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Abstract: Rapid and accurate detection of acute myocardial infarction can improve patients’ chances
of survival. Cardiac troponin I (cTn I) is an important diagnostic biomarker for acute myocardial
infarction. However, current immunoassays are insufficient to accurately measure cTn I, as they have
limited detection sensitivity and are time-consuming. Surface-enhanced Raman scattering (SERS)
is a brilliant fingerprints diagnostic technique characterised by ultrasensitivity, fast response, and
qualitative and quantitative analysis capabilities. In this study, reporter molecules (4-Mercaptobenzoic
acid, 4-MBA) embedded Au@Ag core-shell nanospheres as SERS nanotags were prepared for the
detection of cTn I. As the Raman reporters were embedded between the core and the shell, they
could be protected from the external environment and nanoparticle aggregation. Excellent SERS
performances were obtained due to the enhanced local electromagnetic field in the gap of core and
shell metals. In a standard phosphate buffered saline (PBS) environment, the limit of detection
for cTn I was 0.0086 ng mL−1 (8.6 ppt) with a good linear relationship. The excellent Raman
detection performance was attributed to the localized surface plasmon resonance effect and strong
electromagnetic field enhancement effect produced by the gap between the Au core and the Ag
shell. The SERS nanotags we prepared were facile to synthesize, and the analysis procedure could
be completed quickly (15 min), which made the detection of cTn I faster. Therefore, the proposed
SERS nanotags have significant potential to be a faster and more accurate tool for acute myocardial
infarction diagnostics.

Keywords: Au@Ag nanospheres; GERTs; SERS; cTn I detection; AMI

1. Introduction

Acute myocardial infarction (AMI) is one of the most common types of cardiovascular
disease. Blockage of a coronary artery, lack of blood supply (ischemia), and myocardial
muscle being damaged can all lead to an AMI [1]. As myocardial necrosis is irreversible,
accurate diagnosis and timely treatment are essential to improve survival rates. Cardiac
troponin I (cTn I)’s outstanding specificity and supreme sensitivity to acute myocardial cell
damage are why it is preferred for diagnosis; this biomarker is considered to be the gold
standard of AMI diagnosis [2,3].

At present, many immunoassay methods, including enzyme-linked immunosorbent
assay (ELISA) [4], electrochemistry [5], fluorescence, radioimmunoassay (RIA) [6], colloidal
gold immunochromatography [7], electrochemiluminescence [8], and surface-enhanced
Raman spectroscopy (SERS) [9,10] are employed for the detection of cTn I in patient serum.
Although quantitative detection could use the immunochemical methods mentioned above,
the disadvantages are that the specific operational steps are too cumbersome, the detection
time is too long, and some experimental operations have radioactive pollution. In addition,
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both chemiluminescence and spectrophotometry have high requirements for processing and
equipment, as well as other test conditions. Notably, SERS has received significant attention
in biology and medicine because of its ultrasensitivity, fast response, and qualitative and
quantitative analysis [11,12]. Zhang et al. proposed a lateral flow assay (LFA) based on core-
shell surface-enhanced Raman scattering (SERS) nanotags for multiplex and quantitative
detection of cardiac biomarkers for the early diagnosis of acute myocardial infarction
(AMI) [13]. As they are a key aspect of SERS technology, research regarding substrate
materials has attracted more and more attention.

Precious metal nanoparticles can produce a strong electromagnetic field enhancement
effect, resulting in localized surface plasmon resonance (LSPR) under Raman laser. Noble
metals were the most widely studied SERS substance. In the early stages, noble metal (Au,
Ag and Cu) nanomaterials were developed primarily around a single noble metal [14], from
nanoparticle balls and nanorods. Later, noble metals regulated other morphologies, such
as nanostars [15], nanocones [16], nanocubes [17], and nanotriangles [18]. However, the
performance of a single noble metal is greatly limited in practical applications. Moreover,
the application of a single noble metal system in SERS biology was greatly limited due to
its poor stability and how easily it aggregates.

