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Abstract: Bound states in the continuum (BICs) have attracted considerable attentions for biological
and chemical sensing due to their infinite quality (Q)-factors in theory. Such high-Q devices with
enhanced light-matter interaction ability are very sensitive to the local refractive index changes,
opening a new horizon for advanced biosensing. In this review, we focus on the latest developments
of label-free optical biosensors governed by BICs. These BICs biosensors are summarized from the
perspective of constituent materials (i.e., dielectric, metal, and hybrid) and structures (i.e., grating,
metasurfaces, and photonic crystals). Finally, the current challenges are discussed and an outlook is
also presented for BICs inspired biosensors.
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1. Introduction

Optical biosensors have attracted extensive attention in various research fields [1–3].
Generally, there are two distinct types of optical biosensors: labeled and label-free optical
biosensors. Compared to labeled optical biosensors, label-free optical biosensors can
analyze the biomarkers without changing the properties of analytes, which is a more
preferred option. To date, a variety of label-free optical biosensors have been proposed,
such as whispering gallery mode sensors, optical fiber sensors, photonics crystal cavities,
photonic periodic nanostructures, and so on [4]. These methods pave the way towards
high performance biosensing platforms.

Particularly, photonic periodic nanostructures (namely periodic subwavelength res-
onators, such as grating, metasurfaces, and photonic crystals) can trap the light within
the subwavelength regime, and thus substantially enhance the light-matter interaction,
promoting the high sensitivity detection of biomarkers. Meanwhile, the periodic nature
of these nanostructures can confine the lateral propagation of light, which provides the
ability of high-throughput detections with single-molecular resolution [5]. Such abilities
enable periodic nanostructures biosensors to provide more promising potential for practical
applications than others. Moreover, the thin-film shape of the nanostructures is conducive
to lab-on-a-chip platforms, which is necessary for the integration and commercialization of
optical biosensors [6,7].

The periodic nanostructures biosensors can be classified into metal-based surface
plasmon resonance (SPR) biosensors [8–10] and dielectric-based guided-mode resonance
(GMR) biosensors [11–14]. A surface plasmon polariton (SPP) is a surface wave whose
electromagnetic field has a strong localization between the metallic film and the medium,
and it can overlap well with the surrounding biological solution when used in biosensing.
SPR arises when the wave vector of the incident light matches the wave vector of the
SPP [10]. SPR biosensors can achieve high bulk sensitivities. However, due to the strong
dispersion and absorption of the metal, the quality (Q)-factor value and figure of merit
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(FOM) of SPR biosensors are usually limited to a low level (≤102) [15–19]. The Q factor
associated with the device energy storage stands for the ability to trap the light within
the structures, and it is defined as the ratio of the central wavelength to the full width
at half maximum (FWHM) [20]. The FOM represent the overall performances of sensing
resolution and sensitivity [21], and these performances are determined by the characteristics
of resonance peaks such as the extinction ratio (defined as the ratio of the maximum and
the minimum transmission power) [22] and the slope rate (defined as the ratio of the light
intensity change to the wavelength shift) [23,24]. Such characteristics act as the indicators
of sensing performance.

In dielectric nanostructures, GMR occurs when the guided modes leak out of the
structure due to defects on the structure surface and then strongly couple with the external
continuous radiation region. Compared to SPR biosensors, GMR biosensors can achieve
higher Q values based on low-loss dielectric materials. However, it is still difficult for GMR
biosensors to achieve high Q and high sensitivity simultaneously, because reduction of
the GMR linewidth is often accompanied by a more localized electromagnetic field in the
structure, which leads to a reduction of the evanescent field distribution in the covering
medium, resulting in low electromagnetic energy utilization; thus, the sensitivity of a GMR
biosensor will be greatly sacrificed [12]. In brief, both the SPR and GMR optical biosensors
are suffering from some essential drawbacks.

Fortunately, the bound-states-in-the-continuum (BICs) optical biosensors have emerged
in recent years and can solve these problems. BICs are non-radiative modes coexisting with
the continuous spectrum of radiative waves, and theoretically have infinite lifetimes and
Q values. Importantly, periodic nanostructures inspired high-Q BICs modes, which could
combine the advantages and compensate the disadvantages of SPR and GMR, support the
label-free optical biosensors with higher sensing performance. In addition, although the
high-Q ability has already been a highlight of BICs, the low-loss integration of BICs chips
cannot be ignored [25]. The exceptional points induced by BICs have already been realized
in photonic integrated circuits with light confined and guided in the waveguides, which
can also benefit biosensing ability [26]. Hence, the BICs biosensing chips featuring high Q
and easy integration show great potential in a variety of applications, such as biological
science, clinical medicine, and environmental monitoring.

