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Abstract: Wearable sensors and machine learning algorithms are widely used for predicting an
individual’s thermal sensation. However, most of the studies are limited to controlled laboratory
experiments with inconvenient wearable sensors without considering the dynamic behavior of
ambient conditions. In this study, we focused on predicting individual dynamic thermal sensation
based on physiological and psychological data. We designed a smart face mask that can measure skin
temperature (SKT) and exhaled breath temperature (EBT) and is powered by a rechargeable battery.
Real-time human experiments were performed in a subway cabin with twenty male students under
natural conditions. The data were collected using a smartphone application, and we created features
using the wavelet decomposition technique. The bagged tree algorithm was selected to train the
individual model, which showed an overall accuracy and f -1 score of 98.14% and 96.33%, respectively.
An individual’s thermal sensation was significantly correlated with SKT, EBT, and associated features.

Keywords: wearable biosensors; smart face mask; skin temperature; exhaled breath temperature;
thermal sensation vote; machine learning

1. Introduction

Urban traffic is becoming a prominent problem with the development of urbaniza-
tion [1]. While public transport on the ground is facing huge pressures in many cities due
to the increasing number of passengers and vehicles, the subway is becoming popular in
metropolitans, such as Seoul. The underground railway network has become an integral
part of the public transport system because of its high speed, large passenger capacity,
and timely operation. With the rising demand for the subway and its influence on public
health, the subway’s thermal environment has also attracted the attention of researchers [2].
Therefore, it is necessary to evaluate the thermal comfort of the underground train carriage
to ensure a healthy and comfortable thermal environment [3], which will also facilitate
determining an energy management scheme to minimize the energy consumption of the
subway [4]. Typically built environments consist of indoor, outdoor, and transitional
spaces [5]; however, the subway-built environment differs with high mobility, short passen-
ger stay times, and high passenger density. Hence, thermal comfort in the subway needs to
be dynamically considered using an individualized prediction model.

Previous studies have been extensively conducted on the thermal comfort of indoor
and outdoor environments based on the climate chamber, field study, and simulation meth-
ods [6–9]. Previous investigations included different climatic zones [10–12] and were mainly
focused on various built environments, such as offices [13], residential buildings [14–16],
educational institutes [17], automobiles [18–22], and museums [23,24]. They considered
both physiological and ambient parameters, including skin temperature, heart rate, ambient
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temperature, air velocity, relative humidity, and globe air temperature, to predict a ther-
mal sensation for specific built environments. Many of these studies used environmental
sensors, thermal imaging [25,26], and wearable sensors to measure heart rate [27–29] and
skin temperature [30–33] from different body parts such as the forehead, wrist, leg, thigh,
and back during the experiments. These studies were conducted in climate chambers with
controlled environmental conditions and can be a close approximation of certain realistic
conditions. However, they are a poor approximation of dynamic environments, such as
subway commutes, where a significant percentage of the population uses the environment
on a daily basis.

Thermal comfort studies on subways have received a lot of attention in recent years
with the increasing number of underground railroads. Han et al. [34] conducted a study on
the subway of Seoul during three different seasons and found a significant difference in
air temperature during the different seasons. The study considered thermal, air, acoustics,
light, and overall comfort. Although most respondents felt neutral or comfortable, this
study did not identify thermal comfort at an individual level. The hypothalamus in the
brain controls thermoregulatory mechanisms, and thermal sensations can be predicted
from brain activity signals. The power of the beta and gamma bands significantly increased
in an uncomfortable subway station during the experimental study by Kim et al. [35].
They chose one uncomfortable and one comfortable subway station, and by using an
electroencephalogram (EEG) device, the participant’s brain activities were recorded in a
sitting position. However, due to the complexity of wearing an EEG device and the motion
interference, it was not convenient to use an EEG signal for predicting thermal sensations
while using the subway.

