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Abstract: Nowadays, major depressive disorder (MDD) has become a crucial mental disease that
endangers human health. Good results have been achieved by electroencephalogram (EEG) signals
in the detection of depression. However, EEG signals are time-varying, and the distributions of the
different subjects’ data are non-uniform, which poses a bad influence on depression detection. In this
paper, the deep learning method with domain adaptation is applied to detect depression based on
EEG signals. Firstly, the EEG signals are preprocessed and then transformed into pictures by two
methods: the first one is to present the three channels of EEG separately in the same image, and the
second one is the RGB synthesis of the three channels of EEG. Finally, the training and prediction are
performed in the domain adaptation model. The results indicate that the domain adaptation model
can effectively extract EEG features and obtain an average accuracy of 77.0 ± 9.7%. This paper proves
that the domain adaptation method can effectively weaken the inherent differences of EEG signals,
making the diagnosis of different users more accurate.

Keywords: domain adaptation; depression detection; few electrodes; electroencephalography

1. Introduction

Depression is a common mental illness that causes some degree of negative impact
in various countries around the world. According to the World Health Organization,
300 million people worldwide already suffer from depression, and this number is increasing
every year. Depression is present at all ages and harms generations [1]. People with
depression sometimes cannot rationally control their words and actions, which can lead
to very serious consequences. In most cases of suicide, it can be understood that the vast
majority of suicides are caused by suffering from varying degrees of mental illness, of
which depression is an important causative factor [2]. The main features of depression
are prolonged depressed mood, slowed thinking, and cognitive impairment with negative
attitudes towards many people and events [3]. This will definitely affect the life and work
of the patient, which is detrimental to both the individual and society [4,5]. Depending on
the severity of the depression, depression can be broadly classified as major depression,
moderate depression, and mild depression [6]. In general, patients with major depression
can be clearly detected by observing them over a period of time, but patients with moderate
and mild depression are more difficult or hard to detect and can become more severe
if they do not receive timely treatment [7]. In order to improve this situation, timely
diagnosis and treatment are needed. The current mainstream diagnostic approach is based
on the diagnostic and statistical manual of mental disorders (DSM-IV) [8] and other similar
approaches to psychiatric rating scales [9]. Traditional testing methods are more subjective
and less accurate, which does not allow for a timely diagnosis of the disease. Therefore,
better solutions need to be proposed for the diagnosis of early depression.

Today’s methods of detecting depression rely on the experience of physicians and var-
ious psychiatric testing scales [10,11], and the diagnosed person may ignore the symptoms
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exhibited at an early stage and, thus, not be examined in a timely manner, while others may
choose to avoid and not be willing to actively and truthfully speak about their condition
because of fear psychology, which can largely affect the diagnostic results [12,13]. This calls
for finding a method of judgment that is not altered by subjective consciousness. Many
studies have shown that EEG signals play an adjunctive role in the detection and treatment
of certain diseases.

EEG is a technique for non-invasively studying the electrophysiological dynamics of
the brain and relating these dynamics to cognition and disease. EEG measures and records
the electrical signals of the brain. When collecting EEG, the experimenter places small
electrodes on the scalp. The electrodes attach to a machine that gives the doctor information
about the brain’s activity [14]. Today there are a growing number of studies and applications
of EEG that play an important role in personalized medicine or psychiatry, such as epilepsy,
emotion classification, the diagnosis of sleep disorders, and the treatment of movement
disorders [15–17]. However, the raw EEG signal usually contains various noises, which can
affect the process and results of the study to some extent. Therefore, many researchers are
undertaking efforts to achieve noise reduction. For example, for muscle interference, in
addition to noise reduction by traditional methods, some studies are combining classical
and effective methods, thus forming a new system, and are obtaining relatively better
results in noise reduction [18,19]. Seok et al. summarize the development of motion artifact
removal techniques to a certain extent, which has good results in practical applications.
With the development of artificial intelligence, motion artifact removal techniques have
good performance in the face of challenging problems [20]. Electrical source imaging (ESI)
is also useful for noise removal from EEG signals. It is also increasing in the treatment of
neurosciences such as epilepsy and in clinical applications [21,22].

EEG-based analysis and processing is also an approach to the detection and treatment
of depression. Olbrich et al. proposed that EEG can be used to distinguish whether there
is depression or not, and the test results are relatively good and can be standardized for
identification [23]. Wu et al. proposed that coherence features extracted from EEG signals
in the resting state are more reliable for the detection of major depression [24]. In recent
years, with the development of the Internet of Things and sensors, it has become easier
to identify depression by EEG, and Wei et al. designed a wearable device to collect EEG
signals in real-time [25]. Cai et al. proposed a universal method for EEG-based depression
detection, which proved to be effective in identifying depressed patients from a small
number of conductively collected EEG signals [26]. In summary, it can be demonstrated
that the EEG contains effective features for discriminating depression and that lightweight,
non-invasive, low-cost wearable devices have some prospects for depression detection.