Overall, BICs have been detailed in many reviews [27–32]. In 2016, Hsu et al. [27]
reviewed the basic mechanism of BICs across different materials and different optical
waves. In 2019, Koshelev et al. [28] introduced the progress of BICs on single nanostruc-
tures and symmetry-broken all-dielectric metasurfaces and their specific application in
nonlinear nanophotonics. In 2020, Koshelev et al. [29] explained the mechanisms of BICs
and quasi-BICs in different nanostructures and provided an outlook for their applications
in high-Q devices, device miniaturization, nonlinear enhancement, etc. From 2020 to 2021,
Azzam et al. [30] and Joseph et al. [31] also introduced the physical mechanism and de-
vice structures of BICs. They gave a comprehensive review of diverse BICs applications,
including beam steering, nanocavities, chiral enhancement, directional emission, lasers,
guiding and on-chip communication, switches, nonlinear harmonic generation, imaging,
field enhancement, photodetection, biosensing, etc. In addition, Chai et al. [32] reviewed
three mechanisms and some applications of BICs in 2021. All of these reviews have pro-
vided guidelines and ideas for the future study of BICs, as well as the innovative design of
BIC devices in various fields.

However, these reviews are mainly focused on a broad introduction to BICs. A com-
prehensive review on label-free BICs optical biosensors is still absent. Therefore, we aim to
review the latest progress in relation to label-free BICs optical biosensors and systematically
summarize the existing related works. In this review, we first introduce the history and
physical mechanisms of BICs and quasi-BICs. Secondly, we introduce the basic performance
characteristics of label-free BICs optical biosensors, including the bulk refractive index (RI)
sensitivity, the surface RI sensitivity, the FOM, and the detection limit (DL). Thirdly, we
systematically list the current studies on label-free BICs optical biosensors according to the
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materials and the structures. Finally, we summarize and discuss the status and challenges of
label-free BICs optical biosensors and provide an outlook for their future development.

2. Mechanism of BICs and Quasi-BICs

BICs are non-radiative modes in various physical systems that theoretically have
infinite lifetimes and Q values. As early as 1929, Von Neumann and Wigner first discovered
the existence of BICs in electronic systems [33]. However, such electrical BICs have not
been experimentally supported. In 2008, Marinica et al. [34] introduced BICs to coupled
optical waveguide arrays, opening up the exploration of optical BICs. A few years later,
Plotnik et al. [35] added two additional waveguides above and below the optical waveguide
array to break the symmetry of the system. This operation enables the decoupling of the
bound states from the continuous radiation region, causing the radiation to leak into the
additionally added waveguide. These types of bound states associated with structural
symmetry are called symmetry-protected BICs (SP-BICs) [35–37].

Another type of BIC is the Friedrich-Wintgen BIC (FW-BIC) [4,38–40] (or accidental
BIC), which was proposed by Friedrich and Wintgen in 1985 [38]. System parameters were
modulated to make two resonant channels strongly coupled, leading to the disappearance of
the resonance linewidth and the formation of the localized bound states (FW-BICs). In 2013,
based on the Friedrich-Wintgen method, Hsu et al. [39] observed FW-BICs in a photonic
crystal slab (PhCS) by modulating the angle of the incident light; they experimentally
confirmed the existence of special points where the radiation vanished and named these
points “embedded eigenvalues”. In addition, there is a third type of BIC depending on the
mechanism of suppressing radiation leakage. Such BICs are formed when two identical
resonances coupled to a single radiation channel and are called Fabry-Perot BICs [34,41,42].
Ideal BICs exist in lossless systems, so most studies on BICs have been conducted in low-
loss dielectric nanostructures. However, BICs on lossy systems have not been ignored. In
2018, a FW-BIC at the “avoided crossing” point of two resonances in a metal-dielectric
hybrid system was found by Azzam et al. [40], further confirming the existence of BICs in a
lossy system.

Figure 1 shows the mechanism of BICs and quasi-BICs. In periodic nanostructures,
the band folding of the structures allows the guided modes to leak above the light line,
resulting in leaky modes. Ideally, destructive interference between the leaky modes and
the radiation modes will lead to BICs. According to this mechanism, BICs theoretically
have infinite Q values and exist as dark states in the spectrum; this is different from SPRs
and GMRs, which are both bright states. However, due to inevitable defects in practice,
BICs are no longer ideal bound states but will be transformed into a radiation-leakage state
called quasi-BICs with finite Q values, also known as supercavity modes [43–46]. The Q
values of quasi-BICs are limited by material absorption, structure parameters, fabrication
defects, energy leakage, etc. Conversely, these limitations can be utilized to control the
Q value of quasi-BICs. The most common tunable limitation is the symmetry defect [44].
Moreover, it must be mentioned that quasi-BICs modes also exist in lossy systems, and the
influence of materials in such systems cannot be ignored. Such studies are introduced in
Sections 4.2 and 4.3.
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Figure 1. Physical mechanism of BICs and quasi-BICs in a periodic nanostructure.