A study by Abbaspour et al., which investigated thermal sensations in Tehran sub-
way stations and train carriages, found that the relative humidity was low in the Tehran
subway [36]. They also found that the temperatures in the entrances, station halls, and
platforms were higher than the temperature of the train. The depth and design of the
subway stations affected the thermal condition, as found by a study in Athens [37]. Zhang
et al. [38] pointed out the factors of the tunnel’s thermal environment in China. Train den-
sity and passenger flow have the most important impact on the subway tunnel’s thermal
environment. Yang et al. [39] conducted a long-term field study in the cold region of China,
Harbin. They calculated the minimum comfortable temperature for the aisle, hall, and
platform of the subway station and found that 70% of the passengers felt comfortable with
the existing thermal environment. However, this study did not investigate thermal comfort
in train cabins. All the studies above have contributed to the literature on the subway’s
thermal environments with some limitations, such as measuring from static points, using
a population model, and using a complex sensor setup. Passengers go through various
points while using a subway train, including the platform, train cabin, and entry and exit
points. Passengers’ activities also vary depending on the situation, such as waiting on the
platform, transferring to trains, and sitting or standing during travel, which indicates the
necessity of a dynamic thermal sensation prediction model.

In this study, a naturalistic investigation was performed with the aim of making a smart
face mask to predict an individual’s thermal sensation in a dynamic environment, such as
a subway commute. In our previous study, we reported the feasibility of using a smart
face mask to obtain an individual’s comfort state [40]. Physiological and psychological
responses of subway passengers were measured. Only biological signals that could be
obtained from the sensors embedded in the smart face mask, such as skin temperature (SKT)
and exhaled breath temperature (EBT), were recorded, and the corresponding thermal
sensation votes (TSVs) were collected every 5 min using a mobile application. The transient
EBT infers crucial biological information, including core body temperature and metabolism,
and can be utilized as an effective quantifier of the body condition. In the present study,
these biological signals and corresponding TSVs were utilized to obtain the personalized
thermal comfort model, which achieved an overall accuracy of 98.14%.
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2. Materials and Methods

Herein, the thermal sensation of passengers during a subway commute was inves-
tigated with the aid of a developed smart face mask. The transient EBT and SKT signals
and corresponding TSV were recorded with a developed smartphone application. The
study aimed to investigate the thermal sensation characteristics in a real-world scenario
and hence it was designed to have minimal deviation in a passenger’s routine. We also
applied a machine learning algorithm to obtain a personalized thermal sensation model
with the measured data.

2.1. Smart Face Mask
2.1.1. Sensors

Since the experiment was chosen to be a naturalistic experiment where the participants
could mingle with other people in their daily routines, appropriate sensor selection was a
critical factor. The appropriate sensor would not cause any inconvenience to the participants
and the passengers around them. Thus, certain conditions were to be followed:

• It should be as non-invasive as possible.
• Analog data should be easily accessible.
• It should be as comfortable as possible for use in daily life and should be portable.

For this study, we measured SKT by a non-invasive infrared temperature sensor
(MLX90614, Melexix Technologies NV, Tessenderlo, Belgium) that detects infrared rays
emitted from an object through a built-in heat medium and converts them into an elec-
trical signal [41]. EBT was measured by a thermistor (NXFT15XH103FA2B130, Murata
Manufacturing, Kyoto, Japan), which is a negative temperature coefficient sensor with a
resistance of 10 kΩ at 25 ◦C. Sensor information is provided in Table 1. All sensors were
controlled using an Arduino (Arduino NANO BLE, Sparkfun Electronics, Niwot, CO, USA)
and placed inside the mask (Figure 1).

Table 1. Details of the sensors used for this study.