Depression detection based on EEG can be implemented with different algorithms
and deep learning networks. When effective feature selection is performed on the EEG,
the support vector machine (SVM), linear discriminant analysis (LDA), naive Bayes (NB),
k-nearest neighbors (kNN), and decision tree (D3) can be used to make predictions with
better results [27]. Akbari et al. suggested a novel strategy for the diagnosis of depression
based on several geometric features derived from the EEG signal shape of the second-order
differential plot (SODP) [28]. With the development of deep learning, many researchers
are using deep network models for the detection of depression. Ay et al. used a deep
hybrid model based on EEG using a combination of the convolutional neural network
(CNN) and long-short-term memory (LSTM) for depression detection, which improved
the accuracy [29]. Loh et al. used short-time Fourier transform (STFT) to process EEG and
put the generated spectral images into a CNN model for training to improve the idea of
implementing automatic depression detection [30]. However, there is not much attention
or research on the adverse effects of EEG differences between users on depression detection.
This will maybe hinder the application of EEG-based depression detection in real life.

Since EEG can be affected by individual differences such as age, gender, and life
circumstances, it could lead to variability in EEG signals. Therefore, practical and effective
treatments are needed to improve the accuracy of depression diagnosis within certain
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limits. To weaken the adverse effects of variability, transfer learning may be a good
option [31]. Transfer learning can improve the performance of a model on a target domain
by transferring knowledge contained in a different but related source domain, which
reduces the dependence on the target domain [32]. In transfer learning, when the data
distribution of the source and target are different, but the two tasks are the same, this
particular type of transfer learning is called domain adaptation [33]. Domain adaptation has
good results in solving the target domain with a large amount of unlabeled data and large
differences from the source domain, and Ganin et al. introduced the application scenario of
domain adaptation in the unsupervised case [34]. Some recent studies have shown that
domain adaptation in deep networks can also learn features that can be transferred, which
opens new avenues for deep network-based research [35]. However, a pressing problem of
domain adaptation in deep networks is that the discrepancy between the source and target
domains increases significantly as the number of layers deepens. Long et al. proposed
a domain adaptation framework that could effectively reduce the discrepancy in deep
networks by mapping the depth features of a specific layer to reproducing kernel Hilbert
space (RKHSs), which can migrate the domain distribution among different features [36].
In conclusion, domain adaptation can be a good solution to the challenges posed by the
variability of data distribution.

Wearable EEG, as a low-cost data signal, has great potential for application. However,
the time-varying nature of each individual’s EEG signal and the non-uniform data distribu-
tion have a very negative impact on depression detection. After the EEG is captured by a
simple, non-invasive wearable device for proper processing, it is then trained and predicted
using a cross-user deep domain adaptation network based on the migration learning and
kernel function embedding theory, which can effectively attenuate the variability of EEG
signals from different users and enable more accurate diagnosis for different users. The
main contributions of this paper are as follows:

• A convenient scheme for the online diagnosis of depression without restricting the
user’s free movement

• Effective depression detection across users using domain adaptation methods.

2. Materials and Methods
2.1. Participants

In this experiment, the dataset used was the multi-model open dataset for mental-
disorder analysis (MODMA) dataset from the Key Laboratory of Wearable Equipment in
the Gansu Province, and the EEG signals collected at a resting state with three electrodes
were the main choice [37]. The dataset consists of 29 healthy subjects and 26 depressed
subjects (19 males and 10 females of 29 healthy subjects and 15 males and 11 females of
26 depressed subjects). Table 1 shows the demographic characteristics of the participants.
EEG signals were acquired mainly from three parts of the prefrontal lobe of the brain (Fp1,
Fpz, and Fp2), and the approximate location of the brain acquisition and the placement
of the acquisition device are shown in Figure 1. During the acquisition process, data were
collected from participants in the resting state in order to exclude, to some extent, the
influence of non-EEG factors.

Table 1. Participant demographic characteristics.