Recently, researchers found that the Q values of quasi-BICs strongly depend on struc-
ture parameters [43,44]. Rybin et al. [43] discussed the supercavity modes in a single silicon
nanoresonator and found that the Q value of these modes exhibited a power law with
the dielectric constant ε of the material; this Q value was sufficient to produce a strong
nonlinear effect at the nanoscale. Koshelev et al. [44] summarized and calculated the Q
value of various dielectric metasurfaces that were broken with regard to the in-plane inver-
sion symmetry. The asymmetric parameter α was set to symbolize the degree of structure
asymmetry and the relationship between the radiation component of Q (Qrad) and α could
be described as Qrad= Q0α−2, as shown in Figure 2a, where Q0 is a constant related to the
structure. In addition, the influence of material loss on the Q value was considered by
Yoon et al. [36]. Q values in the silicon grating can be expressed as [36]:

1
Qtot

=
1

QR
+

1
QA

, (1)

where Qtot is the total quality factor,QR is the radiation factor, and QA is the dissipation
factor. Yoon et al. found that Qtot will reach saturation at QA when the incident light tends
to normal, as shown in Figure 2b. The radiation leakage is completely suppressed, which
actually indicates that QR is divergent, while QA is still a finite valve due to the unavoidable
loss of materials. Briefly, quasi-BICs have the ability to control Q values and this ability is
quite necessary for high-resolution biosensor designs. Thus, quasi-BICs are expected to
support high-Q, high-sensitivity, and low-DL biodetection through the reasonable setting
of structure parameters.
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3. Performance Characteristics of Label-Free BICs Optical Biosensors

The performance characteristics of optical biosensors are related to their ability to
detect analytes in the surrounding medium. For different types of label-free biosensors,
unified performance characteristics can be used for evaluation. In this section, a systematic
summary of these characteristics is provided.

3.1. Bulk RI Sensitivity

Refractive index (RI) change is the basis of biodetection and is closely related to the
mechanical, electrical, and optical properties of biology. The bulk RI sensitivity, which
reflects the ability of biosensors to detect RI changes in the surrounding medium, is the
most widely used performance characteristic of optical biosensors. It can be defined as [1]:

Sbulk =
∆λ

∆n
, (2)

where ∆n means the RI change, λ is the center wavelength of the optical resonance, and ∆λ
is the shift of the center wavelength with the RI change. In general, the bulk RI sensitivity
of different biosensors varies greatly depending on the materials, the type of optical mode,
and the length of the evanescent tail in the surrounding medium.

3.2. Surface RI Sensitivity

Although the bulk RI sensitivity can be easily measured by changing the RI of the sur-
rounding medium, it is not the most relevant parameter of a surface-affinity biosensor [12].
Surface RI sensitivity describes the response of the biosensor to the RI change of a thin
layer on the surface, which is more representative of the change caused by the binding of
proteins or other substances attached to the surface of biosensors. The definition of surface
sensitivity is similar to that of bulk sensitivity [12]:

Ssurface =
∆λ

∆nsurface
, (3)

where ∆nsurface is the RI change of a thin layer on the structure surface. The surface
sensitivity of the dielectric nanopore array metasurface proposed by Conteduca et al. [12]
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is 20 nm/RIU, which is very close to a plasmonic biosensor with the same structure
(30 nm/RIU). Even though the bulk sensitivity of the plasmonic structure is much higher
than that of the dielectric structure, the surface sensitivity can be very similar. Moreover,
some studies have defined the surface sensitivity as the ratio of the central wavelength shift
to the thickness of the surface adsorbate layer [47,48].

3.3. Figure of Merit

The figure of merit (FOM), which combines the sensitivity of the biosensors with
the FWHM, is the most widely used characteristic of the spectral resolution of optical
biosensors. The FOM is commonly defined as [21,49]:

FOM =
S

FWHM
. (4)

However, the FOM tends to infinity for biosensors with an infinite Q value according
to the definition of Q and Formula (4), which means the role of sensitivity on the FOM can
almost be ignored. Expediently, the FOM is defined as the product of sensitivity and the Q
value in some high-Q studies [20], which can also fully reflect the sensing ability.

