indicators.
However, such devices can be enormous and thus unsuitable for wearable measurements.
Therefore, multiple separate wearable devices can be more practical. Based on the literature
and market investigations, small and tiny wearable devices for PM2.5, ozone, formalde-
hyde, some other VOCs, temperature, relative humidity, illuminance, HR, HRV, stress
level, blood oxygen, blood glucose, and electroencephalograph (EEG) are available and
valid. In addition to environmental and health sensors, location, physical activity, and
sleep monitoring information are helpful and accessible. Wireless data transmission and
battery life are also important. To make such devices low-cost, utilizing low-cost sen-
sors, especially electrochemical sensors, is essential. Second, a quality assessment/control
(QA/QC) method for such a study with large amounts of wearable sensors is necessary.
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The details about the sensor parameters (e.g., sensitivity, selectivity, and operational range)
were not mentioned in studies included in the present analysis. However, the validation
of some low-cost sensors, especially for particle sensors, in a controlled environment has
been investigated well elsewhere [30,97–101]. Nevertheless, the validation of noise, light,
temperature, and VOC sensors still needs more work. In addition, little is known about
sensor validation during mobile/personal monitoring. Due to the relatively large variance
of low-cost sensors, effective calibration techniques are required, and calibration must be
done at intervals [102]. Several studies involving the calibration of mobile sensors via a
rendezvous method [103,104] may be a direction for massive sensors. Moreover, validating
the collected data also needs to be examined due to the uncertainties of whether the subject
is wearing and using the device correctly [105]. Third, many wearable sensors developed
in the last five years have not been used in population environmental health studies much.
It can be an excellent opportunity to utilize those sensors and set up a standard framework
for such studies.

5. Conclusions

This paper reviewed the growing number of case studies utilizing portable sen-
sors/instruments to measure environmental exposures and the associated health effects in
human subject studies. With a thorough literature review, 24 eligible studies were included
and synthesized. The results show that particles were the most considered environmental
factor among all physical, chemical, and biological factors, followed by TVOC and CO.
HR and HRV were the most considered health indicators among all cardiopulmonary
outcomes, followed by respiratory function. The studies mostly had a sample size of fewer
than 100 participants and a study period of less than a week due to the challenges in
accessing low-cost, small, and light wearable sensors. Future studies may benefit from
the following aspects: (1) building low-cost, small, and light wearable devices which can
detect multiple environmental factors or health indicators by utilizing various sensors;
(2) developing QA/QC methods specific to human subject studies that use massive sensors;
and (3) commercializing and utilizing the wearable sensors which have been developed in
last five years in such human subject studies. With the advances in sensor development,
more low-cost, high-precision, and long-endurance wearable sensors can be used for large-
scale environmental health studies. This review guides future sensor-based environmental
health studies on project design and sensor selection.
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