Measurement Sensor Specification

Facial skin temperature Infrared
MLX90614-DCC

Operating voltage: 3.3–5 V,
accuracy: ±0.2 ◦C,
interface: I2C,
response time: 0.15 s

Exhaled breath temperature Thermistor
NXFT15XH103FA2B130

Resistance at 25 ◦C: 10 KΩ,
operating range: −40–125 ◦C,
accuracy: ±0.8 ◦C,
response time: 4 s
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2.1.2. Mobile Application Development

Physiological data measured by the smart mask were monitored by an android mobile
application, and the layout is shown in Figure 2. The application was developed using
the MIT app inventor, initially provided by Google and is currently managed by MIT [42].
Initially, the user is asked to initiate the connection with the device using the required
button after wearing the smart face mask (Video S1). If the connection is successful, the
status in the text box below the scan button will change to connected. The application can
show the current SKT and EBT, and there is a dropdown menu to the right of the thermal
sensation box to select the user’s TSV, which they can save by using the add button. Just
below this, there is a timer that shows the time after submitting each vote and will also give
an alarm at the end of 5 min, so the user does not miss any voting (Video S2).
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Figure 2. Mobile interface for thermal sensation votes (TSVs), skin temperature (SKT), and exhaled
breath temperature (EBT).

2.2. Participants Selection

Twenty participants, including Korean and foreign nationalities (11 and 9 participants,
respectively) who have lived in Seoul for more than 1 year, were chosen for this study based
on physiological and health status surveys. Table 2 gives the average age and physical
information of the participants. The experimental procedure was explained in detail by
pretraining prior to the experiments for a better understanding of the experiments. The
participants were asked to sign a consent form before participating in the experiments. The
participants were asked to avoid caffeine, alcohol, and extreme physical work for 12 h prior
to the experiments. The participants wore short-sleeved T-shirts and long pants based on
the summer/autumn clothes of a university student.

Table 2. Average age and physical information of the participants.

Number of Participants Age (Years) Height (cm) Weight (kg)

20 23.1 ± 5 174.4 ± 5.5 77 ± 30

2.3. Experimental Procedure

The goal of this research was to predict thermal sensation outside the laboratory setting
where people were performing their regular life activities. The participants wore the smart
face mask and traveled on the Seoul metropolitan subway line number 4 from Gireum to
the Sadang station and returned in the same way as shown in Figure 3. The experiments
were performed between 23 August and 27 August 2021. The average outdoor temperature
and relative humidity were 23.74 ◦C and 87%, respectively. August is traditionally one
of the hottest months in Seoul, with high relative humidity and heavy rainfall. Hence, a
subway cooling system is usually employed to generate a comfortable thermal environ-
ment for the passengers. The duration of each experiment was about 70 min and was
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repeated on 3 different days during the same time. The study was not conducted during
the rush hour and the information regarding the average number of people during the
commute is provided in Table A1. The participants were not accompanied and commuted
normally except for entering the TSVs during their travel. As the study was a naturalistic
investigation, no control was made to the environment or to the participants’ metabolic
activities (sitting or standing) and their time waiting for the train.
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2.4. Data Collection and Analysis

SKT, EBT, and TSVs were collected from the participants using the smart mask and
mobile application. SKT was measured from the cheek of the participant’s face, and the air
temperature inside the face mask was recorded for the EBT. Data were transferred to the
mobile application through Bluetooth and saved to the phone’s local storage. Participants
gave their TSVs on a 7-point scale using the application every 5 min. All the physiological
data were collected with a 1 Hz sampling rate. To increase the data volume for use in
machine learning, each participant took part in this experiment 3 times but not more than
once a day. Data collection started when the participant entered the station by pressing the
platform entry button and finished when the participant exited the station by pressing the
platform exit button. Finally, the participant sent the stored file by email after finishing
each experiment.