3.4. Detection Limit

The detection limit (DL) is used to describe the biological resolution of the biosensor.
For RI sensing, the DL represents the minimum RI change that can be accurately measured,
while for biosensing, the DL describes the lowest analyte concentration that can be accu-
rately and quantitatively detected by the biosensors. The DL is generally defined as the
ratio of the sensor resolution (R) and sensitivity (S) [50]:

DL =
R
S

, (5)

where R means the minimum resolution wavelength (∆λmin [51]) of the biosensor. The DL
can also be defined as Formula (6) with the expression of the limit of detection (LOD) [1,12]:

LOD =
3σ

Sc
, (6)

where σ is the background noise obtained by measuring the blank sample, and Sc is the ratio
of the change in the output signal to the change in the corresponding surrounding medium.

The DL/LOD depends on the sensitivity of the structure to the molecular mass surface
coverage, the mass transfer rate to the sensor surface, and the dynamic parameters of the
interaction between the analyte and the biometric element. Whether in the plasmonic
biosensor [1] or in the dielectric biosensor [12,50], the DL/LOD values of different types of
biosensors are quite different. For high-Q structures, the resolution R will be very small,
which means a smaller DL/LOD. Therefore, the high-Q ability of BICs can contribute to a
better sensing performance, allowing biosensors to detect small molecular weight or very
low concentration biomolecules. This is a reason why BICs are highly valued in biosensing.

4. Label-Free BICs Optical Biosensors Based on Different Materials and Structures

Label-free BICs optical biosensors are expected to be utilized in optical chips with
the advantages of both high Q and high throughput. Before BICs were widely applied
for biosensing, extremely narrow resonances that could be excited by symmetry-broken
nanostructures were studied. In 2012, Cetin et al. [15] designed a symmetry-broken golden
ring/disk plasmonic metasurface, which could excite a Fano resonance formed by the
coupling of an electric quadrupole dark mode and a dipole bright mode. The Fano reso-
nance had excellent sensing performance and was used to detect signal changes caused
by the specific binding of the recombinant fusion protein A/G and antibody IgG. In 2013,
a symmetry-broken all-dielectric PhCS proposed by Nicolaou et al. [52] was utilized to
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excite dark states with radiation leakage. The obtained radiation-leaking mode had a high
Q-value of 10,600 and a sensitivity of over 800 nm/RIU; the high-Q value enabled a lower
DL. In 2014, Yang et al. [53] designed a silicon-based metasurface which enabled coupling
between the dark and bright modes; this coupling led to an extremely narrow resonance
based on the electromagnetically induced transparency (EIT) effect, which is now believed
to have a strong connection with BICs [54,55].

Different from symmetry-breaking studies, the PhCS designed by Liu et al. [56] excited
a high-Q quasi-BIC resonance by setting the incident angle close to 0◦. Both TE and TM
polarized light were able to excite the resonances, with the Q value tending to infinity at
normal incidence. A high Q-value of 1.8 × 104 of the TM mode in water was experimentally
measured, which showed an excellent biosensing potential.

These early studies unintentionally utilized the concept of BICs. After BIC effect
became a research hotspot in respect to biosensors, increasing numbers of studies have
emerged. In this section, the latest studies on BICs biosensors in recent years are systemati-
cally summarized in terms of the constituent materials and structures.

4.1. All-Dielectric BICs

All-dielectric structures that support BICs have been widely used in the design of
high-Q biosensors based on their advantages of low loss and high functionality. In this
section, some all-dielectric BICs biosensors are introduced, including BICs gratings [57–63],
symmetry-broken [64–77] and topological-boundary-states-governed [78] BICs metasur-
faces, and BICs PhCSs [56,79–86].

Grating has become a basic structure of biosensors with its ability to diffract light.
Figure 3a shows a symmetry-broken dual silicon grating proposed by Liu et al. [57]. The
symmetry degree of the grating is changed by tuning the width and gap of two adjacent
grating ridges, and the resonance width is tuned at the same time. Essentially, this setting
can make the RI distribution of the grating layer non-uniform within a grating period, so a
quasi-BIC with a high FOM can be obtained under specific asymmetric parameters. Based
on the BICs-supported dual-grating metamembranes proposed by Hemmati et al. [87], a
double compound symmetric grating was designed by Shi et al. [58], as shown in Figure 3b.
The resonant linewidth of quasi-BICs was tuned by changing the gap of the grating ridges,
and a high FOM of 31,467 can be theoretically achieved. Figure 3c shows a symmetry-
broken Si-PDMS grating with the temperature self-compensation function proposed by
Wang et al. [59]. Two extremely narrow quasi-BIC resonances can be excited by the grating.
One quasi-BIC resonance is sensitive to the RI change, while the other is more sensitive
to temperature changes according to the thermo-optic coefficient of the material. The
temperature anti-interference ability and the accuracy of the RI sensing can be improved
due to these properties.