Characteristics Depression Group Health Group

Number (male:female) 15:11 19:10
Age 16–56 19–51

Number of years of education 6–19 12–19
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Figure 1. Brain acquisition location and placement of the three-electrode device. Reprinted with
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2.2. Data Preprocessing

Since the collected EEG samples are divided into healthy samples and depression
samples, and the data are stored in text files, and then in the process of domain adaptation,
the convolution-based neural network is mainly used, so it is necessary to convert the
text type data into image type; such data types can be trained and predicted in adaptive
networks. The following describes two methods of processing data into pictures.

2.2.1. Three Channel Data Merge Chart

The data of the three channels are drawn separately in a single picture, each with
a data interval of one second. Since the range of values of the original data is different,
the original data needs to be normalized to the same range, and the set range is [0, 1].
Additionally, during the data collection process, the subjects do not show healthy or
depressed EEG emotions more accurately at the beginning or the end of the collection,
taking into account the influence of external factors. This is somewhat misleading in
determining whether depression is present, so the first and last parts of the collected
sample data are removed. The intermediate data obtained in this way will be somewhat
representative. This experiment focuses on taking out the data starting at position 30% to
position 70% of each sample. Since the sampling frequency of the data acquisition is 250 Hz,
250 data points are selected to draw a picture of the one-second EEG signal. Then, the EEG
signal is filtered, mainly to filter out features that are not relevant to the prediction results.
The original signal is first high pass filtered with a cutoff frequency of 1 Hz, then trap
filtered, and its frequency range is set to [48, 52] Hz. Finally, the band-pass is filtered with
a frequency range set to [0.5, 35] Hz. Figure 2 mainly shows the time-frequency diagram
of the filtering process, and finally, as in Figure 3, three columns of data are drawn in the
same picture. Finally, the domain adaptation model is trained on black-and-white images.
The main purpose is to prevent the model from learning unnecessary color features, which
will make the detection results more convincing.

2.2.2. Synthesis by RGB

The most important difference between this data processing method and the previous
one is that the Fp1, Fpz, and Fp2 of the EEG signal, respectively, corresponding to the three
channels of RGB to synthesize the picture. The other methods of processing the original
text data at the beginning are the same, but when plotting, the coordinate system of the
time-domain filtering process is removed to facilitate the final RGB synthesis and to avoid
the influence of the coordinate system on the experimental results. Figure 4 mainly shows
the respective distributions of the time domain and frequency domain of the data before
and after filtering. When the picture is synthesized, the same will also turn the filtered data
drawn out picture into a black and white picture. The main thing is to set the gray value to
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0 at the position with the waveform and the gray value of the other backgrounds to 255 to
obtain a single-layer picture. Finally, Figure 5 shows the use of OpenCV to synthesize a
single-layer image drawn from the filtered data of three channels into an image by RGB.
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2.3. Domain Adaptation

In domain adaptation, since the distribution of the data in the source and target
domains is different, it is important to find ways to reduce this gap so that the model can
easily perform a specific task on the data in the target domain. The data in the source and
target domains are projected into the common space, which in turn, makes the difference
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between the data in the source and the target domains of this space smaller. This can be
treated as a similar dataset that can be trained with various classifiers in this space. This
provides an effective option for performing related tasks on data in unknown domains.

This experiment mainly adopts the domain adaptation model proposed in the litera-
ture, which is the deep adaptation network (DAN) [39]. The DAN is designed based on the
classical AlexNet [40]. AlexNet contains eight neural network layers, mainly consisting of
five convolutional layers in the front and three fully connected layers in the back. Generally,
the front layers of a deep neural network are used to extract the basic features of the data
and play the same role in other tasks, so the parameters that have been learned can be
left unchanged. Additionally, some of the middle layers learn features that may be more
consistent with specific tasks, and fine-tuning can be used to allow these layers to learn
some data features for new tasks as well. In order to achieve better transfer learning, the
last few fully connected layers are mainly used to change the parameters by the designed
loss function. These may also be some of the ideas of the DAN design.

Compared with the traditional convolutional neural network, DAN can obtain more
deep features of the data, which can extend the deep convolutional network to the adaptive
network and improve the portability of the neural network to a certain extent. In neural
networks, the extracted features will proceed from shallow to deep as the levels continue
to deepen, but at the same time, it also brings the variability of levels to become larger
and larger, leading to a significant decrease in the portability of the network. Adaptive
networks map data from different domains to a new domain so that they can be trained
and predicted in different domain data, and similarly, the key to the robustness of the
adaptive network is to reduce the difference. In DAN, a new multiple kernel variant of the
maximum mean discrepancies (MK-MMD) is proposed to reduce the discrepancy between
the source and target domains, which in turn, effectively improves the accuracy of the
network prediction. Multiple kernels can greatly improve the adaptive efficiency compared
to a single kernel and will have more than the expected effects for processing more complex
data. In this paper, DAN will be applied to EEG analysis, and experimental comparison
results with other domain adaptation models will be presented in the experimental phase.