The overall data analysis procedures are shown in Figure 4. Before applying the
machine learning algorithm to predict the individual thermal sensation of subway passen-
gers, data were preprocessed to remove outliers (greater than 3 standard deviations) and
null values. Participant 6’s data were not recorded correctly and were excluded from the
analysis. Participants 1, 8, 14, and 17 had difficulty one day acquiring data. Hence out of
the 60 cases recorded from the 20 participants, 53 data samples were suitable for analysis.
The recorded SKT signal is shown in Figure 5a with a brown line. The SKT and EBT signals
were highly contaminated with artifacts because of the ambient temperature and airflow
during talking and walking. These high-frequency signals were possibly dominant, making
it difficult to extract the original signal in the time domain, as shown in Figure 5b. We
applied the wavelet denoising technique to approximate the original signal without losing
any temporal information, as shown by the red line in Figure 5a. We made a spectrogram
to observe the temporal information using short-term Fourier transform to represent the
data in the time–frequency domain. The spectrogram was made using the Hann function,
and the window size was selected for 3 min with 2 min overlapping.
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Figure 5. Extracting skin temperature: (a) recorded skin temperature with noise reduction, (b) spec-
trogram for recorded skin temperature, and (c) spectrogram for the denoised skin temperature.

Figure 5c shows that after removing the noise, the signal has consistent high energy in
the lower frequency ranges. The lower frequency bands were extracted using the wavelet-
based decomposition technique and were made into features for machine learning. Wavelet
decomposition is a time–frequency analysis that provides information in both the time and
frequency domains of a signal and is widely used for biomedical signal processing [43–46].
Wavelet decomposition is a bandpass in nature and divides the frequency spectrum into
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two halves of equal frequencies. The lower frequency band is further subdivided into
two equal halves (Figure A1). The selection of the mother wavelet and the number of the
approximation level is important for the wavelet signal decomposition. Daubechies was
selected as the mother wavelet for the ideal natural signal, as suggested by Rafiee et al. [43],
and the decomposition was performed up to level 5. The low- and high-frequency band
signals from the tertiary level were selected as features along with the denoised SKT and
EBT. Hence, a total of six features were selected for further analysis with machine learning:
SKT, SKTapprox, SKTdecomp, EBT, EBTaprrox, and EBTdecomp. The pseudo-code for feature
creation is given in Algorithm 1.

Algorithm 1: Pseudo-code for wavelet-based feature creation

Algorithm To Construct Features Vector

Input: recorded SKT, EBT, and TSVs
Output: table with two more features for each signal, and TSVs
Begin:
read data table;
FOR each SKT:
IF (SKT is outlier OR null):
remove the row;
END IF;
END FOR;
FOR each EBT:
IF (EBT is outlier OR null):
remove the row;
END IF;
END FOR;

denoise SKT and EBT using MATLAB function;
decompose SKT and EBT using wavelet decomposition function;
reconstruct SKT approximation and details;
reconstruct EBT approximation and details;
make table with SKT, EBT, associated approximation and details, and TSV;
END;

3. Results and Discussion

Thermal sensation prediction in various environments is an extensively studied area.
Various static and dynamic models were proposed for particular environments based on
the local sensation parameters of the human body [47–50]. However, obtaining temperature
profiles of various body parts with wearable sensors is not yet practical for the normal daily
routine of a person. Using a smartwatch as a sensor could achieve biological signals in real-
time and is being explored for various purposes in health and wellbeing [51]. Due to the
impact of COVID-19, face masks have become an integral part of people’s day-to-day lives
and provide exhaled breath data, which provides unique information in real-time during
day-to-day activities and would not have been possible before the COVID-19 pandemic.
Various applications using the exhaled breath data have been reported recently [52–55], and
in our previous work [40], we proved the feasibility of using such a system for analyzing
the thermal comfort of a person. In the present study, a smart face mask was developed and
coupled with a mobile application to investigate the thermal sensation in a public subway.

3.1. Analysis of Physiological and Psychological Datasets during Subway Commute

The average TSV for the 53 cases is shown in Figure 6. The majority of TSVs were
between 0 and 0.5 for all events (Figure 6). Thus, about 50% of the subjects felt a neutral
thermal sensation, and if a linear relation for the preference of comfort is assumed, they
were in the comfortable range throughout the commute. However, the plot shows that the
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data distribution is multi-modular, which suggests that the subpopulation of the dataset
that was on the platform is distinct from that inside the subway cabin.