In addition to the works based on structural asymmetry, a theoretical study of BICs on
defect-free periodic gratings was proposed by Maksimov and Dmitrii et al. [60,61]. By using
Zel’dovich perturbation theory, they deduced that the theoretical maximum sensitivity of
the BIC mode excited by the dielectric grating should be the ratio of the central wavelength
of the BIC resonance to the RI of the covering medium; this ratio was independent of the
material and the geometric parameters of the grating. A theoretical basis for designing
high-performance BICs optical biosensors was provided.

Metasurfaces are periodic arrays of subwavelength units that can modulate light
through scattering [88]. One of the advantages of metasurfaces is their flexibility in struc-
tural design, so that they can provide more possibilities for biosensors [89]. Figure 4a shows
a symmetry-broken metasurface composed of pairs of tilted silicon nanobars designed
by Yesilkoy et al. [64]. In this work, imaging technology was used to record the spectral
information of quasi-BICs at different wavelengths. Once the information was decoded,
a two-dimensional spatial spectrum in a large area could be obtained, and the imaging
points of extremely low-concentration analytes could be observed. All of these studies
make great contributions to the biodetection of low-concentration biomolecular signals
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that are easily covered by background noise. Figure 4b shows another imaging biosensors
proposed by Jahani et al. [65]. With similar methods as Yesilkoy et al. [64], a diatomic
metasurface was applied to the real-time detection of breast cancer extracellular vesicles
(EVs) encompassing exosomes, realizing a real-time biodetection of EVs binding with a
low DL of 133 femtomolar solutions. A measurement of nanoparticles was also made with
detection of on average 0.41 nanoparticles per µm2. Figure 4c shows a symmetry-broken
toroidal metasurface composed of double rod unit cells designed by Kühner et al. [66].
Structures with an infinite period are generally set to study ideal BICs in simulation, but the
Q values are commonly limited by the structure size in practice and are not consistent with
the simulation Q. Fortunately, the toroidal metasurface can ignore the boundary limitation
and light polarization, and have been proved to achieve a large resonance shift in the
nano-level in biotin-streptavidin specific biodetection. Figure 4d shows an all-dielectric
crescent metasurface designed by Wang et al. [67], which has been used for the biodetection
of a biotin-streptavidin specific binding. The resonance of quasi-BICs moved 1.5 nm per
nanomole (nM) of streptavidin, and the DL was as low as 0.167 nM. Meanwhile, a compari-
son between the sensing performance of the second-order mode and the quasi-BIC basic
mode was also made; the sensitivity of the second-order mode could reach twice that of
the quasi-BIC basic mode, and also had a narrower linewidth. This property shows a great
potential of high-order BICs in biosensing.
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Figure 3. BICs biosensors composed of all-dielectric gratings. (a) GMR and BIC modes excited by
an asymmetric silicon grating and their Hy field distribution with different degrees of symmetry
breaking (reprinted with permission from [57], ©2021, The Optical Society). (b) double compound
symmetric grating with a localized electric field (reprinted with permission from [58], ©2022, Chinese
Optics Letters). (c) Si-PDMS symmetry-broken grating with temperature self-compensation function
(reprinted with permission from [59], ©2022, IOP).
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Figure 4. BIC biosensors composed of all-dielectric metasurfaces. (a) A symmetry-broken elliptical
silicon metasurface for hyperspectral imaging biodetection of IgG (reprinted with permission from [64],
©2019, Springer Nature); (b) the reconstructed spectral shift calibration curve of diatomic metasurfaces
for detection of biotinylated silica nanoparticles (reprinted with permission from [65], ©2021, Yasaman
Jahani et al., CC BY license); (c) polarization-independent symmetry-broken ring metasurface for
biotin-streptavidin specific binding experiment (reprinted with permission from [66], ©2022, Lucca
Kühner et al., CC BY license); (d) all-dielectric crescent metasurface for biotin-streptavidin specific
binding experiment (reprinted with permission from [67], ©2021, Juan Wang et al., CC BY license).