Gap-enhanced Raman tags (GERTs) are regarded as an emerging class of SERS tags.
GERTs can generate 1–2 orders of magnitude SERS response within the nanoscale gap
between the plasmonic core and shell [19–21]. Additionally, Raman reporters are prevented
from being lost because they are enclosed between the core-shell structures. Therefore,
adding a protective layer between noble metals and biomolecules could avert the loss
of Raman reporters and prevent the contamination of potential material signals in the
surrounding medium. The usual protective layers include biomolecules, liposomes, and
polymers. Among these, liposomes have high inherent biocompatibility, good stability, ex-
cellent self-assembly, and targeting ability. Bovine serum albumin (BSA) is the most widely
used biomolecule protective layer, with a molecular weight of approximately 66.430 kDa. It
can be effectively adsorbed on the metal surface, which not only improves the stability of
metal nanomaterials and Raman reporters, but also prevents the loss of biological charac-
teristics caused by direct contact between target antigens and metal nanomaterials [22,23].
Ma et al. reported a new strategy to form Au superparticles with high SERS enhancement
via one-pot formation and self-assembly of Au nanoparticles. The self-assembly of the
Raman reporter on Au superparticles generated SERS nanotags with intense signals [24].
Liposomes were also applied in a biodegradable photothermal and pH-responsive cal-
cium carbonate@phospholipid@acetylated dextran hybrid platform to advance biomedical
applications [25]. However, the steps in the experimental process were exceeding cumber-
some, which limited its application. Therefore, novel GERTs for more sensitive and faster
bioinstrumentation need to be investigated.

In this study, gap-enhanced Raman tags with 4-Mercaptobenzoic acid (4-MBA) embed-
ded Au@Ag core-shell nanospheres (NSs) were designed. Raman reporters were embedded
between the core-shell interspace and could be protected from the external environment
and nanoparticle aggregation. The structure, morphology, and composition of Au@Ag NSs
were characterized and studied. The SERS performance of the nanotags for detecting cTn
I was evaluated. Furthermore, the bovine serum albumin used as a protective layer was
modified on the surface of nanospheres to prevent the contamination of potential material
signals in the surrounding medium. Finally, the enhancement of an electromagnetic field
was simulated using COMSOL. The results showed that the remarkable SERS performance
of nanotags was related to the electromagnetic field enhancement mechanism. It may
provide a novel exploration for acute myocardial infarction diagnosis.

2. Materials and Methods
2.1. Materials and Reagents

All materials and reagents were of analytical grade and used without further purifica-
tion. The water was ultrapure deionized water. The materials and reagents used in this
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study were chloroauric acid (HAuCl4, ≥96%); ascorbic acid (C6H8O6, ≥99.7%); silver ni-
trate (AgNO3, ≥99.8%) was purchased from Sinopcc Chemical Reagent Co., Ltd. (Shanghai,
China); ethanol (≥99.7%); hexadecyl trimethyl ammonium chloride (C19H42ClN, ≥99%)
(Adamas); 4-Mercaptobenzoic acid (4-MBA, ≥95%) was purchased from Tixiai Chemical
Industrial Development Co., Ltd. (Shanghai, China); sodium citrate (C6H5Na3O7, ≥99%);
EDC and NHS were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.
(Shanghai, China); BSA (MW = 66 kDa) was purchased from Yeasen Biotech Co., Ltd.
(Shanghai, China); COOH-PEG-SH (Mw = 5000) was purchased from Yuan Ye Biological
Co., Ltd. (Shanghai, China); phosphate buffered saline (PBS) 1× concentrate (Adamas);
anti-cTn I (L3C00405); and recombinant human cTn I antigen (L4C00102) (Linc-Bio).