The structure of DAN Is mainly divided into three parts, as shown in Figure 6. The
first part is composed of three convolutional layers conv1-conv3. The extracted features are
the basic features of the data, so these layers are frozen. After other data passes through
this part, the extracted features are also general. The second part is composed of two
convolutional layers conv4-conv5. The features extracted in this part have a certain depth,
so these layers are fine-tuned to change the relevant parameters, but these features are
slightly less transferable. The third part consists of three fully connected layers fc6-fc8,
which are designed for specific experiments, but these layers are not transferable, so these
layers are parameterized by MK-MMD [39], and MK-MMD can enhance the transferability
of the feature representation in deep neural networks. The squared formulation of MK-
MMD is defined as

d2
k(p, q) ,‖ Ep

[
φ(xs)]−Eq[φ

(
xt)] ‖2

Hk
(1)

where Hk denotes the reproducing kernel Hilbert space (RKHS) endowed with a char-
acteristic kernel k. The mean embedding of the distribution p in Hk is a unique element
µk(p) such that Ex∼p f (x) = 〈 f (x), µk(p)〉Hk

for all f ∈ Hk. The MK-MMD dk(p, q) between
the probability distributions p and q is defined as the RKHS distance between the mean
embeddings of p and q. Another key point about this formula is that p = q iff d2

k(p, q) = 0.
The characteristic kernel associated with the feature map φ, k

(
xs, xt) = 〈

φ(xs), φ
(
xt)〉 is

defined as the convex combination of m positive semi-definite (PSD) kernels {ku},

κ ,

{
k =

m

∑
u=1

βuku :
m

∑
u=1

βu = 1, βu ≥ 0, ∀u

}
(2)
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where the constraints on coefficients {βu} are imposed to guarantee that the derived multi-
kernel k is characteristic. The multi-kernel k can be used to enhance MK-MMD performance
with different cores.
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2.4. Experiments

This section focuses on the use of three domain adaptation models, DAN [39], DANN
(domain adversarial neural network) [34], and DeepCoral (correlation alignment for deep
domain adaptation) [41], for the processed EEG data for training and prediction. Relevant
basic data processing, sample selection and assignment, and comparison settings were
performed during the experiments, mainly considering the effects of these settings on the
experimental results, excluding unnecessary external factors, and analyzing the obtained
experimental results.

2.4.1. Experimental Setup

When the processed data are trained and tested by the domain adaptation model, some
parameters of the neural network need to be set. To enable the network to be fully trained,
the number of network cycles is set to 500, which allows for the iterations of the parameters
of each layer to increasingly match the relevant characteristics of the training data. The
base network for setting up the domain adaptation model is resnet34, which is a simpler
network compared to resnet50 to avoid overfitting. To fully reflect the various features
of the training data in the neural network during training, this requires setting the batch
size to be relatively small for each training. In order to make full use of the GPU training
model to a certain extent, the num_works is set to three, which can effectively accelerate the
training process. In order to reduce the difference between the source and target domains
in the adaptive network, the three domain adaptation models have their own different
loss functions, among which the DAN model chooses the loss function MK-MMD, which
enables the third part of the model to better transfer learning in different data distributions.

2.4.2. Data Distribution

The data were divided into the source and target domains, which both contain two
classifications of health and depression, and 16 samples were selected from all the sample
images, with 8 healthy and 8 depressed samples. The first allocation is that the sample data
are set in a 7:1 ratio of training to testing. The training set includes 7 healthy samples and
7 depressed samples, and the remaining healthy sample and one depressed sample are set
as the test set. The second allocation is that the sample data is set in a 4:4 ratio of training to
testing, which means that the healthy and depressed samples are divided equally.

3. Results

By training two kinds of image data with adaptive networks and then testing them
on unfamiliar images, it can be observed that the two methods of processing data have
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different effects on prediction accuracy, and different data allocation ratios also have some
effects on the experimental results.