PhCSs have great potential in miniaturization, integration and biodetection combined
with microfluidic chips [90]. Romano et al. [80–82,91] have been committed to studying
the biosensing performance of PhCSs. Figure 5a shows the study of Romano et al. [80] on
using resonance-trapped BICs excited by Si3N4 PhCSs to recognize the interaction between
tumor suppressor protein p53 and cancer protein MDM2; this study has great significance
for low-cost research with respect to anticancer pharmacological active molecules. Romano
et al. [81] experimentally verified the excellent biosensing performance of BICs excited
by Si3N4 PhCSs. Combined with microfluidic technology, the PhCS biosensors with high
surface sensitivity could be utilized for the stable biodetection of ultra-low molecular
weight particles. Romano et al. [82] then studied the evanescent field sensing mechanism
provided by BIC modes in PhCSs. They noticed that the smaller the RI difference between
the material of the PhCS and the substrate, the greater the sensitivity of the structure. The
PhCS theoretically had the potential to achieve an ultra-high sensitivity (~4000 nm/RIU)
at a certain RI distribution. In addition, Romano et al. [91] combined surface fluorescence
enhancement with label-free biosensing. Two quasi-BIC modes excited by Si3N4 PhCSs
are used respectively for the laser input amplification and the RI probe to achieve 2D RI
imaging for PC3 cells. Furthermore, Figure 5b shows the Si3N4 PhCS proposed by Zito
et al. [83] for DNA biodetection. A FW-BIC can be excited when the light source is incident
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at a small angle, and the FW-BIC could be utilized for the real-time specific biodetection
of DNA.
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Figure 5. BIC biosensors composed of all-dielectric PhCSs. (a) A Si3N4 PhCS utilized to recognize
the interaction between tumor suppressor protein p53 and cancer protein MDM2 (reprinted with
permission from [80], ©2018, Silvia Romano et al., CC BY license); (b) accidental BICs in PhCS for
DNA detection (reprinted with permission from [83], ©2021, Gianluigi Zito et al., CC BY license).

PhCSs based on silicon material were also proven to have excellent sensing perfor-
mance. For example, a quasi-BIC with Q > 107 in infrared spectroscopy can be theoretically
achieved by a coupled double-layer silicon PhCS proposed by Liu et al. [84]. A high
Q-value of 1.2 × 104 and a low-DL of 6 × 10−5 was also realized experimentally. In addi-
tion, Lv et al. [85] pinpointed the BIC property of a silicon PhCS from the perspective of the
topological charge. BICs are essentially topological defects in the momentum space, namely
nontrivial topological charge. By tuning the lattice periodicity of the PhCS, the topological
charges can be merged, and “merging BICs” can be achieved. Merging BICs are not only
sensitive to environmental disturbance, but they are also robust, allowing biosensors to
maintain a stable high Q-value in different RI environments. A sensitivity 12 times greater
than the common isolated BICs can be finally realized.

4.2. Metallic BICs

Metal-based SPRs have been widely applied in biosensors due to their excellent RI
sensitivity [92]. However, metal has inevitable absorption loss, which will greatly limit
its Q value. Applying BICs to metallic structures is believed to overcome this difficulty
and increase the Q and FOM values of the metal-based biosensors while ensuring high
sensitivity. In this section, we summarize the metallic BICs optical biosensors, including
symmetry-broken metallic terahertz (THz) metasurfaces [93–98] and symmetry-broken
metallic nano-metasurfaces [99].
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BICs-based metallic metasurfaces can achieve good sensing performance in the THz
band. Srivastava et al. [93] designed a symmetry-broken golden split ring BIC terahertz
metasurface with the cycloolefin copolymer (COC) substrate. This structure achieved a
good amplitude sensitivity and could be used for health monitoring and very low-DL
biodetection. Based on the work of Srivastava et al., a THz metasurface coated with
germanium strips of different widths and thicknesses was proposed by Tan et al. [94], as
shown in Figure 6a. The germanium strips were utilized to excite quasi-BIC modes, which
made the metasurface extremely sensitive and able to realize the functions of narrowband
THz optical filters, modulators, and sensors. Figure 6b shows a quasi-BICs ultra-sensitive
THz metasurface with three golden bars as the periodic units designed by Wang et al. [95].
A sensitivity of 165 GHz/RIU was achieved. This THz metasurface can be used to detect
extremely dilute interleukin-6 (IL-6) solution with a concentration as low as nM.
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Figure 6. Metallic BIC biosensors. (a) A symmetry-broken golden THz metasurface coated with ger-
manium strip and its bulk RI sensing ability (reprinted with permission from [94], ©2021, Wiley-VCH
GmbH); (b) an ultra-sensitive THz metasurface utilized for biodetection of IL-6 (reprinted with
permission from [95], ©2021, RSC); (c) a golden nano-metasurface with C-shaped edge and its bulk
RI sensing ability (reprinted with permission from [99], ©2021, Gianluigi Zito et al., CC BY license).