2.2. Preparation of Au@Ag Nanospheres

Preparation of Au NSs: Au NSs were synthesized using a modified liquid reduction
method [26]. First, 50 mL of 0.01 wt. % HAuCl4 solution was placed into a round-bottom
flask and heated in a water bath until boiling, followed by rapid addition of 1.0 mL of
1 wt. % sodium citrate solution under magnetic stirring. After 30 min of reaction, the Au
NSs were prepared.

Preparation of Au@Ag NSs: First, 2 mL of Au seed solution and 40 mL of deionized
water were added into a round-bottom flask under magnetic stirring. Second, 2 mL of
1 wt. % sodium citrate solution and 2 mL of 20 mmol·L−1 ascorbic acid solution were
added into the mixture and stirred for 5 min. Third, 0.5 mL of 10 mmol·L−1 silver nitrate
(AgNO3) solution was added dropwise into the mixture and stirred for 15 min. During this
procedure, the color of the mixture changed from wine red to orange to golden yellow.

2.3. Synthesis of Au@4-MBA@Ag SERS Nanotags

First, 2 mL of Au seed solution was added to 10 mL of 0.1 M cetyltrimethylammonium
chloride (CTAC) solution and sonicated for 5 min. Second, 50 µL of 60 mM 4-MBA solution
was added into the mixture and sonicated for 30 min. Third, 1 mL of 40 mM ascorbic acid
(AA) and 1 mL of 10 mM AgNO3 aqueous solution were added successively. After reacting
for 60 min, the mixture was washed via centrifugation with water. The Au@4-MBA@Ag
was redispersed into the water for use.

Next, 2 mL of the above solution was added to 100 µL of 500 µM SH-PEG-COOH,
and reacted at 4 ◦C overnight. At room temperature (25 ◦C), 10 µL of 40 mg/mL EDC and
10 µL of 110 mg/mL NHS were added and shaken in the dark for 15 min. Next, 10 µL of
the antibody at a concentration of 0.1 ng/mL was added, and the reaction was incubated in
an oven at 37 ◦C for 1 h. Lastly, 10 µL of BSA at a concentration of 1 mg/mL was incubated
in an oven at 3 ◦C for 30 min. The SERS nanotags were stored at 4 ◦C for use.

2.4. Materials Characterization and SERS Test

Scanning electron microscopy (SEM) was performed using an FEI Quanta 400 instru-
ment. HRTEM measurements were carried out using a JEOL 2100 HRTEM. The topography
and thickness of samples were characterized using an atomic force microscope (AFM). A
Lambda 750S ultraviolet visible spectrometer was used for ultraviolet visible spectrum
analysis. Raman spectra measurements were carried out using a Raman Spectrograph;
10 µL of standard PBS antigen cTn I-Antigen and 10 µL of cTn I-Antibody-labeled SERS
nanotags were instilled in the grooves of the slide’s glass and incubated at 37 ◦C for 15 min.
The parameters of the SERS test were laser wavelength, 633 nm; spectra, in the range of
500–2000 cm−1; and integral time, 10 s.

3. Results and Discussion

To form a mass of “hot spot”, SERS nanotags were prepared for quantitative and
ultrasensitive detection of cTn I. As shown in Figure 1, 4-MBA was embedded in the
gap between Au and Ag bimetallic nanospheres to form Au@4-MBA@Ag, which was
further combined with antibody to form an immune probe used for cTn I detection. The
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preparation and detection of the SERS biosensor can be described as follows. First, noble
metal gold nanospheres (Au NSs) were synthesized using a modified liquid reduction
method, and Raman reporters were modified on the surface of the Au core [27]. Second, the
core-shell composite material Au@Ag NSs combined with 4-MBA was prepared by growing
Ag shells on the surface of Au@4-MBA. To form Ag-S chemical bonds, carboxyl polyglycol
sulfhydryl group was modified using Ag shells, then NHS and EDC solution were injected
to activate carboxyl to connect with cTn I antibody. Third, the cTn I antibody was combined
with the mixture to prepare specific SERS nanotags. Finally, SERS nanotags were used to
capture antigens. Compared with Hu et al., in the absence of magnetic beads, we only
used simple synthetic SERS nanotags to complete the immune test, and the detection time
was reduced to 15 min [27]. In the detection process, under laser irradiation, the Raman
spectrum of the SERS reporters changed according to changes in antigen concentration;
then linear fitting was carried out according to changes in its relative peak intensity and
antigen concentration to obtain a curve with a good linear relationship.
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3.1. Morphological and Raman Characterization of Au and Au@Ag