In Figure 7, it can be seen that the accuracy of drawing three columns of data in the
same picture is lower than that of the RGB synthesis, which is also in line with general
cognition. RGB synthesis is more in line with the relevant characteristics of computer
vision. The RGB synthesized image data were trained and predicted in the three models,
and the relationship between the number of training and the prediction accuracy was
obtained, as shown in Figure 8. In Figure 8, it can be found that the prediction accuracy
of the DAN model is higher compared to DANN and DeepCoral, which indicates that
the DAN model is more suitable to deal with the domain adaptation problem of the RGB
synthesized images. During the experiments, it was found that different training and
testing samples were selected from the total samples after passing through the adaptive
network to obtain different accuracy rates. The prediction accuracy values of some different
sample combinations are listed in Table 2, where S and T represent the source and target
domains, respectively, and the numbers after them indicate that they are randomly from
different combinations. Additionally, each grouping includes 16 samples, of which eight
are healthy, and eight are the depressed samples, followed by seven healthy samples
and seven depressed samples in S, and one healthy sample and one depressed sample in
T. After a series of experiments, it can be found that the prediction accuracy of DAN is
generally higher among the three adaptive models, so it can be ascertained that the DAN
model can better extract the features of different data distributions, and the prediction of
unknown data is more accurate. Additionally, it can be found in Figure 8 that the accuracy
distributions of subplots (a,b,d) and subplot © are different. The reason for this may be the
wide variation in the EEG patterns of each individual. The EEG signals of the patients with
different degrees of depression are somewhat specific, and even a very small number of
patients have a part in EEG characteristics similar to those of healthy users. The mechanism
of depression is not clear at present, and the EEG itself is a non-stationary signal. The
differences in the manifestation of depressive symptoms among patients are relatively
large. This paper focuses on how to improve the accuracy of depression detection among
different users. Using this method can serve to improve the accuracy rate of most users.
This can also prove the meaning of the experiment and the validity and potential of the
method in another way.
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(Assuming that each group contains a healthy sample and a depression sample, 4:4 means that four
groups are the training set and the other four groups are the test set; 7:1 means that the seven groups
are the training set and the other one group is the test set. Additionally, the healthy and depressed
samples in all groups were from different participants).
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Table 2. Prediction accuracy of different sample combinations under the three models. (a) First six
groups’ prediction accuracy; (b) The prediction accuracy of the last five groups; and the average
accuracy of all subgroups.

Model S1→T1 S2→T2 S3→T3 S4→T4 S5→T5 S6→T6

DAN 87.4% 69.6% 89.9% 89.3% 78.7% 68.8%
DAN 79.1% 64.9% 81.4% 84.4% 61.9% 64.6%

DeepCoral 82.1% 67.3% 82.8% 75.4% 72.4% 62.2%

(a)

Model S7→T7 S8→T8 S9→T9 S10→T10 S11→T11 Average

DAN 69.4% 62.1% 75.7% 68.0% 88.2% 77.0%
DAN 59.2% 63.7% 65.7% 61.9% 88.9% 70.5%

DeepCoral 62.3% 50.8% 65.2% 57.0% 82.6% 69.1%

(b)

4. Discussion and Conclusions

Depression is a major health problem for millions of people, and this number is getting
bigger, and there is a certain impact on the development and progress of society, so it must
be diagnosed and treated in time. Additionally, early depression is more easily cured so
that the damage of depression can be kept within a certain range and avoid bigger tragedies.
The current mainstream method of depression diagnosis is manually intensive, and the
result depends mainly on the doctor’s experience, which has some drawbacks. In daily
life, an easy, low-cost, wearable depression detection device that can detect depression
in time and allow depression to be detected at a curable stage is essential. Additionally,
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the detection of depression based on EEG signals is generally more reliable. Many studies
have also shown that EEG signals contain some features of emotional states and mental
disorders. However, the actual EEG acquisition process can mix in some noise, so a series
of processing and analysis of the raw signal is needed before the neural network can be
used to learn the features of depression. It may be more convincing to obtain the results
this way.

Applying the domain adaptation approach to EEG signal-based depression diagnosis
can better attenuate the effect of EEG signal variability on diagnostic accuracy. Such a
model trained on limited known data can show better diagnostic results in undetected
individuals, giving a scientific and objective approach to depression detection, which may
be valuable for the development of medical devices and personal detection devices for
depression. After a series of experiments, the proposed method can effectively weaken the
variability of the EEG signals of different users and diagnose other users more accurately.
However, during the experiments, the data set used is relatively small, which will affect the
generalizability of the detection system to some extent. Additionally, the model is based on
a deep learning algorithm, whose data computation complexity may be high and requires
a relatively long time to learn the data features. In the future, more sample EEG datasets
will be collected and produced, and a wider range of participants will be made available.
Models trained with such datasets may have significantly improved accuracy when faced
with predictions from different categories of people. We will continue to try and optimize
the model in order to better achieve the online deployment of rapid diagnosis and to allow
easy mobile devices to make timely and accurate predictions locally.
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