Metallic BIC metasurfaces also show extraordinary sensing potential at the nanoscale.
Figure 6c shows a golden nano-disk/ring metasurface with C-shaped edges designed by
Zhou et al. [99]. By modulating the width and the opening angle of the C-shaped edge
of the structural units, the dark modes supported by the electric monopole or the electric
quadrupole can be excited. The quasi-BICs supported by the electric quadrupole mode
have excellent field enhancement ability and bulk sensing performance, and can obviously
achieve higher Q and FOM values than general metallic biosensors. Such a nanoscale
all-metal design provides a promising platform for high-sensitivity optical biosensing.

4.3. Hybrid Metal-Dielectric BICs

Hybrid metal-dielectric nanostructures have been shown to improve the sensitivity of
biosensors with less loss of resolution [100]. In 2018, a hybrid BIC in the coupling structure
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of a silver grating and dielectric waveguide was observed by Azzam et al. [40]. Essentially,
the hybrid BIC is the result of the strong coupling of two (or several) optical resonances
(generally resonances of two different mechanisms, i.e., coupling between a SPR and a
GMR). Considering their advantages, hybrid structures are included in the design of BICs
biosensors. In this section, some hybrid BICs biosensors are summarized, including hybrid
metal-dielectric gratings [101–103] and metasurfaces [104–106].

Figure 7a shows the work of Meudt et al. [101]. A sinusoidal modulated silver grating
was coupled into a dielectric material, and a hybrid-BIC with a Q factor of 2520 near the
“avoiding cross” was achieved. The sensitivity of this hybrid BIC is a compromise between
the hybrid SPR mode and the hybrid GMR mode, and the Q value is much higher than
both of them. In addition, the studies of Joseph et al. [107,108] on hybrid gratings need
to be mentioned. In 2020, a hybrid structure that involved coating a layer of gold film on
the composite photoresist (NPR) grating was proposed by Joseph et al. [107]. However,
only hybrid SPP and hybrid GMR modes were discussed, and not hybrid BICs. The Q and
FOM values of these hybrid modes are all in the order of 10. In 2021, a hybrid structure of
As2Se3 sinusoidal grating coupled with gold film was proposed by Joseph et al. [108] and
a further discussion on the hybrid BICs was given. The antisymmetric field distribution
of the hybrid BIC was observed, and the ability to increase the Q value was found; the Q
value was improved compared to the previous work [107]. Such an ability to enhance the
Q and FOM is necessary for biosensors.
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Figure 7. Hybrid metal-dielectric BIC biosensors. (a) A sine-modulated silver grating coupled with
the dielectric material OrmoCore. Hybrid-BIC occurs at the “avoiding cross” of SPP modes and pho-
tonic (PH) modes, and has infinite radiation quality Qr (reprinted with permission from [101], ©2020,
Wiley-VCH GmbH); (b) a symmetry-broken BICs metasurface composed of Si3N4 symmetry-broken
metasurface and MoS2 monolayer with excellent sensing ability of maintaining high FOM under
different RIs (reprinted with permission from [104], © 2022, IOP).

Hybrid metasurfaces are also followed with interests. Figure 7b shows a symmetry-
broken metasurface composed of Si3N4 and MoS2 proposed by Wang et al. [104]. Quasi-
BICs were used to achieve maximum absorption through adjusting the asymmetric parame-
ter of the units. The metasurface was further used for the bulk RI sensing and an ultra-high
FOM of more than 104 was theoretically obtained. In addition, some hybrid-BICs studies



Biosensors 2022, 12, 1120 13 of 18

on achieving ultra-sensitive biosensors in the THz band were also summarized, such as the
Al-Si arrow-shaped THz metasurface designed by Liu et al. [105] and the aluminum silicon
rectangular hole array THz metasurface designed by Liu et al. [106].

In brief, metallic and hybrid BICs are still at a stage of theoretical simulation and
have not been experimentally applied to biodetection; especially, the hybrid BIC is a new
solution worth exploring. Evidentially, hybrid BICs have great potential to improve the
performance of biosensors and are expected to be a hotspot of BICs biosensors in the future.

5. Summary and Outlook

In conclusion, we reviewed the latest studies of label-free BICs optical biosensors in
recent years. We introduced label-free BICs optical biosensors in terms of their background,
history, and mechanism, and we also compared them with traditional label-free SPR biosen-
sors and GMR biosensors to highlight their advantages. We listed the general performance
characteristics of optical biosensors. Finally, we summarized the BICs-biosensing works
mentioned in our review for an intuitive comparison, as shown in Table 1.

Table 1. Summary of different label-free BICs optical biosensors.

Structure Analyte Q Factor Bulk Sensitivity
(nm/RIU) FOM (RIU−1) DL/LOD Ref.