The morphologies of Au and Au@Ag were characterized using scanning electron
microscopy (SEM) and transmission electron microscopy (TEM). As shown in Figure 2a,
the Au NSs had uniform size and good dispersion, and the nanosphere size was approx-
imately 15 nm. However, the formation of Ag shells on the surface of Au NSs had no
effect on the size of pristine Au NSs. As shown in Figure 2b, Au@Ag NSs with uniform
morphology and dispersion were successfully prepared; the obvious core-shell structure
can be seen in the TEM image of Figure 2c. Au NSs and Au@Ag NSs were successfully
synthesized. In Figure 2d, Au NSs have an obvious absorption peak at approximately
520 nm, which corresponded to the plasmon resonance absorption peak of Au [28,29],
and Au NSs exhibited a dipolar LSPR mode at 520 nm. After the Ag shell was grown
on the surface of Au NSs, the peak position of the absorption peak shifted to 400 nm,
corresponding to the plasmon resonance absorption peak of Ag [30]. Obviously, the Au
peak almost disappeared and the Ag peak dominated; this was caused by the high content
of Ag in the core-shell structure. Furthermore, Ag NSs exhibited a dipolar LSPR mode at
400 nm, and thus confirmed the formation of Ag NSs. To compare the enhancement effect
of different Ag contents on Raman signals, Au@Ag Raman spectra prepared using different
AgNO3 contents were compared under the same measurement conditions. As shown in
Figure S2, we compared the Raman spectra of pure Au NPs, 4-MBA and pure Au NPs +
4-MBA. As shown in Figure 2e, the Raman intensity gradually increased with the AgNO3
from 0.1 mL to 0.5 mL, but decreased by approximately 4400 when the volume of AgNO3
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reached 0.8 mL. After the volume of AgNO3 was further increased to 1.0 mL, the intensity
decreased by approximately 4700. Furthermore, as shown in Figure 2f, when the volume
of AgNO3 was increased from 0.5 mL to 1.0 mL, the standard error still maintained an
upward trend, indicating a further decrease in stability and reliability. Therefore, 0.5 mL
was chosen as the optimal volume of AgNO3 for synthesis, other characterization methods,
and performance testing.
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1.0 mL); (f) histogram of the standard error statistics of Raman intensity as the volume of AgNO3
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3.2. Characterization of Core-Shell Structure

The morphology of core-shell materials was observed more carefully using transmis-
sion electron microscopy (TEM). As shown in Figure 3a,b, after adding AgNO3 solution
to deposit the silver shell, double-layer nanospheres with a size of 30 nm could be clearly
observed by high-resolution TEM imaging (Figure 3b). The boundary was obvious because
the electron density of the darker part, corresponding to Au NSs, and the lighter part,
corresponding to the silver deposited around Au NSs, were different. In the image in
Figure 3a, the particles showed a uniformly grown Au@Ag core-shell structure. The Raman
reporters were immobilized by adding the Raman signal molecule 4-MBA in the interspace
of the Au@Ag NSs core-shell structure for later quantitative analysis. As shown in Figure 3c,
a small gap in the middle of the core-shell structure was attributed to the molecular layer
formed by 4-MBA. In addition, the EDS element maps in Figure 3e,f show the core-shell
structure formed by Au and Ag; it was nucleated with Au element, and Ag element grew
uniformly on the surface of Au.
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3.3. SERS Performance