Biosensors 2022, 12, 1093 8 of 17 
 

 

3. Results and Discussion 

Thermal sensation prediction in various environments is an extensively studied area. 

Various static and dynamic models were proposed for particular environments based on 

the local sensation parameters of the human body [47–50]. However, obtaining tempera-

ture profiles of various body parts with wearable sensors is not yet practical for the normal 

daily routine of a person. Using a smartwatch as a sensor could achieve biological signals 

in real-time and is being explored for various purposes in health and wellbeing [51]. Due 

to the impact of COVID-19, face masks have become an integral part of people’s day-to-

day lives and provide exhaled breath data, which provides unique information in real-

time during day-to-day activities and would not have been possible before the COVID-19 

pandemic. Various applications using the exhaled breath data have been reported recently 

[52–55], and in our previous work [40], we proved the feasibility of using such a system 

for analyzing the thermal comfort of a person. In the present study, a smart face mask was 

developed and coupled with a mobile application to investigate the thermal sensation in 

a public subway. 

3.1. Analysis of Physiological and Psychological Datasets during Subway Commute 

The average TSV for the 53 cases is shown in Figure 6. The majority of TSVs were 

between 0 and 0.5 for all events (Figure 6). Thus, about 50% of the subjects felt a neutral 

thermal sensation, and if a linear relation for the preference of comfort is assumed, they 

were in the comfortable range throughout the commute. However, the plot shows that the 

data distribution is multi-modular, which suggests that the subpopulation of the dataset 

that was on the platform is distinct from that inside the subway cabin. 

 

Figure 6. Average recorded TSVs for each event. n = 53 cases. 

The average transient variation of SKT, EBT, and TSVs of the participants along the 

duration of the experiment is shown in Figure 7. EBT is sinusoidal in nature and increases 

during exhalation and decreases during inhalation. The average EBT and SKT in the tran-

sition period from P5 to P6 increased because of their previous thermal experiences and 

were more controlled in the closed train cabin than in the semi-controlled platform or exit. 

This observation was reinforced by their TSVs during P5 to P6, as shown in Figure 7c. The 

average TSV increased while leaving the train and heading toward the platform and exit, 

which may have affected the increased EBT. 
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The average transient variation of SKT, EBT, and TSVs of the participants along the
duration of the experiment is shown in Figure 7. EBT is sinusoidal in nature and increases
during exhalation and decreases during inhalation. The average EBT and SKT in the
transition period from P5 to P6 increased because of their previous thermal experiences
and were more controlled in the closed train cabin than in the semi-controlled platform or
exit. This observation was reinforced by their TSVs during P5 to P6, as shown in Figure 7c.
The average TSV increased while leaving the train and heading toward the platform and
exit, which may have affected the increased EBT.

There are limited models which have studied asymmetrical environments and tran-
sient conditions since they are more complex than uniform environmental conditions
because people’s responses depend on the comfort of their local body parts and that of
their whole-body comfort. Thus, the correlations developed from such scenarios include
the response of various body parts and could not be applied to this study. However, in a
study by Taniguchi et al., a multi-linear regression model was used to correlate TSVs with
the transient facial skin temperature and its rate of change in a vehicle environment [56].
However, the correlation could not predict TSVs in the present study since it only focused
on the facial skin temperature variation (Figure A2). Since other traditional TSV prediction
models require local sensation data [47–50], they could not be applied to this study; hence
an AI model was used to obtain a personalized thermal comfort model.
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3.2. Personalized Thermal Comfort Model