All-Dielectric
Gratings

345 2622 [49]
441 1506 ~5000 [57]

472 31,467 [58]
369.43 3212.43 1.56 × 10−5 RIU [59]

3 × 106 656 1.64 × 106 [62]
12,620 31,394 1000 [63]

All-Dielectric
Metasurfaces

Oil 483 379 103 [53]
M-IgG 144 263 <3 molecules/µm2 [64]

Nanoparticles; EVs 178.6 305 68 0.41 molecules/µm2;
133 femtomolar

[65]

Biotin-streptavidin 120 326 0.167 nM [67]
Exosomes 750 440 677 [68]

Biotin-streptavidin 500 20 [66]
ErbB2 900 720 0.7 ng/L [69]

17,684 630 [70]
3.15 × 104 295 738 [71]

342 1295 [72]
20,561 170.58 (GHz/RIU) [73]

155 387,500 [74]
14,437 394 4925 [75]
2617 300 440 [76]

SOG, PMMA-A4,
ZEP520A ~102 608 46 [77]

1045 100 145 [78]

All-Dielectric
PhCSs

Cargille RI liquids 10,643 832 ~10−8 RIU [52]
Ethanol/DI 3.2 × 104 94.5 3 × 10−5 RIU [56]

104~105 312.8 ~103 [79]
p53-MDM2 760 66 nM [80]

All-Dielectric
PhCSs

BPT/ethanol
solution 2000 178 445 186 Da [81]

Cargille RI liquids 226 258 4 × 10−7 RIU [82]
PNA-DNA ~102 0.05 nM [83]
Ethanol/DI 1.2 × 104 94 6 × 10−5 RIU [84]

Cargille RI liquids >7 × 104 36 5990 ~10−5 RIU [85]
25,643 148 821 [86]

PC3 cell 905 102.6 ~10−5 RIU [91]
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Table 1. Cont.

Structure Analyte Q Factor Bulk Sensitivity
(nm/RIU) FOM (RIU−1) DL/LOD Ref.

Plasmonic
Metasurfaces

D/A-IgG 648 72 [15]
Glycerol/water 282 4 [16]

Ge film 0.28 (/RIU) [93]
Ge film 1.7 × 104 [94]

IL-6 16 165 (GHz/RIU) ~1 nM [95]
1016 775.7 (GHz/RIU) 284 [96]

200 (GHz/RIU) [97]
64 265.06 (GHz/RIU) 9.1 [98]

DMSO/DI 145 657 109 [99]

Hybrid
Gratings

Air 1300 334 1.43 × 105 [101]
111 ~500 100 [102]

Glucose solution ~5000 1264 7022 [103]

Hybrid
Metasurfaces

157 15,570 [104]
≥250 11.1 (GHz/RIU) [105]
1130 9.41 (GHz/RIU) [106]

Label-free BICs optical biosensors are just beginning, bringing new possibilities to
break the bottlenecks of the biodetection and other industries. However, although the
advantages and contributions of BICs biosensors are undeniable, some challenges cannot be
ignored: (1) theoretically, BICs can easily achieve Q values exceeding 104, but their Q values
are still distributed between 102 and 104 experimentally; (2) although Q value can be tuned
by structure asymmetry parameters, it still depends on the highly symmetric structures
to obtain quasi-BICs with extremely high Q-values. Generally, a small angle of incident
light is required for detecting such high-Q quasi-BICs. However, such settings need high
system accuracy and environmental stability, which is not conducive to the practicality
of products; (3) biosensors are mostly tested in a laboratory, and the detection object is
usually a single marker in an ideal environment (i.e., normal saline), while real biological
liquid environments (i.e., blood, urine, etc.) are more complex. Meanwhile, different kinds
of biomolecules with similar structures also bring a serious challenge to the biochemical
surface functionalization technology and the specific capture ability of biosensors; (4) BICs
nanostructures with stable high Q-values require high accuracy. However, the current
manufacturing technology is difficult to achieve precise geometric differences, such as
several nanometers. How to balance the structure design and the manufacturing error is
also a problem needed to be considered.

Some existing studies have provided solutions. The operation of Lv et al. [85] of merging
BICs can achieve higher Q values with better robustness and can ensure high Q-values
above 104 both in air and in solution. Such robustness is particularly important in resisting
manufacturing errors and obtaining a more stable biodetection environment. However, the
PhCS used for merging BICs proposed by Lv et al. is not sensitive enough (only 36 nm/RIU),
so hybrid metal-dielectric structures can be considered to achieve higher sensitivity. At
present, hybrid BICs have not been practically applied, but they have gradually attracted
attention. Furthermore, quasi-BICs essentially involve optical resonant phenomena, so
the phase will also change with the resonant wavelength shifts. Phase-change detection is
more sensitive and is expected to have a lower DL [11], which is also a biodetection method
worth studying.
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