The SERS performance of Au@4-MBA@Ag NSs was investigated. The uniformity of
Au@Ag was studied using a Laser Raman Microscope, as shown in the inset of Figure 4b.
As shown in Figure S3, we studied the three-dimensional Raman spectra of Au. The three-
dimensional waterfall spectra (Figure 4a) of the Au@Ag from Raman mapping and the
uniformity of the SERS relative intensity were obtained as two-dimensional maps (based on
I1078). Figure 4b shows that Au@Ag as a SERS substrate possessed excellent signal spatial
stability and consistency, which was in good agreement with the uniform morphology
of the SERS substrate (Figure 2b). The overall morphology of the SERS substrate was
further observed using atomic force microscopy (AFM). This was also consistent with the
performance test results shown in Figure 4a and the SEM results in Figure 2b, which finally
showed that the overall morphology of the SERS substrate was uniform and that the SERS
performance was stable.

The capability of the SERS nanotags for detecting biomarker cTn I was further inves-
tigated. A series of cTn I standard solutions with different concentrations (0, 0.01, 0.05,
0.1, 0.5, 1.0, 5.0, and 10.0 ng mL−1) were prepared and tested under the same conditions.
As shown in Table S1, we compared the detection limits of cTn I by different detection
methods. The Raman spectra of the standard PBS troponin antigen solution is show in
Figure 5a. The Raman signal was gradually enhanced via an increase in cTn I antigen
concentration. As shown in Figure 5b, a relative curve was fitted to the Raman signal and
cTn I antigen concentration. Correspondingly, the equation for the fitting curve of cTn I
was I = 11184.47 + 2882.24 ∗ C (R2 = 0.95), and the range was 0.01–10.0 ng mL−1 (Figure 5b).
The specificity of SERS nanotags to cTn I was also tested. Under the same test conditions,
the Raman response of nanotags to cTn I was significantly higher than the responses of
other myocardial infarction biomarkers and blank experiments, indicating that the Au@Ag
Biosensors had excellent specificity.

The gap between the gold core and silver shell can produce a strong electromagnetic
field enhancement effect, resulting in plasmon resonance under a 633 nm laser [31]. The
simulation was conducted using COMSOL under a 633 nm laser. As shown in Figure 5d,
the electromagnetic field enhancement of randomly distributed Au NSs could reach a
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maximum of 6.33, whereas the electromagnetic field enhancement of Au@Ag NSs with
GERTs could reach a maximum of 45.0. As shown in Figure S1, we compare the elec-
tromagnetic field enhancement effect under a 532 nm laser. The COMSOL simulation
results provided strong support for the interpretation of the Au@Ag electromagnetic field
enhancement mechanism.
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4. Conclusions

In summary, the Au@4-MBA@Ag NSs core-shell structure was successfully prepared.
The Au@4-MBA@Ag NSs core-shell structure with excellent signal consistency and steric
stability was considered as a SERS substrate. In addition, the biosensor based on Au@Ag
could be used for cTn I detection in a standard phosphate buffered saline (PBS) environment;
the limit of detection for cTn I was 0.0086 ng mL−1 with a good linear relationship. The
COMSOL simulation results indicated the electromagnetic field enhancement mechanism
of Au@Ag core-shell structure and the enhancement of the Raman reporter. Additionally,
the Au@4-MBA@Ag NSs core-shell structure was facile to synthesize, and the analysis
procedure could be completed within 15 min. Therefore, the biosensor based on Au@Ag has
great potential to be a fast and accurate detection tool for cTn I and an effective diagnostic
tool, as well as significant application prospects in clinical applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12121108/s1, Figure S1. (a) Electrical field distributions of
randomly distributed Au NSs and (b) Au@Ag NS with GERTs (532 nm laser wavelength); Figure S2.
Raman spectra of pure Au NPs, 4-MBA and pure Au NPs + 4-MBA; Figure S3. Three-dimensional
Raman spectra of Au; Table S1. Detection limits of cTn I by different detection methods [32–37].
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