This study aimed to predict individual TSVs based on the physiological parameters.
Participants gave their TSV on a 7-point thermal sensation scale ranging from a score of
−3 to +3, and a classification model was made for each participant. Since the sampling
rate of the temperatures and TSVs was different, the TSVs were interpolated using a linear
approximation model to obtain the transient TSV profile, and its relationship with the other
input features was estimated using their correlation, as shown in Table 3. Correlation is
used to measure the association between two variables and quantified by the correlation
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coefficient. The correlation coefficient varies between −1 and 1, which represent no relation
and strong linear relation between the variables, respectively. The input features showed
significant (p < 0.01) correlations with low to moderate correlation coefficients. It can be
inferred that SKT, EBT, and the associated features increase with increasing TSVs, but not
all the features increase at the same time. Moreover, individuals have different strong
predictive features associated with their TSVs. For example, the EBT is more correlated
with TSVs for participant 1, but SKT is more correlated with TSVs than other features for
participant 7. We can identify which features to use and reduce the number of features
based on this correlation matrix. Among the participants, participant 12 showed no change
in their TSVs for all 3 experimental days, so participant 12’s data were excluded from the
individual TSV prediction model.

Table 3. The correlation of all the input features with participants’ TSVs.

ID SKT SKTapprox SKTdecomp EBT EBTapprox EBTdecomp

1 0.016 0.013 0.009 0.767 ** 0.775 ** −0.011
2 0.472 ** 0.473 ** 0.003 0.133 ** 0.131 ** 0.002
3 0.118 ** 0.117 ** 0.054 ** 0.231 ** 0.216 ** 0.021
4 0.302 ** 0.304 ** −0.001 0.06 ** 0.058 ** 0.018
5 0.608 ** 0.622 ** 0.001 0.325 ** 0.337 ** 0.001
6 - - - - - -
7 0.619 ** 0.621 ** −0.003 0.4 ** 0.414 ** 0.004
8 0.012 0.007 0.008 0.078 ** 0.075 ** 0.007
9 −0.401 ** −0.402 ** −0.008 −0.097 ** −0.107 ** −0.001

10 0.249 ** 0.247 ** 0.002 0.252 ** 0.253 ** −0.002
11 0.147 ** 0.154 ** −0.019 −0.255 ** −0.264 ** −0.005
12 - - - - - -
13 0.43 ** 0.43 ** 0.013 0.397 ** 0.4 ** 0.017
14 0.468 ** 0.468 ** 0.011 −0.068 ** −0.066 ** −0.006
15 0.022 0.021 −0.003 0.218 ** 0.217 ** 0.008
16 0.084 ** 0.083 ** 0.004 0.005 0.005 −0.001
17 −0.141 ** −0.141 ** 0.009 0.04 ** 0.042 ** −0.02
18 −0.217 ** −0.221 ** −0.003 0.29 ** 0.29 ** −0.006
19 0.489 ** 0.491 ** −0.004 0.223 ** 0.226 ** 0.005
20 0.348 ** 0.348 ** −0.004 0.001 0.003 −0.001

** statistically significant (p < 0.01).

We applied different machine learning algorithms to our dataset to find the best model
in terms of accuracy, time complexity, and composability. We tested the support vector
machine (SVM), K-nearest neighbor (KNN), naïve Bayes, and bagged trees models with
each participant’s data. Figure 8 shows that the bagged trees model performed better than
the other models in terms of accuracy and variance. The SVM and naïve Bayes models had
an average accuracy of less than 70% with a larger interquartile range (IQR), suggesting
a big difference in the performance of the models using the participant’s data. While the
KNN and bagged trees models performed well with an overall accuracy of over 90%, we
chose the bagged trees model, which showed less variance with the participant’s data
indicated by the smaller IQR.
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Figure 8. Comparison of the different machine learning algorithms.

Bagging is a machine learning procedure that can reduce the variance by making
a subset and avoid overfitting by taking the average from each subset. This study used
the bagged tree classification to classify individual thermal sensations. The dataset was
divided into different combinations of training and testing ratios (60:40, 70:30, and 80:20)
for each participant. The accuracy was increased by using 80% as the training set for
each participant. Therefore, 80:20 was randomly selected as the training-to-testing set
ratio, respectively. All analyses were performed using MATLAB (R2020b), and a 5-fold
cross-validation was used during the training of the model. The accuracy of the individual
prediction model was higher than 95% for all participants, as shown in Figure 9. The
accuracy can be misleading for classification problems if the datasets are imbalanced. The
experiments were performed on the subway train, and the temperatures inside the train
were almost constant during the entire journey, and so were the TSVs of the participants.
For this reason, the datasets were imbalanced, with the majority voting for a specific class.
To evaluate the performance of each model, we also calculated the precision, recall, and f -1
score, as shown in Table 4, along with the accuracy using the following Equations (1)–(4):

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (1)

Precision =
TP

TP + FP
× 100% (2)

Recall =
TP

TP + FN
× 100% (3)

f − 1 score =
2 × precision × recall

precision + recall
× 100% (4)

Since this was a multiclass problem, we took a one vs. all approach to calculate the
metrics and finally measured the weighted average. August is hotter than other months
in Seoul, and unfortunately, during this study, it was raining, so there were minimal
temperature differences between the subway cabin and outside, which may have affected
thermal sensation.
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Figure 9. The accuracy of the individual TSV prediction model using the bagged trees algorithm.

Table 4. Performance metrics of individual prediction model with the bagged trees algorithm.

ID Precision (%) Recall (%) f -1 Score (%) Accuracy (%)

1 97.40912879 97.405359 97.40108 98.69067
2 95.49638989 95.5277754 95.50511 97.7176
3 92.50089658 92.6493112 92.47093 96.14679
4 95.92654775 95.9369586 95.93012 97.94101
5 96.07387951 96.0685809 96.07052 98.01398
6 - - - -
7 97.79543872 97.8439462 97.80826 98.8894
8 97.63298034 97.6421645 97.63427 98.80881
9 95.25275546 95.2461255 95.24822 97.59388
10 96.7478617 96.7516882 96.74953 98.35943
11 92.69322156 92.7050666 92.69831 96.27451
12 - - - -
13 96.70350709 96.7725463 96.72947 98.33398
14 98.02587008 98.0287653 98.02712 99.00717
15 95.92848156 95.9575363 95.93169 97.93935
16 96.25907571 96.2621746 96.2548 98.10875
17 99.77315689 99.7731569 99.77316 99.88392
18 95.34922926 95.3577003 95.35017 97.64471
19 95.5944613 95.6120342 95.60206 97.76786
20 95.07726541 95.0968453 95.07749 97.50459

This study found that the SKT and EBT, along with their extracted features, can be
used to predict individual thermal sensations. Skin is the largest organ of the human body
and plays a vital role in thermoregulation by exchanging heat between the body and the
ambient air. The laboratory testing in our previous experiment [40] found that EBT is
significantly correlated with TSVs. Besides predicting individual thermal sensations in a
subway, the researchers were trying to leverage the use of face masks by integrating sensors
to monitor SKT, EBT, respiratory patterns, CO2 monitoring, biomarkers for inflammation,
and airborne pathogen detection [57–61].
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4. Conclusions

We designed a smart face mask to measure individual SKT and EBT and developed
a smartphone application to store the data for analysis. We also proposed wavelet-based
denoising and feature creation techniques, which showed a maximum accuracy of 100%
with the bagged trees algorithm. The experiments were performed in real-time in a subway
cabin under naturalistic experimental conditions. The SKT, EBT, and extracted features
showed a significant correlation (p < 0.01), with an overall accuracy of 98.14% and an f -1
score of 96.33%. We plan to integrate ambient air temperatures and CO2 monitoring sensors,
which will extend the usability of this smart face mask in future studies. All the participants
in this study were young male university students. Further studies need to be done on
different age groups and genders. Additionally, studies need to be conducted in other
seasons to see the transient conditions between subway cabins and outside environments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bios12121093/s1, Video S1: Connection with a smartphone after
wearing the smart face mask; Video S2: Real-time acquisition of physiological and psychological data
of a person wearing the smart face mask.
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